

journals.uoz.edu.krd

Available online at sjuoz.uoz.edu.krd

Vol. 8, No. 2, pp. 66– 71, June-2020

p-ISSN: 2663-628X
e-ISSN: 2663-6298

 66

FONT RECOGNITION OF ENGLISH LETTERS BASED ON DISTANCE PROFILE

FEATURES

Aveen J. Mohammed a, *, Hasan S.M. Al-Khaffaf a

a Dept. of Computer Science. of Science, University of Duhok, Duhok, Kurdistan Region, Iraq – (avin.kovli@gmail.com;

hasan.salim@uod.ac)

Received: Jan., 2020 / Accepted: Apr., 2020 / Published: Jun.,2020 https://doi.org/10.25271/sjuoz.2020.8.2.694

ABSTRACT:
This paper presents a system for recognizing English fonts from character images. The distance profile is the feature
of choice used in this paper. The system extracts a vector of 106 features and feeds it into a support vector machine
(SVM) classifier with a radial basis function (RBF) kernel. The experiment is divided into three phases. In the first
phase, the system trains the SVM with different Gamma and C parameters. In the second phase, the validation phase,
we validate and select the pair of Gamma and C values that yield the best recognition rates. In the final phase, the
testing phase, the images are tested and the recognition rate is reported. Experimental results based on 27,620
characters glyph images from three English fonts show a 94.82% overall recognition rate.

KEYWORDS: distance profile features, support vector machines, English font recognition, character font classification, optical
font recognition.

1. INTRODUCTION

Optical character recognition (OCR) is used to convert text
image into a text document suitable for searching and editing.
However, OCR is not able to retrieve typographical properties
(i.e. font information) and at the same time, its job is more
difficult because of the variation of typographical attributes of
printed texts. A font is a graphical representation of text.
Optical font recognition (OFR) is one of the primary functions
in document recognition and analysis which aims at recovering
typographical attributes of printed text (Doermann, & Tombre,
2014). When OFR used as a pre-processing step before OCR,
it has a substantial impact on the optical character recognition
accuracy rate. OFR can also be used as a post-processing step
to support creating a document that looks like the original
document in terms of text shape and font. For document
reconstruction, font information can be used. An OCR and
OFR systems together will help in recreating digital documents
that have search ability while visually resemble the original.
In general, font recognition systems can be of two types in
terms of data entry levels: single-level and multiple levels.
Where in single-level the image will be in four kinds: (text
block, text line, word or character) level; only one of the four
levels is used in the system. Text block-level can be called in
other names like text page, or multiple lines of text. On the
other hand, in multiple levels the image could be in two or more
levels; such as a block of text with word level. Knowledge of
the font may be useful for identifying its logical label, such as
chapter title, section title, and paragraph (Al-Khaffaf, & Musa,
2018).
In this work, support vector machines (SVMs) and distance
profile features (DP) are going to be used for character level
font recognition of the English language. This work differs

* Corresponding author
This is an open access under a CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

from others in three areas. First, we used a larger feature vector
to grasp more detail of each font compared to the study of
(Bharath, & Rani, 2017). Second, we performed a validation
operation to reveal the proper model parameters’ values to be
used in the recognition phase. Third, we performed
normalization of data. As will be shown in the next sections,
the first and third points mentioned above raise the recognition
rate of the proposed system while the second point raises
confidence about the results. Figure 1 shows a diagram of the
system. Solid-line shapes are only used during the training
phase. Dashed- and solid-line boxes are used during validation
and testing.
In the next section, related works are presented. In section 3,
the algorithms that are used in the methodology are presented.
The dataset that has been used in this paper is explained in
section 4. In section 5, the classification algorithm is illustrated.
In section 6, the results of applying SVM are shown. Finally,
conclusions are presented in section 7.

