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ABSTRACT:

Human errors during software development lead to many defects, which emphasizes the importance of early detection and
minimization. However, existing approaches often fall short in delivering accurate, scalable, and generalizable predictions
due to challenges such as class imbalance, feature extraction limitations, and computational inefficiencies. This study
proposes a hybrid method using a Convolutional Neural Network (CNNs) + Long Short-Term Memory (LSTM) for feature
extraction, addressing class imbalance with Adaptive Synthetic Sampling (ADASYN) and subsequent training using
Extreme Gradient Boosting (XGboost), to predict software defects. The proposed approach was evaluated on five publicly
available datasets (CM1, MCI1, KC1, PC1, and PC4) and compared with state-of-the-art (SOTA) models. Experimental
results demonstrated that the hybrid model significantly outperforms traditional XGBoost-based models in terms of recall,
Fl-score, and area under the receiver operating characteristic curve (AUC), addressing the shortcomings of existing
methods. Results demonstrate the effectiveness of the proposed method, with notable performance metrics achieved across
all datasets. For example, on the MC1 dataset, the model attained an accuracy of 0.9980, a precision of 0.9971, a recall of
0.9988, an F1-score of 0.9980, and an AUC-ROC of 0.9999. On the KC1 dataset, it achieved an accuracy of 0.9344, a
precision of 0.9265, a recall of 0.9375, an F1-score of 0.9320, and an AUC-ROC of 0.9839. The model achieves better
performance than traditional machine learning methods and separate deep learning models, especially in the areas of recall
and AUC-ROC. This research presents a robust solution through hybrid approaches that address class imbalance and
maintain high predictive accuracy for software development process tasks, offering insights into the trade-offs between
machine learning and deep learning methods.

KEYWORDS: Software Defect Prediction (SDP), CNN, LSTM, Machine learning, Deep Learning, Hybrid Technique,
XGboost

1. INTRODUCTION modularity and separation of concerns. Faulty modules are less
likely to be reused due to their instability or unclear functionality,
which reduces maintainability and increases technical debt. In
this study, the static code features extracted from the datasets
(e.g., cyclomatic complexity, coupling, cohesion) reflect

Software defects represent faults in computer programs that
may lead to system failures, data loss, security vulnerabilities,
and financial losses (Elentukh, 2023; Shafiq et al., 2023). While
the terms 'defect', 'bug', and 'error' are sometimes used .
. . L structural weaknesses that are closely tied to defect proneness
interchangeably, a defect generally refers to an imperfection in

. . . L. and negatively influence reusability and modular design.
code functionality that may or may not result in a bug, which is & Y v £

an observable deviation from expected behavior during According to research by Krasner (2021), Mahmoud et al.
execution. An error, on the other hand, typically refers to a human (2024), and Mehmood et al. (2023), software defects account for
mistake made during development that leads to defects in the  half of project expenses, while also causing system breakdowns
code. and security risks, with additional negative impacts on user
Defects not only affect runtime performance and reliability satisfaction. Despite the advancement of me?ch'ine le.aming, the

current approaches to software defect prediction still struggle

but also compromise key software design principles such as L . . R
P Y g p P with issues such as the existence of imbalanced datasets (Saidani
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et al., 2022; Giray et al, 2023), difficulties in comprehending
intricate code forms (Daneshdoost & Feyzi, 2023; Wan et al.,
2024), poor project generalization (Nevendra & Singh, 2022),
and insufficient explanation of the prediction (AL-Hadidi &
Hasoon, 2024). The comprehension of software defects from a
theoretical perspective has changed from mere bug tracking to
more advanced predictive analytics, where scholars have sought
to develop defect explanation frameworks and models that
capture a number of attributes (Vogel-Heuser et al., 2015). There
has been a shift from conventional statistical methods to more
advanced ones based on machine learning (ML) in software
defect prediction (SDP), with the use of algorithms and deep
learning being more effective in dealing with complex code
structures. (Kumar et al, 2023; Pachouly et al, 2022).
Understanding the relationship between software complexity and
the likelihood of defects occurring is a prominent theoretical
perspective. Numerous measures have been proposed to quantify
the complexity of software systems and their correlation with
error occurrence, including object-oriented design metrics,
Halstead's software science metrics, and McCabe's cyclomatic
complexity (Kumar ef al., 2023). Furthermore, external process-
related elements, including a change's history, a developer's
experience, and the methodologies employed in the development,
have been deemed important in forecasting software defects
(Pachouly et al., 2022). There remain several research gaps and
emerging trends; however, the advancement of software defect
prediction methodologies has not kept pace with (Olaleye et al.,
2023). Although ML and deep learning (DL) models have
improved prediction accuracy, their practical application is still
hindered by the models’ inherent complexity and the resulting
lack of understanding about them (Patil ef al., 2024). Many
current models show robust performance on particular datasets,
but these models often fail to generalize across different projects
and domains (Alzeyani & Szabd, 2024). Meeting the temporal
dimensions of software development poses another critical
challenge owing to the changes in software characteristics and
defect patterns over time (Kaliraj & Thomas, 2024). The latest
trend reported by Khan and Masum (2024) is the incorporation
of software defect prediction tools within the continuous
integration and deployment pipelines for the purpose of real-time
feedback and proactive defect mitigation. This new direction of
research in software defect prediction prepares the ground for
further efforts that bound these limitations of accuracy,
generalizability, and practicability of predictive software system
defects for automation. Likewise, the integration of deep learning
technologies into algorithms created for predicting software bugs
has opened wider opportunities. Convolutional CNNs and
LSTMs are outstanding examples of modern applicative deep
learning models that have achieved significant breakthroughs in
time series prediction, image recognition, and natural language
processing (Goodfellow et al, 2016). Because these models
automatically capture the structure of data as a hierarchy of
features, they are particularly powerful for quite complex tasks
where input variables interact with each other in many ways.
Even with their unparalleled advantages, deep learning models
often require substantial computational power and large amounts
of training data, which are not always readily available in
software defect prediction scenarios (Wang et al., 2022). To
achieve the objectives, experimental evaluations were conducted
using multiple datasets commonly referenced in the field,
including CM1 and MC1, as well as other datasets such as KC1,
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PC4, and PCI1. The models’ performances were assessed using
performance metrics. A significant contribution of this study is
the development of a hybrid framework that combines the
strengths of deep learning for capturing complex spatial and
temporal dependencies in software metrics with the efficiency
and robustness of XGboost for classification, particularly in
imbalanced datasets. The proposed method demonstrates
superior performance compared to traditional ML models and
standalone DL architectures, particularly in terms of recall and
AUC-ROC scores. These metrics are especially important in
defect prediction, where identifying all defective modules (high
recall) and achieving strong class separation (high AUC) are
critical for practical deployment. The rest of the paper is
structured: Related works are covered in Section 2. In contrast,
section 3 materials and methods offer a thorough explanation of
the approach, covering feature extraction, dataset preparation,
data balancing, model assessment, and experimental setup. The
experimental results are shown in Section 4, along with a
discussion of the findings in relation to previous research and
state-of-the-art models. The work is finally concluded, and future
research concerns are outlined in Section 5.

