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ABSTRACT: 
In this work, we analyze the dynamical behaviors of two five-parameter families of planar quadratic maps by utilizing strategies 
of symbolic computation. We are going to use computer algebra methods to clarify how to detect the stability of equilibrium points 
to analyze chaos and also the bifurcation of planar maps. Based on strategies for solving the systems in types of semi-algebraic and 
by utilizing an algorithmic approach, we obtain respectively for the two maps, sufficient conditions on the parameters to have a 
prescribed number of (stable) equilibrium points; necessary conditions on the parameters to undergo a certain type of bifurcation 
or to have chaotic behavior induced by snapback repeller 
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1. INTRODUCTION 

The dynamical system has two different kinds, which are 
discrete and continuous, that are widely and typically used for 
the modeling of biological phenomena, control and economic 
problems (Hong et al., 2015;  Kaslik & Balint, 2009; Sang, & 
Huang, 2017). Many of those kinds of systems are nonlinear 
with parameters, and generally their analytical solutions are 
complicate to find. For understanding the phenomena or the 
problems that involved in dynamical systems, it is important to 
investigate their behaviors like stability, bifurcations and chaos 
qualitatively. 
Over the real field ℝ for the discrete dynamical systems with 
state variables and parameters, for the discovery and 
investigation of stability and bifurcations of real equilibrium 
points, a common algebraic approach has been proposed in (Li 
et al., 2011). A short time ago, this approach, has moreover 
been applied to investigation of chaos actuated by snapback 
repeller for dynamical systems in discrete types (Huang & Niu 
2019a). In this study, we discuss the problem of analyzing the 
dynamical behaviors of planar quadratic discrete dynamical 
systems, which is proposed in (Huang & Niu, 2020c). 
 
Problem. Examine a planar quadratic map as follows: 
 

𝑥!"# = 𝑎#,#𝑥!% + 𝑎#,%𝑥!	 𝑦!	 + 𝑎#,'𝑦!%															 
															+𝑎#,(𝑥!	 + 𝑎#,)𝑦!	 + 𝑎#,*																								(1) 

𝑦!"# = 𝑎%,#𝑥!% + 𝑎%,%𝑥!	 𝑦!	 + 𝑎%,'𝑦!%															 
	+𝑎%,(𝑥!	 + 𝑎%,)𝑦!	 + 𝑎%,*	.								 

 
We assume that �̅�	is an equilibrium point of the above system 
(1), (if it exists). To determine the conditions explicitly 
according the parameters 𝑎+,,  for 𝑖 = 1, 2,  𝑗 = 1, … , 6, such 
that: 

1. �̅� is the stable equilibrium point for system (1); 
2. The system (1) go through certain sorts of 

bifurcations; 
3. And finally, in system (1), �̅� is a snapback repeller. 

Our study is focus on the period doubling bifurcation (PDB) 
and the neimark-sacher bifurcation (NSB), for the discrete 
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system (1). In recent years, those kind of bifurcations for 
discrete systems have been discussed by many researchers. We 
refer the interested readers to (Din, 2017; He & Lai, 2011;  Niu 
et al., 2016) for more details on bifurcation analysis. Comment 
that, numerous of well-studied and famous maps are subclasses 
of the system (1), like generalized Hénon map and Tinkerbell 
map (Alligood et al., 1996; Davidchack, 2001; Hénon,  1976) 
and generalized Mira 2 map (Huang & Niu, 2020c; Alexandra 
et al., 1996). In this work we will pay particular attention to 
certain subclasses of system (1). More concretely, we consider 
the family 

											𝑥!"# = 𝑎	𝑥!	 + 𝑏	𝑦!	 	,																																					(2) 
𝑦!"# = 𝑐	𝑥!% + 𝑘	𝑥!	 𝑦!	 + 𝑒	𝑦!%	,								 

 
where the parameters 𝑎, 𝑏, 𝑐, 𝑘, 𝑒 are in ℝ"	with 𝑎 ≠ 1; and 
we consider the family 
 

	𝑥!"# = 𝐸	𝑦!% +𝐵	𝑦!	 +𝐾	,																											(3) 
																𝑦!"# = 𝐶	𝑥!% + 𝐴	𝑥!	 +𝐾	,																		 

 
where the parameters 	𝐴, 𝐵, 𝐶, 𝐾, 𝐸 are in ℝ". 
The aim of this paper is to study the conditions on the 
parameters for the planar maps (2) and (3) algebraically and 
symbolically, to have a number of prescribed (stable) 
equilibrium points, the NSB and PDB types, and chaos induced 
by snapback repeller. The main technique is to use an 
algorithmic algebraic approach based on the triangular 
decomposition (Wu, 2000; Wang, 2001), quantifier 
elimination (Collins & Hong, 1991; Hong et al.,1997), Gröbner 
bases (Buchberger, 1985; Faugère, 2002), discriminant 
varieties (Lazard & Rouillier, 2007), and real solution 
classification (Yang & Xia, 2005). This paper is organized as 
follows. We show and explain how to diminish the stability, 
bifurcations and chaos problem of planar maps to simply 
arithmetical problems and after that fathom these problems by 
utilizing algebraic methods, in section 2. The experimental 
results of the two parametric planar quadratic maps (2) and (3) 
are provided in section 3 together with some remarks. Finally, 
we have done this paper with a conclusion in the last section, 
section 4. 
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2. ALGEBRAIC CRITERIA FOR STABILITY, 
BIFURCATIONS AND CHAOS OF PLANAR MAPS 