2. RELATED WORKS

Many studies have been published on font recognition. In
(Hajiannezhad, & Mozaffari, 2012) the authors presented a
method based on a directional fractal dimension, for
recognizing font of three languages (Farsi, Arabic, and
English) text images. It considers the extracted features are
independent of document content. In the feature extraction
step, the Variogram method was used which is a directional
fractal dimension method that is an area of fractal geometry.
Each sample is expressed by a 6D feature vector. The system
can recognize 10 different fonts for each of Arabic and Farsi,
and 8 fonts for the English language. For Arabic and English,
ALPH-REGIM datasets were used and for Farsi, they created
their own dataset. The RBF and k-nearest neighborhood

A.J. Mohammed and H.S.M. Al-Khaffaf / Science Journal of University of Zakho 8(2), 66-71, June-2020

 67

classifier (KNN) are used to classify the font. The average
recognition rates using RBF, and KNN classifiers are
respectively 95.5%, 96% for Farsi fonts, and 96.9%, 98.84%
for Arabic fonts, and 98.21%, 99.6% for English fonts.
The system developed by Bharath and Rani in (Bharath, &
Rani, 2017) has three steps; in the first step, the system reads a
character image and pre-processes it. In the second step,
distance profile features are computed. In total, 74 features per
character image are generated. In the last step, a support vector
machine (SVM) and k nearest neighbors (KNN) are used for
classification. Five different font styles are tested, and the
system achieves approximately 80% average accuracy using
SVM and 75% using KNN.
In 2017, Jaiem, Slimane, and Kherallah presented a font
recognition system based on steerable pyramids called Arabic
font recognition steerable pyramids (AFR/SP) (Jaiem, 2017).
The system uses three levels of text entity analysis: word, line
and text block. In feature extraction, steerable pyramids and
two statistical variables (standard deviation and mean) are
used. This study used two databases, Arabic Printed Text
Image Database / Multi-Font (APTID/MF) and Arabic Printed
Text Image (APTI) with different resolutions. In the
classification phase, the BPANN is used. The experimental
results for high-resolution text block samples show high
recognition rates of approximately 99% and 93% for low-
resolution; for text line and word levels in low-resolution, the
recognition rates are 90.67% and 78.98% respectively.

Figure 1. Diagram of the proposed system.

Tensmeyer, Saunders, and Martinez presented a system that
classifies font of two levels: text line and text page by using
Convolutional Neural Networks (CNNs) framework
(Tensmeyer, 2017). For line level, King Fahd University
Arabic Font Database (KAFD) datasets used to recognize 40
Arabic fonts; while for page level, two datasets are used KAFD
and Latin Medival Manuscripts (CLaMM) database that
classifies 12 English scripts. The author splits the dataset into
three sets: training, validation and testing set; which helps to
choose the most accurate model. For comparison purposes, the
authors used two CNN architectures: AlexNet architecture that
has five convolution layers, and the state-of-the-art ResNet-50.
In the training, two models for each of ResNets and AlexNet
created from KAFD database on line-level and the page level;
while in CLaMM database one model for each of both
architectures created. In the validation, ResNets architecture

had better performance for both datasets. In the testing, the
recognition rate for line-level was better than page level of
98.8%, while page-level obtained 86.6%.
(Bui, 2015) developed a system that extracts Gradient
orientation features for boundaries of the character image to
recognize its font. The authors obtained a bounding box of
character images via a series of morphological filtering and
thresholding operations. They started by scaling the image.
From the edges of the character, a chain code sets are created.
Next, a histogram of oriented gradient (HOG) descriptors set
are extracted of size 3×3. By using 8 bins quantization level,
frequency histograms of gradient orientation are calculated and
normalized to get 72-dimensional HOG descriptor. For each
character, about 30-40 descriptors are obtained. Hierarchical k-
means clustering on a random sub-sample of 10% of the HOG
descriptors which yields quantizing centers of k cluster
performed. Then, a hard-assignment Bag of Visual Words
(BoVW) is applied. KNN used to assign each descriptor to k
codewords (cluster canter). For each character in training, a
frequency histogram is calculated by computing the
codewords. Finally, Stop-words are specified. A dataset of
1000 Latin fonts, that consists of 5 samples for each of the
capital letters (A-Z) only. The authors collected 4 million HOG
descriptors. In the classification logistic regression (LR) with
multi-class is used and a one-vs-all combination strategy. The
accuracy of recognition 93.4% achieved.