2. REVIEW OF RELATED WORK

Software engineering research has placed much emphasis
on predicting software problems, with many papers examining
different methods to increase forecast accuracy and
dependability. This section looks at earlier research that has
significantly advanced the field, with a focus on traditional ML
methodology, deep learning techniques, and hybrid approaches.
The study by (Ali et al., 2024) highlighted the importance of
software defect prediction (SDP) in enhancing software quality
and reducing testing costs by identifying and prioritizing
defective modules for testing. Preprocessing (splitting, cleaning,
and normalization), classification using four different supervised
machine learning classifiers, ensemble modelling using a voting
ensemble strategy, and data collection from seven historical
defect datasets are all included in the methodology. The results
demonstrated that the VESDP model outperformed twenty
cutting-edge defect prediction methods with impressive accuracy
of 86.87%, 79.12%, 68.42%, 89.33%, 92.16%, 87.97%, and
87.14% across the CM1, JM1, MC2, MW1, PC1, PC3, and PC4
datasets, respectively. The study also lacked detailed results on
the computational complexity or scalability of the VESDP model,
which are critical for large-scale projects, and does not
extensively discuss the impact of data quality, including noise or
missing values, on model performance. A modified Random
Forest-based technique for software fault prediction was
implemented using the JM1 dataset, which comprises various
software metrics indicating the presence or no presence of a
defect in a module (Kaliraj & Thomas, 2024). The study
examined issues such as feature selection, imbalanced datasets,
model overfitting, data scarcity, and interpretability challenges in
software error prediction. Random Forest was used for feature
SMOTE was used solve class imbalance,
preprocessing was used to manage null values and data problems,
and the Random Forest classifier was used to handle high-
dimensional datasets and reduce overfitting. However, the
approach's generalizability to other datasets (AL-Hadidi &
Hasoon, 2024) Alternatively, contexts are limited by their

selection, to

concentration on a single dataset, and they ignore potential
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drawbacks such as computational cost, memory needs, or the
demand for intensive hyperparameter adjustment.

A study by AL-Hadidi & Hasoon, (2024) Software defect
prediction was implemented using XGboost with hyperparameter
optimisation for their experimental analysis. The research study
sought to enhance prediction accuracy and performance by
applying ensemble learning methods together with optimization
techniques. The research leverages advanced techniques such as
XGboost and grid search with cross-validation for
hyperparameter tuning while also addressing dataset imbalance
using oversampling. The researchers employed several NASA
MDP datasets to expand the applicability of their findings. The
optimization process resulted in a notable performance increase
for the model, with accuracy improving from 0.888 to 0.938 for
the CM1 dataset and from 0.743 to 0.795 for the KC1 dataset.
The study suffers from limitations, which include insufficient
exploration of various data balancing strategies, along with an
exclusive focus on XGboost without testing other advanced
methods, and a lack of detailed analysis on the computational
costs of hyperparameter adjustments.

Alkaberi & Assiri, (2024) focused on utilizing CNN and
multilayer perceptron (MLP) to detect software errors in order to
improve software quality. The data was pre-processed using
SMOTEND  oversampling, log transformation, and
standardization, and they employed 12 datasets with 20 object-
oriented metrics from the PROMISE repository. Kendall’s
correlation coefficient and mean squared error (MSE) were the
evaluation metrics utilized. Before applying SMOTEND, CNN
achieved MSE=1.316 and Kendall=0.162 on test data, while
MLP achieved MSE=1.73 and Kendall=0.183. After addressing
data imbalance with SMOTEND, performance improved
significantly CNN achieved MSE=0.218 and Kendall=0.363,
while MLP performed better with MSE=0.195 and
Kendall=0.416 on test data. These were compared to baseline
machine learning models: decision tree regression (DTR)
achieved MSE=0.17 and Kendall=0.486, while support vector
regression (SVR) showed poorer performance with MSE=0.257
and Kendall=0.276 on balanced test data. The study validated the
approach, but limitations include potential external validity
constraints and a lack of ablation studies. Additional metrics,
such as model complexity and inference time, could enhance the
evaluation. Ponnala & Reddy, (2023) using method-level features
from an open-source Java e-commerce project, developed an
ensemble model for software defect prediction. The study
combined random forest, SVM, and LightGBM algorithms using
logistic stacking to improve prediction accuracy. Key strengths
include the use of fine-grained method-level metrics (75 features
reduced to 25 via PCA) and the ensemble approach, which
outperformed individual models with an ROC AUC of 0.853 and
81% accuracy. However, limitations include analysis of only one
project, a lack of comparison with state-of-the-art ensemble
techniques, and insufficient discussion of practical implications.
The study demonstrated the potential of ensemble methods and
method-level features for defect prediction, but further validation
across diverse projects and exploration of feature importance
would enhance its impact. Future work could focus on model
interpretability and integration into development processes.
Maddipati & Srinivas, (2021) reported a way to improve software
fault prediction by tackling the issues of excessive dimensionality
and class imbalance. The research employed dimensionality
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reduction through a statistical technique, that is to say, utilizing a
method to simplify complex data structures, combining this with
an ensemble approach paired with an adaptive fuzzy system.
When compared to current approaches, the methodology
increased the AUC by 15%, indicating greater predictive
accuracy. While the results were promising, demonstrating the
model’s effectiveness in NASA datasets, the study’s reliance on
specific datasets limits its generalizability. Additionally, it did not
explore the impact of varying software projects or defect
densities on performance. The study offered a significant
advancement in balancing accuracy and cost-effectiveness in
SDP, though further research is needed for broader applicability.
Olorunshola et al., (2020) evaluated various machine learning
classification algorithms to identify the best performer in
predicting software defects, emphasizing the importance of
minimizing misclassification to avoid wasted developer effort.
Using WEKA version 3.8.3 and the JM1 dataset, the study
assessed twelve algorithms from six categories. Standard
Performance metrics included accuracy, false positive rate,
Kappa statistic, RMSE, among others, with a primary assessment
through 10-fold cross-validation. The study found that the
Random Forest algorithm outperformed most others, while the
Bayes Net classifier excelled in terms of the false positive rate,
achieving the lowest FP-rate of 0.391. A comprehensive
evaluation of various classification algorithms, including less
commonly explored ones, is a notable strength. However, the
study's drawback includes its focus on a single dataset, raising
concerns about the generalizability of the results. The rationale
for selecting specific algorithms and metrics was not clearly
explained, and the study lacked detailed analysis beyond
presenting numerical performance metrics. Recent literature in
software defect prediction highlights several critical gaps in
current methodologies. While studies have advanced predictive
modelling capabilities, they often employ single-algorithm
solutions that fail to address the multifaceted challenges in defect
prediction comprehensively (AL-Hadidi & Hasoon, 2024; Wang
etal.,2022). Key limitations include inadequate handling of class
imbalance, computational inefficiency, and poor project
generalizability (Jin, 2021; Khalid ef a/., 2023). The current state
of software defect prediction still clearly lacks a fully
comprehensive approach that might actually bring together many
ensemble techniques, various optimization methods, and some
data balancing procedures. Much of the existing research has just
focused on individual components rather than addressing these
elements in a more unified way, which has eventually led to many
disconnected solutions that currently fail to fully maximize both
predictive capabilities and real-world implementation (Shen &
Chen, 2020; Tameswar ef al., 2022). Additionally, to effectively
efficiency, and model