Consider the following 2-dimensional discrete dynamical 
systems 
 

𝑥(𝑡 + 1) = 𝑔@𝜇, 𝑥(𝑡)B																					(4) 
 
where	𝑥(𝑡 + 1), 𝑥(𝑡) ∈ ℝ%, are the state vectors, and 𝑔	is a 𝒞# 
non-linear map with parameters	𝜇, from the field of real 
number ℝ	. 
First, we are going to describe a few ideas for system (4). 
Assume 𝑔- denote the compositions of 𝑔 in 𝑘 times with itself. 
And if 𝑔.(𝑥) 	= 	𝑥, a point x, is said to be a 𝑝-periodic point 
of 𝑔 but 𝑔- ≠ 	𝑥 for p > k ≥ 1. And 𝑥 is called an equilibrium 
point if 𝑝	 = 	1, 𝑖. 𝑒., 𝑔(𝑥) 	= 	𝑥. Let the Jacobian matrix of 𝑔 
is 𝑔/(𝑥)	with determinant |𝑔/(𝑥)|. In the following 
subsections, we clarify how to decrease the problems of 
bifurcations, stability and chaos analyses of system (4) to 
algebraic problems. 

2.1 Stability Analysis of Equilibrium Points 

Observably, to determine the equilibrium points of system (4), 
we are able to use the equation: [𝑥 − 𝑔(𝜇, 𝑥) = 0]. We need to 
analyze the stability of (4) at each equilibrium point or to 
determine the conditions on the parameters for the equilibrium 
point to be stable(steady), after computing the equilibrium 
points. To this conclusion, we let: 
 
														𝑃(𝜆) = 𝜆% + 𝑎#𝜆 + 𝑎%                                             (5) 
 
to the Jacobian matrix 𝑔/(𝑥) of system (4) be the characteristic 
polynomial, where 𝑎+ =	𝑎+(𝜇; 	𝑥), 𝑖	 = 	1, 2.	For a discrete 
system in the form (4) to know how to determine the stability 
of an equilibrium point, we consider the following lemma. 
 
Lemma 1. (Galor, 2007) Let �̅�		be a fixed point of system (4). 
If both roots of the polynomial (5) are inside the unit circle, 
then �̅�	is asymptotically stable. 
 
To determine the arithmetic criterion for all zeros of a given 
polynomial to be outside the unit circle (OUC) or inside the 
unit circle (IUC). One may use a sequence of descending 
degrees of symmetric polynomials for the characteristic 
polynomial, look at (Bistritz, 1984; Huang & Niu, 2019 a ) 
Which is denoted by 𝑃(𝜆⋆)be the responded polynomial of 
𝑃(𝜆), namely, 
 
𝑃(𝜆⋆) = 𝜆%𝑃(𝜆1#) = 1 + 𝑎#𝜆 + 𝑎%	𝜆% . 
 
Using the polynomial 𝑃(𝜆) and 𝑃(𝜆⋆), we can construct a 
sequence of three polynomials: 
 
									𝐿%(𝜆) = 𝑃(𝜆	) + 𝑃⋆(𝜆	), 

									𝐿#(𝜆) =
𝑃(𝜆	) − 𝑃⋆(𝜆	)	

𝜆 − 1 ,																																																				(6) 

									𝐿2(𝜆) =
#
3
[𝛿	(𝜆 + 1)		𝐿#(𝜆) − 𝐿%(𝜆)], 

 
where 𝛿 = 		4!(2)

		4"(2)
	. The normal conditions are requires for the 

recursion, 𝐿-(0) ≠ 0		for 𝑘	 = 	0, 1, 2. When a L7(0) = 0  
happens the construction is interrupted, and it divided in two 
type which is IUC and OUC (Bistritz, 1984). The following 
result follows directly from theorem 4 in (Huang, & Niu, 
2020c), or theorem 2 in (Huang & Niu, 2019 b). The proofs of 
it can be found in (Bistritz, 1984; Huang & Niu, 2019a). 
 

Corollary 1. The normal conditions 		𝐿%1+ ≠ 0, 𝑖 = 0, 1, 2 hold 
and   𝜈% = 𝑉𝑎𝑟{		𝐿%(1), 𝐿#(1), 	𝐿2(1)} = 0 or  𝜈% = 2   if and 
only if all zeros of  𝑃(𝜆) are IUC or OUC. 
 
The notation 𝜈% denotes the number of symptom changes of the 
sequence of real numbers {		𝐿%(1), 𝐿#(1), 	𝐿2(1)}. The result of 
OUC will be used in section 2.3 to derive algebraic criteria for 
the chaos analysis of system (4), so we present it here for 
brevity. 