3. METHODOLOGY

3.1 PREPROCESSING AND FEATURE
EXTRACTION

During the pre-processing, the image is prepared for the feature
extraction step. The pre-processing step is very important
because it reduces data and removes noise. All samples of the
dataset are degraded PNG images of the size (102×102). Each
image is shrunk by 50% in both directions to (51×51) to
minimize processing time. The shrink ratio is selected as 50%
to keep the image dimension linearly proportional to the
original in order to reduce further degradation of image quality.
Next, pixel values are converted to binary with a value of 0 or
255, where black pixels are represented as a value of 0 and
white background pixels are represented as a value of 255.
Then, noise is removed using a median filter with a mask of
size 5*5. Figure 2 shows an example result of pre-processing
operations.

 (a) (b) (c) (d)

Figure 2. Results of pre-processing step. (a) Sample image.

(b) Shrinked image. (c) Conversion to binary. (d) Noise
removed.

After the pre-processing step, the image is fed to the next step,
which is feature extraction, where 106 distance profile features
are extracted; these features consist of the left distance profile
(LDP) of 51 features, right distance profile (RDP) of 51
features, top left corner (TLD), top right corner (TRD), bottom
left corner (BLD), and bottom right corner (BRD). Then, these
features are normalized before the training phase.

A.J. Mohammed and H.S.M. Al-Khaffaf / Science Journal of University of Zakho 8(2), 66-71, June-2020

 68

3.1.1 Left Distance Profile Features (LDPs) and Right
Distance Profile Features (RDPs)
The left distance profile feature is computed by finding the
distance between the first column of the input character image
and the first outer border pixel (Bharath, & Rani, 2017). For
each row in the image, the number of white pixels is computed
until the first black pixel appears; then, it goes to the next row,
and the same process is performed on each row from left to
right. Equation 1 shows how to compute the left distance
profile features (see Figure 3(a)). The feature vector is of size
51 because each image has 51 rows.

LDP(i)= ∑ 𝑃(𝑖, 𝑗)!"#

$%& (1)

where LDP(i) is the ith left distance profile feature, P(i,j) is the
background pixel intensity, while i, j are row and column
number respectively, and n is the value of the first foreground
pixel.
For the right distance profile, a similar process is performed,
but this time, it moves from the right to the left outer border
pixel. Equation 2 shows how to compute the left distance
profile features (see Figure 3(b)).

 RDP(i)= ∑ 𝑃(𝑖, 𝑗)!"#

$%' (2)

where RDP(i) is the ith right distance profile feature, P(i,j) is
the background pixel intensity, while i, j are row and column
numbers respectively, m is the value of the last column where
the value of m is decremented until it reaches (n-1), and n is the
value of the first foreground pixel.

(a) (b)

Figure 3. Distance profile features. (a) left distance profile
features and (b) right distance profile features.

3.1.2 Diagonal Distance Profile (DDF) Features
As their name indicates (see Figure 4), DDF features counts
white pixels in the main- and anti-diagonals. In the main
diagonal the top left corner and bottom right corner are
calculated. For the top left corner; 𝑝(𝑖, 𝑗), 𝑝(𝑖 + 1, 𝑗 + 1), 𝑝(𝑖 +
2, 𝑗 + 2)… 	𝑝(𝑖 + 	𝑘, 𝑗 + 	𝑘)	are summed (refer to Eq. 3). For
the bottom right corner; the sum of 𝑝(𝑚, 𝑛), 𝑝(𝑚 − 1, 𝑛 −
1), 𝑝(𝑚 − 2, 𝑛 − 2),… . . , 𝑝(𝑚 − 𝑘, 𝑛 − 𝑘) is used in (4). In
the anti-diagonal, the top right corner and bottom left corner
are calculated in (5) and (6), respectively. For the top right
corner; 𝑝(𝑖, 𝑛),			𝑝(𝑖 + 1, 𝑛 − 1), 𝑝(𝑖 + 2, 𝑛 − 2)	…. 𝑝(𝑖 +
	𝑘, 𝑛 − 𝑘) are summed. For the bottom left corner; 𝑝(𝑚, 𝑗),
	𝑝(𝑚 − 1, 𝑗 + 1), 𝑝(𝑚 − 2, 𝑗 + 2),… , 𝑝(𝑚 − 𝑘, 𝑗 + 	𝑘) are
summed.