balance computational

generalization in SDP applications, the field clearly needs to

accuracy,

develop a more holistic methodology

3. MATERIALS AND METHODS

The current section explains how the study model was build
using a hybrid-type approach that essentially combines both deep
learning feature extraction with the XGboost algorithm to help
with Software Defect Prediction. This particular approach uses a
hybrid CNN-LSTM model to fully analyze many numerical
software metrics Dataset. The CNNs identify some local patterns,
while the LSTMs still process much of the sequential data



Chinyio et al/ Science Journal of the University of Zakho, 13(4), 448-463 October-December, 2025

relationships. Additionally, the extracted features are eventually
fed into XGboost for training to help with defect classification.

Dataset Description and Preprocessing:

The study utilized five of the most established benchmark
datasets (which include CM1, KC1, PC1, PC4, and MCI1) that

contain many static code measurements like cyclomatic
complexity, some Halstead metrics, and various code line counts.
These particular datasets, which are still widely used in much of
the defect prediction research, include both the metric attributes
and also the defect labels for each of the software modules (AL-
Hadidi & Hasoon, 2024; Ali et al., 2024; Menzies et al., 2015;
Shepperd et al., 2018).

Table 1: Dataset Description

No of Programming Non- .
Dataset T Inst Defecti
atase ype features Language nstances Defective elective
CM1 Procedural 22 C 327 285 42
MC1 Object 39 Ct 8737 8669 68
Oriented
PC1 Procedural 22 C 735 674 61
PC4 Procedural 37 C 1379 1201 178
KC1 Object 22 C++ 2095 1770 325
Oriented

The SDP model uses various data preprocessing steps to fully
enhance both data quality and model effectiveness. Before
feeding the features into the CNN-LSTM model, the following
preprocessing steps were applied:

The process begins by importing the dataset and converting
any missing values marked with "?" into the NaN format for
much better processing. To handle these missing values, the
model uses mean substitution, which helps to maintain more data
consistency (Ghotra et al., 2017). Additionally, all features are
converted to numeric format, and the target variable undergoes
binary encoding (0 and 1) using LabelEncoder, with defective 1
and non-defective 0, which aligns with established classification
methods (Farabet et al., 2013). Further, feature scaling is
implemented through StandardScaler, which Dbasically
normalizes the numerical features to a mean of 0 and standard
deviation of 1, because this prevents any single feature from

becoming too dominant in the model, hence improving model
convergence (Ahmed ef al., 2023). Due to the dataset imbalance
between defective and non-defective instances, the Adaptive
Synthetic Sampling technique creates synthetic minority class
samples to achieve a much better balance. This resampling
approach helps to enhance both the model's learning capabilities
and detection accuracy (Jude & Uddin, 2024). Moreover, the
process includes verification of balanced class distribution after
resampling by comparing the defect and non-defect instances.
These comprehensive preprocessing steps, which include
missing value treatment, categorical encoding, feature scaling,
and class balance correction, are clearly vital for achieving
optimal model performance in defect prediction tasks (Goyal,
2022; Hussein et al., 2020; Jude & Uddin, 2024). The dataset
description after applying ADAYSN is reported in Table 2.

Table 2: Data Description After Applying ADAYSN

Dataset Instances Non—Defective Defective
CM1 561 285 276
MC1 17340 8669 8671
PC1 1345 674 671
PC4 2443 1201 1242
KC1 3501 1770 1731

Addressing Class Imbalance:

The issue of class imbalance commonly seen in software
defect datasets was handled using the ADASYN approach, which
created artificial samples for underrepresented categories. This
improved prediction performance overall while enhancing the
capability to learn from examples that are not well-represented
(Hussein ef al., 2020). The ADASYN method adapts to generate
synthetic data points for minority classes (Hussein ef al., 2020).
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The number of artificial samples generated depends on how
difficult it is to classify specific minority cases, meaning harder
cases get more synthetic examples. Figure 2 demonstrates the
preprocessing approach applied to the dataset. Algorithm 1
(Hussein et al., 2020) outlines the process: to put it simply, the
method evaluates data distribution patterns first, then calculates
neighborhood relationships between samples, and finally
produces new instances proportionally based on the complexity
of classification tasks.
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Algorithm 1

Step 1: Defining Classification Complexity:

The classification challenge for underrepresented data points is
measured by examining the proportion of surrounding examples
that belong to dominant categories compared to all nearby
instances. In equation 1, let r; represent this ratio:

Iy
_ Number of majority class neighbors of x;

1

Total number of neighbors of x;
Where:
1; Is the ratio, for instance x;.