2.2 Bifurcation Analysis 

When a particular parameter go through its critical value in 
dynamical systems, different sorts of bifurcations rise from its 
equilibrium point. Usually when the stability of an equilibrium 
point changes, the bifurcation occurs, i.e., when a dynamical 
system qualitative properties change. In this paper we look into 
the parametric conditions for the existence of the PDB and 
NSB, for the discrete system (4). 
1. NSB. For this bifurcation, the Jacobian matrix 𝑔/(�̅�) has 

a pair of complex conjugate eigenvalues on the unit cycle 
and all other eigenvalues (if they exist) interior the circle. 
A characteristic polynomial (5) of the Jacobian matrix 
𝑔/(�̅�) is given, we consider the following determinants (Li 
et al, 2011; Wen, 2005): 

 
																			△#

± (𝜇, �̅�) = |1 ± 𝑎%|		,																																									(7) 

																				△%
± (𝜇, �̅�) = ]^1 𝑎#

0 1 _ ± ^
𝑎# 𝑎%
𝑎% 0 _].            

Then, system (4) may undergo a NSB if the following 
conditions hold: 
 

(a) 𝑃(1) 	> 	0		𝑎𝑛𝑑	𝑃(−1) 	> 	0,  
(b) △#1 (𝜇, �̅�) = 0, △#" (𝜇, �̅�) > 0, △%

± (𝜇, �̅�) > 0,	 

2. PDB. A PDB (also called flip bifurcation) which can only 
arise in a discrete dynamical system. The system switches 
to an unused behavior with twice the period of the original 
system, at this bifurcation. In this situation, when a series 
of PDBs may lead the system from order to chaos. The 
Jacobian matrix 𝑔/(�̅�)  has one real eigenvalue which is 
equal to −1	, and the remain of eigenvalues of 𝑔/(�̅�) are 
all in the interior of the unit circle. Obviously, system (4) 
may undergo a PDB if the following conditions hold: 
 
a) P(-1) = 0 and P(1) > 0, 

b) △#
± (𝜇, �̅�) > 0, 	△%

± (𝜇, �̅�) > 0. 

 
We notice that the above conditions for the bifurcations 
analyzed are also become to the critical conditions for an 
eigenvalue to reach the unit circle. This eigenvalue ought to not 
be stationary on the unit circle, but proceed to go exterior of the 
circle as the parameters change. Furthermore, the conditions of 
critical with the so-called transversality and the non-resonance 
decide whether a bifurcation can be produced or not. In this 
paper, we center our consider on the critical conditions, which 
gives conceivable outcomes for the occurrence of bifurcations. 
The induction of necessary and sufficient bifurcation 
conditions and further analysis of the kinds and stability of 
bifurcations are our ongoing research. 

2.3 Marotto's Theorem 

Let us describe the notion of Marotto's theorem and snapback 
repeller. Consider a  𝒞# non-linear map (4). Let 𝐵9(𝑥) be a 
closed ball defined on norm ‖	. ‖	in ℝ%, where 𝑎 is radius and 
𝑥 ∈ ℝ%	is the center of the closed ball. An equilibrium point �̅� 
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is repelling equilibrium point of 𝑔 according to the norm ‖	. ‖		if 
there exists 𝑐	 > 	1 (where 𝑐 is constant), such that  ‖	𝑔(𝑥) −
𝑔(𝑦)‖ > 𝑐. ‖	𝑥 − 𝑦‖			for any 𝑥, 𝑦 ∈ 𝐵9(�̅�)  with  𝑥 ≠ 𝑦, where 
𝐵9(�̅�)   is called a repelling neighborhood of �̅�. 
We say that a repelling equilibrium point �̅�	 is called a snapback 
repeller of 𝑔 if there exist a point 𝑥2 ∈ 𝐵9(�̅�)			with 𝑥2 ≠
�̅�			and a positive integer 𝑠	 > 	1,		such that 𝑥: = �̅�  and 
|𝑔/(𝑥-)|	≠	0		for 1≤ 𝑘 ≤ s, where 𝑥- = 𝑔-(𝑥2). Moreover, the 
point 𝑥2 is called a snapback point of 𝑔. Then, the following 
theorem according to Marotto is hold (Marotto, 2005; Marotto, 
& FR, 1987). 
 
Theorem 1. If g possesses a snapback repeller, then g is chaotic 
in the sense of Marotto.  
 
By using the following lemma from (Galor, 2007) which can 
be used to the repelling equilibrium point of g that can be 
determined under the Euclidean norm. 
 
Lemma 2. Let �̅�	be an equilibrium point of 𝑔 which is 
continuously differentiable in 𝐵9(�̅�). If 
 