TLD= ∑ 𝑃(𝑖, 𝑖)'

(%& (3)

BRD= ∑ 𝑃(𝑖, 𝑖)&
(%' (4)

TRD= ∑ 𝑃(𝑖, 𝑛 − 𝑖)!

(%& (5)

BLD= ∑ 𝑃(𝑚 − 𝑗, 𝑗)'
$%& (6)

 where TLD is the top-left main diagonal feature, TRD is the

top right secondary diagonal feature, BLD is the bottom left
secondary diagonal feature, BRD is the bottom right main

diagonal feature, and as mentioned before i, j are the row and
column value respectively.

Figure 4. Diagonal distance profile features.

4. DATASET

The dataset that has been used in this paper is taken from (Al-
Khaffaf, 2012), an electronic book composed of 60 pages. In
the next statements, we explain how the dataset was generated
by (Al-Khaffaf, 2012). The book was available in three fonts:
Comic Sans MS (Comic), DejaVu Sans Condensed (DejaVu),
and Times New Roman (Times). Page images were feed to the
OCRopus and Decapod open-source software to segment the
images into character images of PNG file formats. In the
second step, the entire image samples are degraded by
Kanungo et al. algorithm (Kanungo, 2000). The output of that
process was an isolated degraded character image of size
(102×102) pixel with 8bpp. Only the first three pages and the
last three pages of the book are used in the experiments of this
paper. Figure 5 shows samples of letters a, b, c, d, e, f, and g of
the three fonts.

Figure 5. Samples of degraded image of letters (a, b, c, d, e, f,

and g). Top – Comic, Middle – DejaVu, Bottom – Times.

5. THE SVM CLASSIFICATION METHOD

For classification, SVM, a supervised machine learning
algorithm is used in classification. The SVM was originally a
binary (2-class) classification method developed in 1995 by
Vapnik and Cortes (Cortes, 1995), see Figure 6. An SVM can
classify both linear and nonlinear data for finding the best
hyper-plane that has the maximum margin between support
points. In the system SVM with RBF kernel is used to identify
the font of the English isolated character image. Because our
data are nonlinearly separable we used a feature transformation
(kernels), the basic idea is to transform the data from a
nonlinear space into a linear space (Xu, 2006) by mapping
input vectors 𝑥	 ∈ Rn into vectors Φ(𝑥):

 𝑥	 ∈ Rn → 𝛷 (𝑥) = [𝛷 (𝑥#), 𝛷 (𝑥*)...	𝛷 (𝑥!)] ∈ Rf

 In the linearly separable case, we have Wolfe dual
Lagrangian function:

 L(𝛼)=∑ 𝛼('

(%# − #
*
∑ ∑ 𝛼(𝛼$𝑦(𝑦$𝑥(. 𝑥$'

$%#
'
(%# (7)

where m is the number of training samples, 𝑥(is the ith training
vector, 𝑦(is the class of that training vector, and 𝛼(is the
positive Lagrange multipliers (Kowalczyk, 2017), the value of

A.J. Mohammed and H.S.M. Al-Khaffaf / Science Journal of University of Zakho 8(2), 66-71, June-2020

 69

a training example 𝑥	 is not used; only the dot product	(𝑥(. 𝑥$)
between two training examples are used. Therefore, this
product is replaced with the scalar product	𝐾(𝑥(, 𝑥$) of the
respective kernel functions and it will return the same results
as in linear space. The kernel function computes the inner
product between two projected vectors (Scholkopf, 1997):