The number of neighbors is typically determined using k-nearest
neighbors (k-NN).

Step 2: Compute the Total Number of Synthetic Samples to
Generate:

The total number of synthetic samples that need to be created for
the minority class is Ny, Equation 2 is used to calculate this.

Nsyn = Nmaj - Nmin (2)

Where:

Npnqj: The majority class’s number of instances.

Niin: The minority class’s total number of instances.

Step 3: Determine the Number of Synthetic Samples for Each
Minority Instance:

The quantity of synthetic samples G; t to be produced for each
minority case x; is directly proportional to its difficulty ratio r;
as indicated in equation 3.

[

DRER

Gi Nsyn : (3)

Where:
G;: “Number of synthetic samples for instance x;” .

Ngyy: Total number of synthetic samples needed to balance the

dataset.

r;: Difficulty ratio of the minority instance x;, which represents
the proportion of majority class neighbors among its k-nearest
neighbors.

DH

minority class.

7;: Sum of the difficulty ratios for all instances in the

Ti
Nmin
;00

difficulty of learning x; compared to other minority instances.

: Normalized difficulty ratio of x;, indicating the relative

Step 4: Generate Synthetic Samples:

Create G; synthetic samples for every minority instance x;, by
interpolating with its closest neighbors. Equation 4 creates a
synthetic sample.
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Xsyn = Xj +2A- (XZ - Xi)

€]
Where:

Xeyn : The newly generated synthetic sample for the minority

class.

x;: The original minority instance for which synthetic samples are
being generated.

x,: A randomly selected neighbor of x; from its k-nearest
neighbors in the minority class.

A: A random number drawn from the uniform distribution is
called Lambda. The synthetic sample’s location along the line
segment between x; and x, is determined by this parameter. By
varying A, the synthetic sample is interpolated to a location
between X; and X, ensuring diversity in the generated data.

Hybrid CNN-LSTM Feature Extraction:

For feature extraction, the hybrid approach makes use of CNN
and LSTM’s advantages. To extract spatial information from the
input data, a CNN is used. Equation 5 (Goodfellow et al., 2016)
lustrates the general mathematical formulation for a single
convolutional layer:

Y=f(W=X+b)
Where:

®)

X is the input feature map (e.g., a matrix representing an image
or software metric data).

W is the learnable convolutional kernel (or filter), which slides
over the input feature map to extract local patterns. Each filter
learns specific spatial features during training.

* denotes the convolution operation.

b is the bias term, is appended to the convolution operation’s
output to improve the model’s fit to the data.

f is the activation function, typically a non-linear function
applied element-wise to introduce non-linearity into the model. It
helps mitigate issues like vanishing gradients and improves
convergence during training (Goodfellow et al., 2016)

LSTM is used to model temporal dependencies and sequential
patterns. An LSTM (Long Short-Term Memory) cell updates its
hidden state h; which represents the output of the LSTM cell at
time t, capturing the relevant information from the sequence up
to that point, and the memory cell C; which acts as the “memory”
of the LSTM, storing long-term dependencies across time steps.
This is shown using the following mathematical functions:

Forget Gate Activation (f; )

fe = O'(VVf  [he—1, %] +bf) (6)

The amount of information from the preceding memory cell C;,_4
that should be remembered or forgotten is decided by the forget
gate. The bias term is by and while the forget gate’s weight matrix
Wr. The sigmoid activation function, or g, produces values
ranging from O to 1, signifying the extent to which each
component of the cell state is forgotten
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Input Gate Activation (i, )

ir = o(W; - [hemq, xe] + b)) @)

The input gate determines the amount of new data that should be
added to the memory cell from the current input x;. b; is the bias
term and W; is the input gate's weight matrix.

Information flow is controlled by the sigmoid function, which
makes sure the gate outputs values between 0 and 1.

Candidate Memory Cell ( Cy)

Ce = tanh(We - [he_y, %] + b¢) (8)

The candidate memory cell computes a potential update to the
memory cell C;. The bias term is b, while the weight matrix for
the candidate memory cell W,. The updates are bounded because
the hyperbolic tangent (tanh) activation function generates values
in the[—1, 1] range.

Memory Cell Update (C;)

Ct=ft®Ct-1+itOC} (C)]

The new information is combined with the prior memory state
C¢_ to update the memory cell C;

ft © C¢_1: The amount of the prior memory C;_ that is kept is
decided by the forget gate f;

ir © C;: i, controls how much of the new candidate memory C,
is added to the memory cell.
multiplication, allowing fine-grained control over the memory
updates.

© denotes element-wise

Output Gate Activation (o)

or = oW, - [he—1,x¢] + by) (10)

How much of the updated memory cell C; will be shown as the
hidden state h, is decided by the output gate. b, is the bias term,
and W, is the output gate’s weight matrix The sigmoid function
ensures that the output gate outputs values between 0 and 1,
controlling the exposure of the memory cell.