𝜆 > 1, for all eigenvalues 𝜆 of (𝑔′(�̅�));	𝑔/(�̅�),																						(8) 
 
then there exist 𝑠	 > 	1 and 𝑟′ ∈ (0, 𝑟] such that ||𝑔(𝑥) −
𝑔(𝑦)||% > 𝑠. ||𝑥 − 𝑦||% for all 𝑥, 𝑦 ∈ 𝐵9/(�̅�) with 𝑥 ≠ 𝑦, and all 
the eigenvalues of	(𝑔′(𝑥));	𝑔/(𝑥) exceed one for all 𝑥 ∈
𝐵9#(�̅�). 
We have clarified how to formulate a critical algebraic criterion 
for all zeros of a given polynomial to be OUC (see Corollary 
1). According to this criterion, we can summarize the critical 
algebraic conditions for analyzing the Marotto's theorem. 
Let 𝑃h(𝜆) = 𝜆% + 𝑎h#𝜆 + 𝑎h%	be the characteristic polynomial of 
(𝑔′(�̅�));	𝑔/(�̅�) where 𝑎h+ = 𝑎h+(𝜇, �̅�),			𝑖 = 1,2. 
Due to equation (6) we can relate with 𝑃(𝜆)	a sequence 
{𝐿h2(𝜆), 𝐿h#(𝜆), 𝐿h%(𝜆)}. More accurately, the following theorem 
is used to analyze the chaotic behavior of system (4).  
 
Theorem 2. (Huang & Niu 2019a; Huang & Niu, 2019 b) For 
a planar discrete system (4), the system is chaotic in the sense 
of Marotto if one of the following semi-algebraic systems have 
at least one real solution: 

𝜓,:

⎩
⎪
⎨

⎪
⎧
�̅� − 𝑔(𝜇, �̅�) = 0, 𝑔:(𝑥2) − �̅� = 0,
(−1)+",1#𝐿h%1+(1)|<̅ > 0, 𝑖 = 1,2,
(−1)+",1#𝐿h%1+(1)|<$ > 0, 𝑖 = 1,2,

𝐿h%1+(0)|<$ ≠ 0, 𝐿h%1+(0)|<̅ ≠ 0, 𝑖 = 0,1,2,
𝑥2 ≠ �̅�, |𝑔/(𝑥-)| ≠ 0, 𝑘 = 1,… , 𝑠,

							(9) 

 
𝑗 = 1,2, 𝜇	and	�̅� are respectively the parameters and 
equilibrium point of system (4) and 𝑠 ≥ 2 is a given positive 
integer number. 
 
Remark 1. Note that as the authors stated in (Huang & Niu 
2019a) that the property of the sign variety design in Lemma 
4.1 in (Huang & Niu 2019a) can offer assistance us to discover 
a repelling neighborhood 𝐵9#(�̅�) (where 𝑟′ is sufficiently 
small), but the radius 𝑟′ may not be adequately little sufficient 
to make 𝐵9#(�̅�) be a thorough repelling neighborhood of the 
equilibrium point �̅�. That is to say Theorem 2 gives a 
probabilistic criterion for a planar discrete system (4) to have a 
snapback repeller. How to derive critical algebraic criteria for 
finding a rigorous repelling neighborhood of the equilibrium 
point �̅� is a question for further study. 
Our goal is to find the parametric conditions on the parameters 
𝜇 for each of the semi-algebraic system (9) to have at least one 
real solution. There exist algebraic methods based on Gröbner 
bases, triangular decomposition, quantifier elimination, real 
solution classification, and discriminant varieties which can be 

used to solve such semi-algebraic systems. In next section, we 
discuss the performance of the algebraic methods by analysing 
the dynamical behaviors of the parametric systems (2) and (3). 

3. EXPERIMENTAL RESULTS 

In this section, we focus to investigate the stability, chaos and 
bifurcations for systems (2) and (3). All the calculations were 
made by Maple 17, running under windows 8 professional 
edition on an Intel(R) Core(TM)i7-7500U CPU @ 1.9GHz 
2.49Ghz with 8G RAM. 
 
3.1 Analysis of Bifurcations and Chaos for System (2) 
 
First we detect the equilibrium points of system (2) by using 
the algebraic system as follows: 
 

 q
𝑃# = 𝑎𝑥 + 𝑏𝑦 − 𝑥 = 0,												
𝑃% = 𝑐𝑥% + 𝑘𝑥𝑦 + 𝑐𝑦% − 𝑦 = 0. 

(10) 

   
Where 𝑎, 𝑏, 𝑐, 𝑘, 𝑒 are positive real number with 𝑎 − 1 ≠ 	0. 
Notice that the Jacobian matrix 𝑔′(�̅�) of map (2) assessed at the 
equilibrium point 𝑥	r = 	 (𝑥, 𝑦) is given by 𝑔/(�̅�) =
^ >																		?
%@<"-A				%BA"-<_,  and also the characteristic polynomial of the 

matrix 𝑔′(�̅�)  can be written as  
 

𝑃(𝜆) = 𝜆% + (−2𝑒𝑦 − 𝑘𝑥 − 𝑎)𝜆 + 2𝑎𝑒𝑦 + 𝑎𝑘𝑥 
               −2𝑏𝑐𝑥 − 𝑏𝑘𝑦. 
 