𝐾:𝑥(, 𝑥$; = {𝛷(𝑥(), 𝛷:𝑥$;}	

 L(𝛼)=∑ 𝛼('

(%# − #
*
∑ ∑ 𝛼(𝛼$𝑦(𝑦$𝐾(𝑥(, 𝑥$)

'
$%#

'
(%# 	 (8)

The soft-margin dual problem can be written:

 	+',- ∑ 𝛼('

(%# − #
*
∑ ∑ 𝛼(𝛼$𝑦(𝑦$𝐾(𝑥(, 𝑥$)

'
$%#

'
(%#

 s.t. 0 ≤ 𝛼(≤ 𝐶, ∀𝑖	 and ∑ 𝛼(𝑦('
(%# = 0

where C is the penalty parameter (Kecman, 2005). A high C
value tries to classify every training data point correctly; on the
other hand, a low value of C ensures a smooth decision surface.

Figure 6.SVM classification. Taken from (Katiyar, 2017).

The hypothesis function for predicting the class of the test
image is as follows:

 y(𝑥()= sign(∑ 𝛼$𝑦$𝐾:𝑥(, 𝑥$; 	+ b

.
$%#) (9)

The RBF kernel depends only on the radial distance (Bishop,
2006) which is the Euclidean distance (||𝑥(−	𝑥$||):

𝐾:𝑥(, 𝑥$; = 𝑒𝑥𝑝
"||-!"	-"||#

*0# 	

The Gamma (#

*0#
) parameter is the distance that a single

training example can reach and it is always 𝜎>0, with small
values meaning that the system can reach ‘far’ data, and large
values meaning that ‘close’ data can be reached.
Our system has three classes; therefore, we need to use one-
versus-one (ovo) method instead of one-versus-all (ova). (ovo)
constructs 1(1"#)

*
 hyper-planes (Liu, 2007). The (ovo) strategy

is more memory efficient than the (ova) (Bouchut, 2018).

6. EXPERIMENTAL RESULTS AND
DISCUSSION

6.1 Experimental setup

A system is developed using the Python programming
language on a computer equipped with a Core i7 5500U
processor, 2.40 GHz and 8 GB RAM. The experiment is
divided into three phases: training, validation, and testing. A
third-party dataset of 27,620 sample character glyph images
that was described in section 4 is used in our experiment.

The experiment starts by splitting the database into two
portions, 80% of images for training and 20% of images for
testing. Then training portion is further split into 80% for actual
training of SVM and 20% for validation. Table 1 shows the
distribution of data of our experiment. It is important to
mention that the data that has been used in training differ from
validation and testing; the same thing for validation and testing.
There is no universal rule that governs the distribution of data
between the three phases. In many studies, the dataset was
divided into three parts as we did, but in different distributions.
Senobari et al. split their dataset into 72% training, 5%
validation and 23% testing (Senobari, 2012); while
(Tensmeyer, 2017) distribute their data with unspecified ratios.
Regardless of the experiment phase, a feature vector of size 106
is obtained and normalized for each image.

Table 1. Samples distribution among three phases of the
experiment

Stage #Samples Percentage
Training 17,677 64%
Validation 4,419 16%
Testing 5,524 20%
Total 27,620 100%

6.2 Training phase

Distance profile features for 17,677 characters images were
extracted for the training phase. To train the system, the feature
vector of the training character images and their classes were
fed to the SVM with an RBF kernel classifier and 75 models
are created by using different values of C and Gamma
parameters (Table 2). Because we have more than two classes
(i.e. three fonts) one-versus-one technique has been used in the
SVM classifier.

