A Biosorption of Mercury from Wastewater Using Isolated Aspergillus Sp. Modified 1,10-Phenanthroline: Hill Isotherm Model

Main Article Content

Shameran J. Salih Sewgil S. Anwer Rezhna H. Faraj

Abstract

Equilibrium biosorption of mercury (II) onto new developed biosorbent (1,10-phenanthroline-graft- cell/Filamentous fungi) in both free, immobilized and dead cell were investigated. The product was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). In this work several isotherm models applied to predict the process design for the adsorption system. Hill, Sips, Langmuir and Freundlich utilized to determine the adsorption parameters, the equilibrium data fitted well to Hill and Sips isotherm models followed by Langmuir. Meanwhile, the maximum adsorption capacity proposed by Hill model was 78.67(mg/g) and Sips 78.42(mg/g) were lower than Langmuir models which was 85.16(mg/g). In other hand, the equilibrium data almost fitted to the Freundlich isotherm supporting the postulation of the heterogeneous shape of biosorption to certain range. Hence, On the bases of Langmuir model the biosorption of Hg2+ onto 1,10-phenanthroline-graft- cell/Filamentous was in the favourable area and that confirmed by calculating the separation factor (RL< 1). Nevertheless, new isotherm (Eq. 4) has been derived by the combination of a Langmuir and Freundlich models. The new model agreed well enough (R2 = 0.9863) with the experimental data.

Article Details

How to Cite
SALIH, Shameran J.; ANWER, Sewgil S.; FARAJ, Rezhna H.. A Biosorption of Mercury from Wastewater Using Isolated Aspergillus Sp. Modified 1,10-Phenanthroline: Hill Isotherm Model. Science Journal of University of Zakho, [S.l.], v. 5, n. 4, p. 288-295, dec. 2017. ISSN 2410-7549. Available at: <http://sjuoz.uoz.edu.krd/index.php/sci/article/view/379>. Date accessed: 22 aug. 2018. doi: https://doi.org/10.25271/2017.5.4.379.
Section
Science Journal of University of Zakho