Hidden State Update (h;)

h: = oy © tanh(C;) 1y

The hidden state h; is computed based on the updated memory
cell C; and the output gate o,.

tanh(C;): The hyperbolic tangent function applies a non-
linear transformation to the memory cell, ensuring that the output
is bounded between -1 and 1. o, © tanh(C;): The output gate 0,
modulates the transformed memory cell, determining the final
hidden state

Combining both of these models, as shown in Figure 1,
enables a thorough representation of the input data, which can
improve XGboost’s performance (D. Wang et al., 2022; H. Wang
et al.,2021; S. Wang et al., 2022). Each dataset is pre-processed
to ensure consistency in feature scaling and encoding. Missing
values are handled using imputation techniques, and categorical
variables are encoded using one-hot encoding. Spatial features
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are extracted from the input data using a convolutional layer.
Three (3) filter levels were applied to the data in order to capture
the various degrees of abstraction. To capture sequential
dependencies, an LSTM layer is applied to the CNN layer’s
output. This step is particularly useful for datasets with time-
series or ordered features. The outputs from the CNN are passed
to the LSTM layers, which serves as input for the subsequent ML
models. Given that software defect datasets primarily contain
numerical attributes, the CNN-LSTM model extracts statistical
and temporal features (Khleel & Nehéz, 2022). The architecture
implements a sophisticated sequential processing pipeline for
defect prediction. The model begins by accepting a one-
dimensional input vector of shape (100,) this means each input
instance is a single row vector containing 100 values (features)
which is then reshaped to (100,1) to accommodate the
convolutional operations. A Conv1D layer with 64 filters and a
kernel size of 3 performs the first feature extraction. It uses ReLU
activation to identify non-linear patterns in the input data and to
identify spatial correlations between software metrics. A
MaxPooling1D layer with a pool size of two comes next, which
minimizes the spatial dimensions without sacrificing important
features. To produce a compact feature representation, a second
convolutional block with the same configuration as the first one
further processes the down-sampled features. This is followed by
another MaxPooling1D layer. To reduce overfitting, a dropout
layer (rate=0.5) is incorporated (Charles, 2024). The processed
features then flow through a dual LSTM structure, where the first
LSTM layer maintains temporal sequences by returning an output
of shape (49, 50), while the second LSTM layer consolidates this
information into a final feature vector of shape (50,). This models
the sequential dependencies inherent in software defect metrics.
The architecture culminates in a Dense layer with Sigmoid
activation, producing a binary classification output of shape (1,
0), effectively predicting the presence or absence of defects, the
features extracted are then used to for subsequent model training
using machine learning algorithm XGboost.

The hyperparameters were selected based on empirical
experimentation and performance validation across multiple
datasets. Initial values were selected following commonly used
configurations in similar sequence modeling tasks (e.g., time-
series classification and NLP), with further refinements made
through iterative training and validation to optimize recall and
AUC-ROC performance. The Conv1D layer with 64 filters and a
kernel size of 3 was chosen for its ability to capture local patterns
without excessive computational cost. ReLU activation was used
to introduce non-linearity while avoiding vanishing gradients. A
dropout rate of 0.5 was applied to reduce overfitting during
training. The dual LSTM structure was selected to model
sequential dependencies effectively, where the first.

LSTM layer preserves temporal information (output shape: (49,
50)), and the second layer produces a compact feature vector
(output shape: (50,)) for final classification and subsequent
feature representation.
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Types of Features Extracted:

Each dataset includes numerical features that quantify
different characteristics of the software modules. These features
can be broadly categorized into the following groups:

Cyclomatic Complexity Metrics: They measure the complexity
of a program by counting the number of linearly independent
paths through the source code. Higher values often correlate with
an increased likelihood of defects due to the difficulty in testing
and maintaining such code.
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Halstead Metrics: These are based on the number of operators
and operands in the code, including: Program length, Vocabulary
size, Volume, Difficulty and Effort. These metrics estimate the
effort required to understand or debug the code and are useful
indicators of potential defects.

Lines of Code (LOC):

This feature represents the total number of lines in a module,
which may indicate the size and complexity of the code. Larger
modules tend to have more defects due to increased maintenance
and readability challenges.

Object-Oriented Metrics (for OO datasets like KC1 and
MC1): These include: Number of classes, Number of methods
per class, Depth of inheritance tree, Coupling between objects,
and Response for a class. These metrics help assess the design
quality and potential fault-proneness of object-oriented systems.

Code Churn or Change Frequency:

Some datasets include historical data on how frequently a
module has been changed or modified, which is a known
indicator of instability and potential defects.

Figure 3: Feature Importance
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Training and Evaluation:

The XGboost classifier machine learning model was
employed in this study. In order to guarantee thorough analysis,
every dataset was methodically divided into training and testing
sets using an 80-20 split ratio, which enabled reliable model
evaluation and validation. While the paper emphasizes the use of
static code metrics such as cyclomatic complexity, Halstead
metrics, lines of code, coupling, and cohesion for software defect
prediction, it is important to clarify the nature and strength of the
relationship between these metrics and the model's predictions.
To address this, a post-hoc feature importance analysis was
conducted using the trained XGBoost classifier, which provides
insights into how each metric contributes to the final
classification decision, as shown in Figure 3. Table 3 reports the
training time on each dataset.
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Table 3: Model Training Time.

Dataset Training Time (CNN-LSTM) Inference Time (per sample) XGBoost Training Time
CM1 ~7 min ~0.8 ms ~15 sec
KC1 ~9 min ~0.9 ms ~20 sec
PC1 ~10 min ~0.95 ms ~18 sec
PC4 ~12 min ~1.0 ms ~22 sec
MC1 ~15 min ~1.1 ms ~25 sec
Evaluation Metrics: 4. RESULTS AND DISCUSSION

The five-performance metrics used in the study to assess the
performance of the developed model were Accuracy, precision,
recall, F1 score, and AUC-ROC. In the relevant research, these
metrics are frequently used to assess SDP performance.

The following metrics are calculated in equations 12, 13, 14,
15, and 16.

M+P
Accuracy = ————— (12)
Recall = —— (13)
M+N
. M
Precision = — (14)

M+0

Precision x Recall
F1Score =2 X ——

(15)

Precision+Recall

-1 (Qi+1=Q) X (Riya1+ R;
AUC = Z?—f +1 . +1

(16)
Where:

True Positive (M): when a defective instance is accurately
identified as defects.

True Negative (P): when a non-defective instance is accurately
identified as non-defects.

False Positive (Q): when a non-defective instance is mistakenly
identified as defects.

False Negative (P): when a defective instance is mistakenly
identified as non-defects.