6.3 Validation Phase

In the validation phase (Figure 7), seventy-five experiments for
various trials with different values of the C and Gamma were
carried out to reveal a pair of C and Gamma values that are
most suitable for recognition. The first data row of Table 2
shows the parameter values used in the validation phase of our
main experiment. There is no specific limitation for choosing
the value of the C and Gamma parameters (SKlearn Library,
2020). Therefore, we arbitrarily selected three values for the
Gamma parameter (1/10, 1/26, and 1/106). We only used odd
numbers for the C parameter to avoid excessive computation
time. In total, 4,419 sample images were used in the validation
phase. When looking at Figure 7, it can be shown that the
Gamma value of 1/10 yields the highest recognition rate. The
highest recognition accuracy of 96.51% is produced when the
C parameter has one of the values 5, 7, 9, 11, or 13 with a
corresponding Gamma value of 1/10. Therefore, the Gamma
and C pair of (1/10, 7) was selected as an optimal parameter for
the SVM, to be used in the testing phase.

6.4 Testing Phase

To find the font class of the test images, a database of 5,524
images is used. The tests are performed with the Gamma and C
value pair (7, 1/10) chosen in the validation phase. The
proposed system gets an overall recognition rate of 94.82%.
In the study by Bharath and Rani (Bharath, & Rani, 2017) using
distance profile features and an SVM as a classifier, the authors
obtained 80% recognition accuracy. Our system uses degraded
images and the result of font recognition is about 14% better
than the result of (Bharath, & Rani, 2017) where they used
synthetic images.
Another comparison with (Al-Khaffaf, & Musa, 2018) study,
where they used the same database but with a smaller number
of samples (6144 images), and obtained recognition rate of

A.J. Mohammed and H.S.M. Al-Khaffaf / Science Journal of University of Zakho 8(2), 66-71, June-2020

 70

97%. The reasons for our system getting less recognition rate
is that we used a number of samples that are 4 times much more
than their samples and we obtained 94.82%. To show the effect
of using a smaller dataset on getting a higher recognition rate,
we performed a side experiment (second data row of Table 2)
of image data twice the size of (Al-Khaffaf, & Musa, 2018)
with 6,618 training samples and 6,884 testing samples. We
obtained a recognition rate of 96.33% using (1/10, 21) Gamma
and C value pair which is very close to (Al-Khaffaf, & Musa,
2018). Another reason for having a lower recognition rate is
that (Al-Khaffaf, & Musa, 2018) used PCA to reduce the
number of features to only prominent ones while we did not use
this optimization step in this work.

Table 2. Gamma and C parameter values used in our
experiments.

Experiments DB
Size

Gamma C parameter Accuracy

Main
experiment 27,620

1/10,
1/26,
1/106

1, 3, 5, 7, ...,
47, 49 94.82%

Side
experiment

13,502
1/10,
1/26,
1/106

1, 2, 3, 4, …,
99, 100

96.33%

7. CONCLUSIONS

A font recognition system was presented in this paper that
recognizes English fonts using an SVM with an RBF kernel.
While the use of SVM in font recognition is not new, however,
in this paper we tried to shed a light on the parameters of SVM
represented by Gamma and C. Choosing the proper parameter
values plays key role in getting high recognition rate in font
recognition and shall not be selected randomly. The validation
phase is important aspect of the experiment that will show the
proper SVM parameters. However, we also note that our
experiment is limited to only three fonts. In the future, we plan
to run an experiment by using an extended dataset with more
fonts, inspecting different feature extraction methods and using
PCA to reduce number of features to only prominent ones.

8. ACKNOWLEDGEMENTS

The authors would like to thank the two anonymous reviewers
for their valuable comments that helped in improving the
quality of this manuscript.

Figure 7. Validation phase. Recognition rate for a set of Gamma and C values. Best parameters for high recognition rate are when

C=5, 7, 9, 11, or 13 and G=1/10.

REFERENCES

Al-Khaffaf, H. S., & Musa, N. A. (2018). Optical english font
recognition in document images using
eigenfaces. Revista Innovaciencia, 6(1), 1-11.