References

Adams, J., Aggarwal, M. M., Ahammed, Z., Amonett, J., Anderson, B. D., Arkhipkin, D., . . . A.N.Zubarev, A. N. (2005). Experimental and theoretical challenges in the search for the quark–gluon plasma: The STAR Collaboration's critical assessment of the evidence from RHIC collisions. Nuclear Physics A, 757(1-2), 102-183.
doi:10.1016/j.nuclphysa.2005.03.085
Adie, D. B., Olarinoye, N. O., Oke, I. A., Ismail, A., Lukman, S., & Otun, J. A. (2010). Removal of lead ions from aqueous solutions using powdered corn cobs. The Canadian Journal of Chemical Engineering, 88(2), 241-255. doi:10.1002/cjce.20264
Ahalya, N., Ramachandra, T. V., & Kanamadi, R. D. (2003). Biosorption of heavy metals. Research journal of chemistry and enviroment, 7(4), 71-79.
Ajayi, O. O., Oladipo, M. O., Ogunsuyi, H. O., & Adebayo, A. O. (2002). Determination of the minor and trace elements in Biriniwa's tin pyrite and ornamental lead/zinc ore using neutron activation analysis. Bulletin of the Chemical Society of Ethiopia, 16(2), 207-212.
https://www.ajol.info/index.php/bcse/article/view/20944/188
56
Aubert, B., Barate, R., Boutigny, D., Couderc, F., Karyotakis, Y., Lees, J. P., . . . Stugu, B. (2005). Observation of a broad structure in the π+ π− J/ψ mass spectrum around 4.26 GeV/c 2. Physical review letters, 95(14), 142001.
doi:10.1103/PhysRevLett.95.142001
Brinza, L., Dring, M., & Gavrilescu, M. (2007). Marine Micro and Macro Algal Species as Biosorbents for Heavy Metals. Enviromental Engineering and Management Journal, 6, 237-251.
Chakraborty, S., Chowdhury, S., & Saha, P. (2011). Adsorption of Crystal Violet from aqueous solution onto NaOH-modified rice husk. Carbohydrate Polymers, 86(4), 1533-1541. doi:10.1016/j.carbpol.2011.06.058
Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674-3676.
doi:10.1093/bioinformatics/bti610
Debnath, S., & Ghosh, U. C. (2008). Kinetics, isotherm and thermodynamics for Cr (III) and Cr (VI) adsorption from aqueous solutions by crystalline hydrous titanium oxide. Journal of Chemical Thermodynamics, 40(1), 67-77. doi:10.1016/j.jct.2007.05.014
Elifantz, H., & Tel-Or, E. (2002). Heavy Metal Biosorption by Plant Biomass of the Macrophyte Ludwigia Stolonifera. Water, Air, and Soil Pollution, 141(1-4), 207–218.
doi:https://doi.org/10.1023/A:1021343804220
Foo, K. Y., & Hameed, B. H. (2010). Insights into Modeling of Adsorption Isotherm Systems. The Chemical Engineering Journal, 156(1), 2-10.
doi:10.1016/j.cej.2009.09.013
Gaad, G. M. (1990). Fungi and yeasts for metal binding. In H. L. Ehrlich, & C. L. Brierley, Microbial Mineral Recovery (pp. 249-275). New York: McGraw-Hill.
Gladstone, R. A., Jefferies, J. M., Tocheva, A. S., Beard, K. R., Garley, D., Chong, W. W., . . . Clarke, S. C. (2015). Five winters of pneumococcal serotype replacement in UK carriage following PCV introduction. Vaccine, 33(17), 2015-2021. doi: 10.1016/j.vaccine.2015.03.012
Kar, P., & Misra, M. (2004, September). Use of keratin fiber for separation of heavy metals from water. Journal of Chemical Technology and Biotechnology, 79(11), 1313–1319. doi:10.1002/jctb.1132
Ledin, M., Krantz-Rulcker, C., & Allard, B. (1996). ZN, CD AND HG ACCUMULATION BY MICROORGANISMS, ORGANIC AND INORGANIC SOIL COMPONENTS IN MULTI-COMPARTMENT SYSTEMS. SOIL BIOLOGY AND BIOCHEMISTRY, 28(6), 791-799.
Liu, J., Mazumdar, D., & Lu, Y. (2006). A Simple and Sensitive “Dipstick” Test in Serum Based on Lateral Flow Separation of Aptamer‐Linked Nanostructures. Angewandte Chemie, 118(47), 8123-8127.
Marshall, W. E., Wartelle, L. H., Boler, D. E., Johns, M. M., & Toles, C. A. (1999). Enhanced metal adsorption by soybean hulls modified with citric acid. Bioresource Technology, 69(3), 263-268. doi:https://doi.org/10.1016/S0960-8524(98)00185-0
Mittal, A., Damodar, J., & Mittal, J. (2013). Adsorption of hazardous dye Eosin Yellow from aqueous solution onto waste material De-oiled Soya: Isotherm, kinetics and bulk removal. Journal of Molecular Liquids(179), 133-140. doi: 10.1016/j.molliq.2012.11.032
Nagamani, A., Kunwar, I. K., & Manoharachary, C. (2006). Handbook of Soil Fungi . I K International Publishing House.
Nowicki, P., Kuszyńska, I., Przepiórski, J., & Pietrzak, R. (2013). The effect of chemical activation method on properties of activated carbons obtained from pine cones. Central European Journal of Chemistry, 11(1), 78-85. doi:10.2478/s11532-012-0140-0
Oke, I. A., Olarinoye, N. O., & Adewusi, S. R. (2008). Adsorption kinetics for arsenic removal from aqueous solutions by untreated powdered eggshell. Adsorption, 14(1), 73-83. doi:10.1007/s10450-007-9047-z
Okieimen, F. E., Ogbeifun, D. E., Nwala, G. N., & Kumsah, C. A. (1985). Binding of cadmium, copper, and 5 lead ions by modified cellulosic materials. Bulletin of Environmental Contamination and Toxicology, 34(1), 866-870.
Patil, A. K., & Shrivastava, V. S. (2010). Alternanthera bettzichiana Plant powder as Low Cost. International Journal of ChemTech Research, 2(2), 842-850.
Pavlish, J. H., Holmes, M. J., Benson, S. A., Crocker, C. R., & Galbreath, K. C. (2004). Application of sorbents for mercury control for utilities burning lignite coal. Fuel Processing Technology, 85(6-7), 563-576.
doi:https://doi.org/10.1016/j.fuproc.2003.11.022
Rangsayator, N., Upatham, E. S., Kruatrachue, M., Pokethitiyook, P., & Lanza, G. (2002). Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium. Enviromental Pollution, 119(1), 45-53. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12125728
Ranjbar, M., Malakooti, E., & Sheshmani, S. (2013). Synthesis and Characterization of Mercury(II) Complexes Containing 2,9-Dimethyl-1,10-phenanthroline by Sonochemical Method. Journal of Chemistry.
doi:http://dx.doi.org/10.1155/2013/560983
Rashid, B. Z., Omer, R. A., & Salih, S. J. (2016). Characterization and Antimicrobial Efficiency of Silver Nanoparticles Based Reduction Method. International Journal of Current Microbiology and Applied Sciences, 5(8), 802-810. doi:10.20546/ijcmas.2016.508.089
Salih, S. J. (2014). Removal of Basic Dyes from Aqueous Solution by Chloroacetic Acid Modified Ferula Communis Based Adsorbent: Thermodynamic and Kinetic Studies. Koya University, 1-72.
Salih, S. J., & Rashid, B. Z. (2015). Cranberry Stem as an Efficient Adsorbent and Eco-Friendly for Removal of Toxic Dyes from Industrial Wastewater. International Journal of Pharmaceutical Chemistry, 5(6), 207-217.
doi:10.7439/ijpc.v5i6.2039
Salih, S. J., & Samil, A. K. (2016). Synthesis, characterization and evaluation of antibacterial efficacy of 1 zinc oxide nanoparticles. Pharmaceutical and Biological Evaluations, 3(3), 327-333.
Shukla, S. R., & Pai, R. S. (2005). Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres. Bioresource Technology, 96(13), 1430-1438. doi: 10.1016/j.biortech.2004.12.010
Tokcaer, E., & Yetis, U. (2006). Pb(II) biosorption using anaerobically digested sludge. Journal of Hazardous Materials, 137(3), 1674-1680. doi:10.1016/j.jhazmat.2006.05.004
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478. Retrieved from http://www.jstor.org/stable/30036540
Zhang, W., Li, H., Kan, X., Dong, L., Yan, H., Jiang, Z., . . . Cheng, R. (2012). Adsorption of anionic dyes from aqueous solutions using chemically modified straw. Bioresource Technology, 117, 40-47. doi:10.1016/j.biortech.2012.04.064