Experimental Setup:

Python 3.9 was used for the study, along with well-known
libraries including Matplotlib, Scikit-learn, and TensorFlow. An
Apple Silicon processor, 16GB of RAM, and an 8 Core GPU for
faster calculations were all part of the hardware setup.
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This section discussed the XGboost model’s performance in
predicting software defects on five datasets. ROC Curves and
Confusion matrix were additionally used to determine the
findings. It also talks about how effective the hybrid technique is.

XGboost Performance Metrics CM1 Dataset:
Accuracy: 0.8938
Precision: 0.8033

Recall: 1.0000

Fl Score: 0.8909

AUC-ROC: 0.9662

Classification Report CM1 Dataset:

precision recall fl-score support

Defective 1.00 0.81 0.90 64

Non-Defective 0.80 1.00 0.89 49
accuracy 0.89 113
macro avg 0.90 0.91 0.89 113

weighted avg 0.91 0.89 0.89 113

However, the proposed model demonstrates strong overall
performance across all datasets, although some variation in
accuracy is observed between them. For instance, the CM1
dataset achieved an accuracy of 0.8938, while the PC4 dataset
reached 0.9918.

This difference can be attributed to several factors like Class
imbalance which CM1 has fewer defective instances even after
applying ADASYN, making defect detection more challenging.
Dataset size of CM1 contains only 327 instances, limiting the
model’s learning capability compared to larger datasets like PC4.
And also, feature relevance and noise with some datasets may
contain less informative or noisier features, affecting prediction
accuracy. Despite these variations, the model consistently
achieves high recall and AUC-ROC scores across all datasets,
indicating robust defect discrimination ability. These results
suggest that while the model performs exceptionally well on
balanced and larger datasets, it remains effective for smaller or
imbalanced codebases, especially in terms of minimizing missed
defects. This supports the generalizability of the proposed
method across different software environments, provided that
sufficient and representative data are available.
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The proposed approach works well on the CM1 dataset,
achieving accuracy, precision, recall, Fl-score of 0.8938,
0.8033, 1.0000, 0.8909, respectively and AUC-ROC of 0.9662.
The perfect recall for defective modules ensures no potential
defects are missed, while the high AUC-ROC value highlights
the model’s effective discrimination between classes. However,
the precision of 0.8033 indicates a trade-off with false positives,
as 20 non-defective modules were incorrectly classified as
defective. The confusion matrix in Figure 4 reveals 49 true
positives out of 64 actual defective modules and 52 true negatives
out of 49 non-defective modules, showcasing the model’s ability
to minimize false negatives but pointing to an opportunity for
reducing false positives. The hybrid approach offers superior
performance in terms of recall and AUC-ROC while maintaining
computational efficiency.

XGboost Performance Metrics KC1 Dataset:
Accuracy: 0.9344
Precision: 0.9265

~ore: 0.9320
AUC-ROC: 0.9839

Classification Report KC1l Dataset:

precision recall fl-score  support

Defective 0.94 0.93 0.94 365
Non-Defective 0.93 0.94 0.93 336
accuracy 0.93 701
macro avg 0.93 0.93 0.93 701
weighted avg 0.93 0.93 0.93 701
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Figure 5: KC1 Dataset Confusion Matrix

With an accuracy, precision, recall, and F1-score of 0.9344,
0.9265, 0.9375, and 0.9320, respectively, and an AUC-ROC of
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0.9839, the proposed approach performs well on the KC1 dataset.
As seen by the high AUC-ROC value, these results demonstrate
the model’s efficacy in differentiating between defect and non-
defect modules. Defective modules earn 0.94, 0.93, and F1-score,
whereas non-defective modules achieve 0.93, 0.94, and F1-score,
respectively, according to the classification report, which shows
balanced performance across both classes. This balanced
performance indicates the model effectively reduces incorrect
classifications, that is to say, both false positives, where non-
defective items get flagged wrongly, and false negatives, where
actual issues go undetected, while delivering consistent outcomes
across categories. These findings gain further support from the
confusion matrix shown in Figure 5, which demonstrates that
among 365 defective modules, 340 were identified correctly true
positives, to put it simply whereas 25 slipped through as non-
defective cases, what we call false negatives. Similarly, the model
achieved notable true negative rates by mistakenly labelling only
21 out of 336 defect-free modules as problematic, known as false
positives. When evaluated against the KC1 dataset, the combined
approach shows accuracy levels matching those of standalone
deep learning systems while outperforming conventional
machine learning models in overall performance metrics,
illustrating its strength in detecting complex data patterns without
demanding excessive computational resources, so to speak. This
balanced approach proves particularly valuable given how it
maintains operational efficiency while handling intricate
classification tasks, a crucial consideration given the real-world
constraints often present in such implementations. The findings
demonstrate the hybrid approach’s value as a practical, real-
world tool for enhancing software quality by confirming its
robustness and dependability in SDP.

XGboost Performance Metrics MCl Dataset:

Accuracy: 0.9980

Precision: 0.9971

T 8core: 0980

AUC-ROC: 0.9999

Classification Report MCl Dataset:

precision recall fl-score support

Defective 1.00 1.00 1.00 1757
Non-Defective 1.00 1.00 1.00 1711
accuracy 1.00 3468
macro avg 1.00 1.00 1.00 3468
weighted avg 1.00 1.00 1.00 3468

Confusion Matrix MC1 Dataset - XGBoost
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Figure 6: MC1 Dataset Confusion Matrix

With an accuracy, precision, recall, and F1-score of 0.9980,
0.9971, 0.9988, and 0.9980, respectively, and an AUC-ROC of
0.9999, the hybrid approach performs exceptionally well on the
MCI1 dataset. As evidenced by the nearly flawless AUC-ROC
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score, these results show the model’s remarkable capacity to
discriminate between defective and non-defective modules. With
precision, recall, and F1-scores of 1.00 for both defect and non-
defect modules, the classification report shows almost perfect
performance for both classes. The recall was 1.00, with only 5
false negatives. Specifically, 1752 of the 1757 real problematic
modules were accurately discovered (true positives). A precision
of 1.00 and a recall of 1.00 were obtained by misclassifying only
2 out of 1711 non-defective modules as defective (false
positives). The model’s excellent accuracy is further supported
by the confusion matrix in Figure 6, which displays few errors:
only five defective modules were mistakenly categorized as non-
defective, while two non-defective modules were mistakenly
classified as defective. The hybrid technique performs better on
the MC1 dataset than either standalone deep learning approaches
or ML models, especially in terms of recall and AUC-ROC, while
still being computationally efficient. The proposed approach is
highly suitable for practical software defect prediction
applications due to its exceptional accuracy and balanced
performance between recall and precision metrics. These results
validate the hybrid approach’s effectiveness in providing
accurate and dependable predictions, making a substantial
contribution to the advancement of software defect identification
techniques.