Al-Khaffaf, H. S., Shafait, F., Cutter, M. P., & Breuel, T. M.
(2012, November). On the performance of Decapod's
digital font reconstruction. In Proceedings of the 21st
International Conference on Pattern Recognition
(ICPR2012) (pp. 649-652). IEEE.

Bharath, V., & Rani, N. S. (2017, June). A font style
classification system for English OCR. In 2017
International Conference on Intelligent Computing
and Control (I2C2) (pp. 1-5). IEEE.

Bishop, C. M. (2006). Pattern recognition and machine
learning. springer.

Bouchut, Q., Appiah, K., Lotfi, A., & Dickinson, P. (2018,
June). Ensemble One-vs-One SVM Classifier for
Smartphone Accelerometer Activity Recognition.
In 2018 IEEE 20th International Conference on High
Performance Computing and Communications;
IEEE 16th International Conference on Smart City;
IEEE 4th International Conference on Data Science
and Systems (HPCC/SmartCity/DSS) (pp. 1110-
1115). IEEE.

Bui, T., & Collomosse, J. (2015, September). Font finder:
Visual recognition of typeface in printed documents.

In 2015 IEEE International Conference on Image
Processing (ICIP) (pp. 3926-3930). IEEE.

Cortes, C., & Vapnik, V. (1995). Support-vector
networks. Machine learning, 20(3), 273-297.

Hajiannezhad, A., & Mozaffari, S. (2012, May). Font
recognition using variogram fractal dimension.
In 20th Iranian Conference on Electrical Engineering
(ICEE2012) (pp. 634-639). IEEE.

Jaiem, F. K., Slimane, F., & Kherallah, M. (2017, February).
Arabic font recognition system applied to different
text entity level analysis. In 2017 International
Conference on Smart, Monitored and Controlled
Cities (SM2C) (pp. 36-40). IEEE.

Kanungo, T., Haralick, R. M., Baird, H. S., Stuezle, W., &
Madigan, D. (2000). A statistical, nonparametric
methodology for document degradation model
validation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(11), 1209-1223.

Katiyar, G., Katiyar, A., & Mehfuz, S. (2017). Off-line
handwritten character recognition system using
support vector machine. American Journal of Neural
Networks and Applications, 3(2), 22-28.

Kecman, V. (2005). Support vector machines–an introduction.
In Support vector machines: theory and
applications (pp. 1-47). Springer, Berlin, Heidelberg.

Kowalczyk, A. (2017). Support vector machines
succinctly. Syncfusion Inc.

A.J. Mohammed and H.S.M. Al-Khaffaf / Science Journal of University of Zakho 8(2), 66-71, June-2020

 71

Liu, Y., Wang, R., & Zeng, Y. S. (2007, August). An
improvement of one-against-one method for multi-
class support vector machine. In 2007 International
Conference on Machine Learning and
Cybernetics (Vol. 5, pp. 2915-2920). IEEE.

Scholkopf, B., Sung, K. K., Burges, C. J., Girosi, F., Niyogi,
P., Poggio, T., & Vapnik, V. (1997). Comparing
support vector machines with Gaussian kernels to
radial basis function classifiers. IEEE transactions on
Signal Processing, 45(11), 2758-2765.

Senobari, E. M., & Khosravi, H. (2012, October). Farsi font
recognition based on combination of wavelet
transform and sobel-robert operator features. In 2012
2nd International eConference on Computer and

Knowledge Engineering (ICCKE) (pp. 29-33).
IEEE.

SKLearn Library (2020, February 21). https://scikit-
learn.org/stable/modules/generated/sklearn.svm.SV
C.html. Accessed on Sep 2019.

Tensmeyer, C., Saunders, D., & Martinez, T. (2017,
November). Convolutional neural networks for font
classification. In 2017 14th IAPR international
conference on document analysis and recognition
(ICDAR) (Vol. 1, pp. 985-990). IEEE.

Xu, Y., Zomer, S., & Brereton, R. G. (2006). Support vector
machines: a recent method for classification in
chemometrics. Critical Reviews in Analytical
Chemistry, 36(3-4), 177-188.