To evaluate the stability of each equilibrium point, we first use 
Corollary 1 together with equation (6) for the polynomial 𝑃(𝜆) 
to obtain inequality polynomials 
𝐿%(1), 𝐿#(1), 𝐿2(1)	𝑎𝑛𝑑	𝐿%(0), 𝐿#(0), 𝐿2(0) and then reduce 
the problem to that of solving the following semi-algebraic 
system 
 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧𝑃# = 𝑎𝑥 + 𝑏𝑦 − 𝑥 = 0,				𝑃% = 𝑐𝑥% + 𝑘𝑥𝑦 + 𝑒𝑦% − 𝑦 = 0,
𝐿%(1) = 4𝑎𝑒𝑦 + 2𝑎𝑘𝑥 − 4𝑏𝑐𝑥 − 2𝑏𝑘𝑦 − 4𝑒𝑦 − 2𝑘𝑥										

−2𝑎 + 2 > 0, (𝑜𝑟	 − 𝐿%(1) > 0),
𝐿#(1) = −4𝑎𝑒𝑦 − 2𝑎𝑘𝑥 + 4𝑏𝑐𝑥 + 2𝑏𝑘𝑦 + 2 > 0,															
										(𝑜𝑟	 − 𝐿#(1) > 0),																																																			(11)				
𝐿2(1) = 4𝑎𝑒𝑦 + 2𝑎𝑘𝑥 − 4𝑏𝑐𝑥 − 2𝑏𝑘𝑦 + 4𝑒𝑦 + 2𝑘𝑥							

+2𝑎 + 2 > 0, (𝑜𝑟	 − 𝐿2(1) > 0),												
𝐿%(0) = 2𝑎𝑒𝑦 + 𝑎𝑘𝑥 − 2𝑏𝑐𝑥 − 𝑏𝑘𝑦 + 1 ≠ 0,																							
𝐿#(0) = −2𝑎𝑒𝑦 − 𝑎𝑘𝑥 + 2𝑏𝑐𝑥 + 𝑏𝑘𝑦 + 1 ≠ 0,																				
𝐿2(0) = 4𝑎𝑒𝑦 + 2𝑎𝑘𝑥 − 4𝑏𝑐𝑥 − 2𝑏𝑘𝑦 + 4𝑒𝑦 + 2𝑘𝑥										

+2𝑎 + 2 ≠ 0.

 

Where 𝑎, 𝑏, 𝑐, 𝑘, 𝑒 are positive real number with 𝑎 − 1 ≠ 	0. By 
using the method of discriminant varieties of (Lazard & 
Rouillier, 2007) (implemented as a Maple package DV by 
Moroz and Rouillier),or the method of (Yang & Xia, 2005) for 
real solution classification (implemented as a Maple package 
DISCOVERER by Xia), the above semi-algebraic systems (10) 
and (11) may be solved. Firstly, we list the results on the 
classification for the number of (stable) equilibrium points. 

(I)  System (2) always has two (distinct) 
equilibrium points when [𝑎%𝑒 − 	𝑎𝑏𝑘	 +	𝑏%𝑐 −
	2	𝑎𝑒	 + 	𝑏𝑘	 + 	𝑒	 ≠ 	0]. 

(II)  When one of the following conditions holds, 
system (2) has one stable equilibrium point. 

𝐴# = t𝑅#,# < 0, 0 < 𝑅#,%, 𝑅#,( < 0w, 
𝐴% = t𝑅#,# < 0, 0 < 𝑅#,%, 0 < 𝑅#,', 0 < 𝑅#,(w, 
𝐴' = t0 < 𝑅#,#, 𝑅#,% < 0, 𝑅#,' < 0, 0 < 𝑅#,(w, 
𝐴( = t0 < 𝑅#,#, 0 < 𝑅#,%, 0 < 𝑅#,', 𝑅#,( < 0w, 

where 
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𝑅#,# = 𝑎 − 1, 
𝑅#,% = 𝑎%𝑒 − 	𝑎𝑏𝑘	 +	𝑏%𝑐 − 	2	𝑎𝑒	 + 	𝑏𝑘	 + 	𝑒,	 
𝑅#,' = 3𝑎'𝑒 − 3𝑎%𝑏𝑘 + 3𝑎𝑏%𝑐 − 3𝑎%𝑒 + 2𝑎𝑏𝑘 

−𝑏%𝑐 − 3𝑎𝑒 + 𝑏𝑘 + 3𝑒,																 
𝑅#,( = 2𝑎'𝑒 − 2𝑎%𝑏𝑘 + 2𝑎𝑏%𝑐 − 5𝑎%𝑒 + 4𝑎𝑏𝑘 

−3𝑏%𝑐 + 4𝑎𝑒 − 2𝑏𝑘 − 𝑒.														 
System (2) cannot have two stable equilibrium points. 
Next we determine the fundamental bifurcation conditions on 
parameters 𝑎, 𝑏, 𝑐, 𝑘, 𝑒 for system (2) to have a certain sort of 
bifurcations. For the NSB, the problem may be formulated as 
that of recognizing the conditions for the taking after semi-
algebraic system to have at slightest one real solution: 
 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑃# = 𝑎𝑥 + 𝑏𝑦 − 𝑥 = 0,																																																							
𝑃% = 𝑐𝑥% + 𝑘𝑥𝑦 + 𝑒𝑦% − 𝑦 = 0,																																								
1 − (2𝑒𝑦 + 𝑘𝑥)𝑎 + 2𝑏𝑐𝑥 + 𝑏𝑘𝑦 = 0,																													
1 + (2𝑒𝑦 + 𝑘𝑥)𝑎 − 2𝑏𝑐𝑥 − 𝑏𝑘𝑦 > 0,																															
1 − 2𝑒𝑦 − 𝑘𝑥 − 𝑎 + (2𝑒𝑦 + 𝑘𝑥)𝑎 − 2𝑏𝑐𝑥 − 𝑏𝑘𝑦 > 0,
1 + 2𝑒𝑦 + 𝑘𝑥 + 𝑎 + (2𝑒𝑦 + 𝑘𝑥)𝑎 − 2𝑏𝑐𝑥 − 𝑏𝑘𝑦 > 0.