XGboost Performance Metrics PCl Dataset:
Accuracy: 0.9591

Precision: 0.9478

Recall: 0.9695

F1 Score: 0.9585

AUC-ROC: 0.9961

Classification Report PCl Dataset:

precision recall fl-score support

Defective 0.97 0.9 138
Non-Defective 5 0.9 131
accuracy 269
macro avg 0.9 0.96 269
weighted avg 0.9 0.96 269

Confusion Matrix PC1 Dataset - XGBoost
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Figure 7: PC1 Dataset Confusion Matrix

The hybrid approach performs exceptionally well on the
PC1 dataset, with accuracy, precision, recall, and F1l-score of
0.9591, 0.9478, 0.9695, and 0.9585, respectively, and an AUC-
ROC of 0.9961. Given the high AUC-ROC value, these results
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demonstrate the model's great ability to discriminate between
defective and non-defective modules. The classification report
shows that both classes perform equally, with non-defective
modules obtaining a precision of 0.95, a recall 0£0.97, and an F1-
score of 0.96, and defective modules obtaining a precision of
0.97, a recall of 0.95, and an F1-score of 0.96. To put it simply,
this balanced state indicates the model successfully reduces both
incorrect rejections and false alarms. These findings align with
the confusion matrix shown in Figure 7, which reveals that 131
out of 138 actual defective cases were correctly identified,
achieving a detection rate of 0.95 while only missing 7 instances.
The precision and recall were 0.95 and 0.97, respectively, with
just 4 out of 131 non-defective modules being incorrectly
categorized as defective (false positives). On the PC1 dataset, the
hybrid technique demonstrates its efficacy in collecting intricate
patterns while preserving computing economy by achieving
competitive accuracy and higher AUC-ROC when compared to
independent deep learning approaches or traditional machine
learning models. The findings validate the hybrid approach’s
effectiveness and dependability for SDP, establishing it as a
valuable resource for improving software quality in real-world
applications.

XGboost Performance Metrics PC4 Dataset:
Accuracy: 0.9918

Precision: 0.9876

Recall: 0.9958

F1 Score: 0.9917

AUC=-ROC: 0.9990

Classification Report PC4 Dataset:

precision recall fl-score support

Defective 250
Non-Defective 239
accuracy 0.99 489
macro avq 0.99 0.99 0.99 489
weighted avq 0.99 0.99 0.99 489

Confusion Matrix PC4 Dataset - XGBoost
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Figure 8: PC4 Dataset Confusion Matrix
The proposed approach demonstrates exceptional

performance on the PC4 dataset, achieving an accuracy,
precision, recall, F1-Score of 0.9918, 0.9876, 0.9958, 0.9917,
respectively and AUC-ROC of 0.9990. The near-perfect AUC-
ROC value highlights the model’s outstanding ability to
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distinguish between defective and non-defective modules. The
classification report further confirms the model’s robustness,
with precision, recall, and F1-scores of approximately 0.99 for
both defective and non-defective classes. In particular, 247 of the
250 real problematic modules were effectively detected (true
positives), yielding a 0.99 recall and few false negatives (3).
Similarly, among 239 non-defective modules, only 1 was
misclassified, yielding a precision of 0.99 and a recall of 1.00.
Figure 8 confusion matrix supports these results, demonstrating
the model’s high accuracy with minimal errors: only 3 defective
modules were misclassified as non-defective, and just 1 non-
defective module was incorrectly identified as defective in the
PC4 dataset, the hybrid technique outperforms standalone deep
learning approaches or classical machine learning models,
especially in terms of recall and AUC-ROC, while retaining
computational efficiency. Because of'its high accuracy and ability

to balance precision and recall, the proposed approach is ideal for
real-world SDP applications.

Comparison with State of Art Models:

In this section, Table 4 compares the proposed technique to
different present techniques using the performance metrics used
for the study.

It should be noted that some of the methods compared in
Table 4 were evaluated on different datasets (e.g., PROMISE,
bug report datasets, GHPR). These datasets differ in terms of size,
language, and feature composition, which can impact model
performance. Therefore, while the comparison provides a general
sense of the proposed method’s effectiveness relative to existing

approaches, it should be interpreted with caution due to the lack
of uniformity in data sources.

Table 4: Comparison with State of Art models

Techniques Datasets Accuracy Precision Recall F1 Score AUC
0.91,
PROMISE 0.83,
CBIL model datasets (Jedit, 0.95,
(Farid et al., Lucene, Synapse, 0.76,
2021) Xalan, Xerces, 0.98,
Camel, Poi) 0.96,
0.95
CNN and Bug report 0.98,
Random Forest datasets (JBoss, 0.95,
with Boosting Eclipse, Open 0.94,
(Kukkar et al., FOAM, Firefox, 0.97,
2019) Mozilla,) 0.94
(CNN, Bl- GHPR Dataset 0.80, 0.77 0.84, 0.81, 0.83,
LSTM) (Khleel & 0.80 0.77 085 080 0.84
Nehéz, 2022) ’ > ’ )
86.87,
VESDP (Ali et CM1, JM1, Zg?é’
al., 2024) MC2, PC1, PC4 9216,
87.14
XGboost+ Under 0.88, 0.84, 0.93, 0.88,
. 0.97, 0.95, 0.99, 0.97,
sampling CMI1, MC1, 0.74 075 072 0.74 }
(AL-Hadidi & KC1, PC1, PC4 s oS N s
Hasoon, 2024) 0.93, 0.92, 0.94, 0.93,
’ 0.93 0.92 0.96 0.94
0.89, 0.80, 1.0, 0.89, 0.96,
ADAYSN+ CNN CMI1. MC1 0.99, 0.99, 0.99, 0.99, 0.99,
+ LSTM XGboost KCl P;Cl Pé4 0.93, 0.92, 0.93 0.93, 0.98,
(This Study) ’ ’ 0.95, 0.94, ,0.95, 0.95, 0.99,
0.99 0.98 0.99 0.99 0.99