 

 
Where 𝑎, 𝑏, 𝑐, 𝑘, 𝑒 are positive real number with 𝑎 − 1 ≠ 0.  
After solving the above system, we discover that system (2) 
may undergo a NSB if one of the thirty-five conditions holds: 
 
𝐵# = [𝑅#,) < 0, 𝑅#,* ≤ 0, 0 < 𝑅#,C, 𝑅#,D ≤ 0,	 

0 <	𝑅#,E, 𝑅#,#2 ≤ 0, 𝑅#,##	, ≤ 0,0 ≤ 𝑅#,#%, 
										0 ≤ 	𝑅#,#'		, 𝑅#,#( < 0, 0 ≤ 𝑅#,#*, 0 ≤ 	𝑅#,#C 
									, 𝑆# = 0], 
 
𝐵% = [𝑅#,) < 0, 𝑅#,* ≤ 0, 0 < 𝑅#,C, 𝑅#,D ≤ 0, 

															0 < 	𝑅#,E	, 	𝑅#,#2 ≤ 0, 	𝑅#,## ≤ 0, 	𝑅#,#' ≤ 0,	 
							0 < 𝑅#,#(, 0 ≤ 𝑅#,#), 𝑅#,#C ≤ 0, 𝑆# = 0], 

⋮ 
𝐵') = [0 ≤ 𝑅#,*, 0 < 𝑅#,C, 0 ≤ 𝑅#,D, 𝑅#,#2 ≤ 0, 

											0 ≤ 𝑅#,##, 0 ≤ 𝑅#,#%, 0 ≤ 𝑅#,#', 𝑅#.#( < 0,	 
, 𝑅#,#) ≤ 0, , 0 ≤ 𝑅#,#*, 𝑆# = 0]. 

where 
 
		𝑅#,) 	= 	4	𝑐𝑒	 −	𝑘%,	    
  𝑅#,* 	= 	4𝑏%𝑐		 − 4𝑏𝑘	 − 	𝑒,				 
		𝑅#,C	 = 	3𝑏%𝑐	 + 	2𝑏𝑘	 + 	𝑒,   
𝑅#,D 	= 	12𝑏%𝑐	 − 	10𝑏𝑘	 − 𝑒,	 
𝑅#,E = 7𝑏%𝑐 − 32𝑏𝑘 + 144	𝑒,	 
 𝑅#,#2 = 12𝑏%	𝑐𝑒 − 4	𝑏%𝑘% + 4	𝑏𝑒𝑘 −	𝑒%,  
𝑅#,## = 16𝑏(𝑐% − 24𝑏'𝑐𝑘 + 16𝑏%𝑐𝑒	 + 2𝑏𝑒𝑘 −	𝑒%,  
𝑅#,#% = 	112𝑏(𝑐% − 232𝑏'𝑐𝑘 + 176𝑏%𝑐𝑒 + 64𝑏%𝑘% 
													−2𝑏𝑒𝑘 + 9𝑒%,  
𝑅#,#' = 16𝑏'𝑐%𝑒 − 4𝑏'𝑐𝑘% − 12𝑏%𝑐𝑒𝑘 + 4	𝑏%𝑘' 

														−8	𝑏𝑐𝑒% − 4	𝑏𝑒𝑘% +	𝑒%𝑘, 
𝑅#,#( = 16𝑏(𝑐%𝑒	 − 4	𝑏(	𝑐𝑘% − 32	𝑏'	𝑐𝑒𝑘 + 8	𝑏'	𝑘' 

+44	𝑏%𝑐𝑒% − 12	𝑏%𝑒𝑘% + 6	𝑏𝑒%𝑘 −	𝑒',		 
𝑅#,#) = 16	𝑏(	𝑐%	𝑒𝑘 − 4	𝑏(	𝑐𝑘' − 48	𝑏'	𝑐%𝑒% 

					−12	𝑏'	𝑐𝑒𝑘% + 6	𝑏'𝑘( + 60	𝑏%𝑐𝑒%	𝑘 − 17	𝑏%𝑒𝑘' 
								+4	𝑏𝑐𝑒% + 11	𝑏𝑒%𝑘% − 2	𝑒'	𝑘,	 
𝑅#,#* = 48	𝑏(	𝑐%	𝑒𝑘 − 12	𝑏(	𝑐𝑘' − 80	𝑏'	𝑐%	𝑒% 

								−6	𝑏'	𝑐𝑒𝑘% + 8	𝑏'	𝑘( − 16	𝑏%	𝑐𝑒%	𝑘 − 4	𝑏%	𝑒𝑘' 
								−10	𝑏𝑐	𝑒' − 2	𝑏𝑒%	𝑘% +	𝑒'	𝑘, 
𝑅#,#C = 112	𝑏)	𝑐'	𝑒𝑘 − 28	𝑏)	𝑐%	𝑘' + 18	𝑒'𝑘%  

					−1232	𝑏(	𝑐'	𝑒% + 76		𝑏(	𝑐%	𝑒	𝑘% + 58	𝑏(	𝑐𝑘( 
			+2532	𝑏'	𝑐%𝑒%	𝑘 − 583	𝑏'	𝑐𝑒𝑘' − 16	𝑏'	𝑘) 
			−1828	𝑏%	𝑐%	𝑒' + 333	𝑏%	𝑐𝑒%𝑘% + 88	𝑏%	𝑒𝑘( 

       −574	𝑏𝑐𝑒'𝑘 − 76𝑏𝑒%𝑘' + 72	𝑐𝑒(, 
𝑆# = 2	𝑎'𝑒 − 2	𝑎%	𝑏𝑘 + 2	𝑎𝑏%	𝑐 − 5	𝑎%	𝑒 + 4	𝑎𝑏𝑘  
							−3	𝑏%	𝑐 + 4	𝑎𝑒 − 2	𝑏𝑘 − 𝑒, 
 

Similarly, we also find that system (2) may experience 
(undergo) a PDB if one of the twenty-four conditions holds: 
 
𝐶# 	= [𝑅#,#D 	< 0,0	 < 𝑅#,#E	, 𝑅#,%2 < 0, 𝑅#,%# ≤ 	0,	   

		𝑅#,%% ≤ 	0, 𝑅#,%' 	< 	0, 𝑅#,%( ≤ 0, 𝑅#,%) ≤ 	0,	 
0 ≤ 𝑅#,%C, 𝑅#,%D < 0, 0 ≤ 𝑅#,%E, 0 ≤ 	𝑅#,'2,	 

										0 ≤ 𝑅#,'#, 𝑆% = 	0], 
𝐶% = [𝑅#,#D < 0, 0 < 	𝑅#,#E, 𝑅#,%2 < 0, 𝑅#,%# ≤ 0,			 

							𝑅#,%% ≤ 0, 𝑅#,%( ≤ 0, 𝑅#,%) ≤ 0, 0 ≤ 			𝑅#,%*,	 
0 ≤ 𝑅#,%C, 𝑅#,%D < 0, 0 ≤ 	𝑅#,%E, 0 ≤ 𝑅#,'2,	 

											𝑅#,'# ≤ 0, 𝑆% = 0, ] 
⋮ 

𝐶%( = [0 < 𝑅#,#E, 𝑅#,%2 < 0, 0 ≤ 	𝑅#,%%, 0 < 𝑅#,%',	 
𝑅#,%( ≤ 0, 0 ≤ 𝑅#,%), 0 ≤ 	𝑅#,%*, 0 ≤ 𝑅#,%C,		 
						𝑅#,%D < 0, 𝑅#,%E 	≤ 0, 0 ≤ 	𝑅#,'2, 𝑅#,'# ≤ 0, 

														𝑆%	 = 0], 
Where 
 
𝑅#,#D = 𝑐𝑒 − 1	,						 
 𝑅#,#E = 𝑏𝑐 + 2,							  
𝑅#,%2 =	𝑏%	𝑐 − 2	𝑏 − 3	𝑒.	
𝑅#,%# = 3	𝑏𝑐 − 2,				 
𝑅#,%% = 3	𝑏𝑐𝑒 − 4	𝑏 + 6	𝑒,								  
𝑅#,%' = 7	𝑏%	𝑐 − 64	𝑏 + 144	𝑒,      
𝑅#,%( = 3	𝑏%	𝑐𝑒 − 4	𝑏% − 4	𝑒%,									 
𝑅#,%) = 3	𝑏%	𝑐%	𝑒 + 4	𝑏𝑐 − 4	𝑏 + 4	𝑒, 
𝑅#,%* = 21	𝑏%	𝑐%	𝑒 − 20	𝑏𝑐𝑒 − 48	𝑐	𝑒% − 4	𝑏			 
																+	92	𝑒,				 
𝑅#,%C = 9	𝑏'	𝑐%	𝑒 + 9	𝑏%𝑐%𝑒% − 9	𝑏'	𝑐 − 18	𝑏%	𝑐𝑒 +
																				12	𝑏𝑐	𝑒% + 12	𝑏% − 16	𝑏𝑒 + 12	𝑒%,					  
𝑅#,%D = 27	𝑏(𝑐'	𝑒 − 27	𝑏(	𝑐% − 108	𝑏%𝑐%𝑒%	 

										+288	𝑏%	𝑐𝑒		 + 144	𝑏𝑐	𝑒% + 144	𝑐𝑒'										 
	−192	𝑏% − 128	𝑏𝑒 − 192	𝑒%,																					 

𝑅#,%E = 27	𝑏(𝑐'𝑒% − 27	𝑏(	𝑐%	𝑒 + 162	𝑏'𝑐%	𝑒% 
								−		18𝑏%𝑐%𝑒' − 396	𝑏'	𝑐𝑒 + 48	𝑏%	𝑐	𝑒% 