A comprehensive analysis of different software defect
prediction techniques across several datasets is given in Table 3,
which assesses each method’s performance using metrics like
accuracy, precision, recall, F1 score, and AUC. Strong AUC
values between 0.76 and 0.98 are reported by the CBIL model
(Farid et al., 2021), which focusses on PROMISE datasets and
shows good discriminative capability. The lack of additional
measures, however, makes it more difficult to evaluate its overall
efficacy. Similar to this, the CNN and Random Forest with
Boosting approach (Kukkar et al., 2019), which was tested on
bug report datasets from JBoss, Eclipse, OpenFOAM, Firefox,
and Mozilla, achieves high accuracy values (0.94-0.98) but is
hard to compare with other methods because it does not provide
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information on precision, recall, F1 score, or AUC. Using the
GHPR dataset, the CNN + BI-LSTM approach (Khleel & Nehéz,
2022), shows balanced performance with accuracy values of
0.80, precision around 0.77, recall between 0.84 and 0.85, and F1
scores near 0.81. Its moderate to strong classification skill is
reported by its AUC values, which range from 0.83 to 0.84. On
the other hand, accuracy values for the VESDP approach [24],
which was evaluated on the CM1, JM1, MC2, PC1, and PC4
datasets, range from 68.42% to 92.16%. However, a thorough
assessment of its effectiveness is hampered by the absence of
precision, recall, F1 score, and AUC measures. The XGboost +
Under Sampling approach (AL-Hadidi & Hasoon, 2024) shows
competitive results on CM1, MC1, KC1, PC1, and PC4 datasets
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(refer to Figure 9), achieving accuracy values of 0.88-0.97,
precision ranging from 0.75-0.95, and recall between 0.72-0.99.
While it performs well in terms of F1 scores (0.88-0.97), the
absence of AUC values leaves a gap in understanding its
classification capability. The proposed ADASYN + CNN +
LSTM + XGboost technique stands out by delivering superior
performance across all metrics. Evaluated on the same datasets
(CM1, MCI1, KCI1, PC1, and PC4), it achieves accuracy values
of 0.89-0.99, precision ranging from 0.80—0.99, near-perfect
recall (1.0-0.99), and F1 scores between 0.89—0.99. Additionally,
the AUC values remain notably high (0.96-0.99), demonstrating
strong discriminatory power between defective and non-
defective cases, that is to say, showing the model's effectiveness
in differentiation. The combination of balancing techniques for
dataset categories with feature extraction methods and
classification approaches effectively addresses issues like uneven
data distribution and complex pattern recognition.

The currently available methods actually show some good
results in certain specific areas, but this study’s hybrid approach
clearly provides a much more comprehensive solution to predict

software defects. By combining both deep learning along with
more traditional machine learning techniques, the approach ends
up achieving excellent performance across many different
metrics. Additionally, the method shows particularly strong
results in both recall and AUC, especially when dealing with
uneven datasets like MC1 and PC4. Because of its improved
accuracy and reliability, this new method has become particularly
valuable for eventually enhancing software quality in many real-
world applications if deployed.

However, several state-of-the-art methods compared in
Table 3 were evaluated on different datasets or reported only
partial metrics (e.g., accuracy or AUC-ROC without
corresponding  precision, recall, or Fl-scores). These
inconsistencies limit the depth of direct comparisons. However,
based on the available data, the proposed hybrid method
demonstrates consistently strong performance across all reported
metrics and datasets, particularly in terms of recall and AUC-
ROC, which are crucial in imbalanced software defect prediction
tasks.

Comparison of Performance Metrics with State of Art Model
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Figure 9: Comparative performance with (AL-Hadidi & Hasoon, 2024)

CONCLUSION

The hybrid CNN-LSTM model with ADASYN balancing
and XGboost training actually ends up providing a much more
effective approach to software defect prediction. This particular
method clearly helps to strengthen the overall software quality
because it fully addresses many class imbalance issues and
eventually helps detect more complex patterns in software
metrics that might otherwise just go unnoticed.

Using the benchmark dataset of CM1, KC1, PC1, PC4, and
MCI1. The model achieves high performance in key evaluation
metrics, with average accuracy of 0.958 recall of 0.993, and
AUC-ROC of 0.987, significantly outperforming traditional
machine learning and standalone deep learning methods.

Notably, it achieves perfect recall on the CM1 dataset and near-
perfect AUC-ROC scores across all datasets, highlighting its
ability to detect defective modules with minimal false negatives,
which is crucial in real-world applications. The testing currently
shows that the hybrid approach performs much better than many
traditional machine learning methods, delivering more improved
accuracy and still maintains resilience in predictive modelling.
Additionally, the method’s effectiveness is fully demonstrated
through comparative analysis with some current models,
particularly in terms of the AUC-ROC and recall metrics.
Moreover, further validation across different types of software
systems and some exploration of optimization techniques would
help to establish this method’s broader applicability in the field
of software engineering. These important innovations in software
defect prediction ultimately provide a more comprehensive
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solution that effectively addresses many of the challenges that are
currently faced in modern software development. To further
validate the observed improvement, future work should include
statistical significance testing, like the Wilcoxon signed-rank test
or bootstrapping approaches, to guarantee the performance gains
are not random. A more detailed ablation study is recommended
to quantify the impact of each component on performance
metrics such as recall and AUC-ROC. This would provide deeper
insight into the effectiveness of the hybrid architecture and guide
future  model  optimization.  Furthermore,  exploring
hyperparameter optimization, model interpretability using XAl
techniques, and cross-project generalization can improve both
the practical utility and theoretical understanding of the model.
This study provides a reliable and scalable solution for software
defect prediction, offering valuable insights into how hybrid deep
learning and machine learning methods can be integrated to
improve predictive accuracy and assist automated quality
assurance in software development.
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