−			144	𝑏𝑐	𝑒'	 + 240	𝑏'	 − 56	𝑏%	𝑒 
																		+				192	𝑏	𝑒% − 72	𝑒'	,	  
𝑅#,'2 = 81	𝑏(	𝑐(	𝑒% + 54	𝑏'𝑐(	𝑒' − 189	𝑏(		𝑐'	𝑒				  

−	90	𝑏'𝑐'𝑒% + 72	𝑏%𝑐'𝑒' + 108	𝑏(𝑐% 
			+		72	𝑏'	𝑐%	𝑒 − 156	𝑏%𝑐%𝑒% + 72	𝑏	𝑐%𝑒' 

						−	36	𝑏'	𝑐 + 12	𝑏%	𝑐𝑒 − 168	𝑏𝑐	𝑒% 	+ 96	𝑏% 
	+64	𝑏𝑒 + 96	𝑒%,																																				 

𝑅#,'# = 567𝑏)𝑐(𝑒% − 594𝑏(𝑐(𝑒' − 1323𝑏)𝑐'𝑒 
												+1638𝑏(𝑐'𝑒% − 360𝑏'𝑐'𝑒' + 3024𝑏%𝑐'𝑒( 

	+756𝑏)𝑐% − 144𝑏(𝑐%𝑒 + 1500𝑏'𝑐%𝑒% 
		−9864𝑏%𝑐%𝑒' + 5184𝑏𝑐%𝑒( − 900𝑏(𝑐 
				−3948𝑏'𝑐𝑒 + 14136𝑏%𝑐𝑒% − 9216𝑏𝑐𝑒' 

											+5184𝑐𝑒( + 2976𝑏' − 8384𝑏%𝑒 + 5856𝑏𝑒% 
            −8640𝑒', 
		𝑆% = 3	𝑎'	𝑒 + 3	𝑎𝑏%	𝑐 − 6	𝑎%	𝑏 − 3	𝑎%	𝑒 −	𝑏%	𝑐 +
												4	𝑎𝑏 − 3	𝑎𝑒 + 2	𝑏 + 3	𝑒,  
 
Remark that, the above necessary conditions for the PDB is 
obtained when 𝑘	 = 	2. Since Maple was expending as well 
much of the CPU amid the calculation for the five free 
parameters 𝑎, 𝑏, 𝑐, 𝑘, 𝑒. 

	
Finally, we are going to determine the conditions on 𝑎, 𝑏, 𝑐, 𝑘, 𝑒 
under which the equilibrium point �̅� of system (2) may be a 
snapback repeller. According to Marotto's theorem, we ought 
to discover one point 𝑥2 = (𝑥2, 𝑦2) in a repelling 
neighbourhood 𝐵9#(�̅�)such that 𝑥2 ≠ �̅�, 𝑔:(𝑥2) = �̅�	and 
|𝑔/(𝑥-)| ≠ 0, (1 ≤ 𝑘 ≤ 𝑠) for some positive integer 𝑚.  Here, 
we particularly focus on the map 𝑔% (𝑚	 = 	2). Note that the 
characteristic polynomial of the matrix  (𝑔′(�̅�));	𝑔′(�̅�) is 
 

𝑃h(𝜆) = 𝜆% + (	−4	𝑐%𝑥% − 4	𝑐𝑘𝑥𝑦 − 4	𝑒%𝑦% 
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															−4	𝑒𝑘𝑥𝑦	 − 𝑘%𝑥% −	𝑘%𝑦% −	𝑎% −	𝑏%)𝜆 
                 	+4	𝑎%𝑒%𝑦% + 4	𝑎%	𝑒𝑘𝑥𝑦 +	𝑎%	𝑘%𝑥% 
                  −8	𝑎𝑏𝑐𝑒𝑥𝑦 − 4	𝑎𝑏𝑐𝑘𝑥% − 4	𝑎𝑏𝑒𝑘𝑦% 
                		−2	𝑎𝑏	𝑘%	𝑥𝑦 + 4	𝑏%𝑐%𝑥% + 4	𝑏%	𝑐𝑘𝑥𝑦 
                				+	𝑏%𝑘%𝑦% 
 
For the above polynomial 𝑃h(𝜆) we can obtain the inequality 
polynomials 𝐿h%(1), 𝐿h#(1), 𝐿h2(1) and 𝐿h%(0), 𝐿h#(0), 𝐿h2(0) in 
Theorem 2 by using equation (6). 
In arrange to analyse the chaotic behaviour of system (2), by 
Theorem 2 we obtain the following semi-algebraic system for 
𝑗	 = 	1: 

𝜓#:

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧𝑃# = 𝑎𝑥 + 𝑏𝑦 − 𝑥 = 0, 𝑃% = 𝑐𝑥% + 𝑘𝑥𝑦 + 𝑒𝑦% − 𝑦 = 0,											
𝑃' = 𝑎(𝑎𝑥2 + 𝑏𝑦2) + 𝑏(𝑐𝑥2% + 𝑘𝑥2𝑦2 + 𝑒𝑦2%) − 𝑥 = 0,											
𝑃( = 𝑐(𝑎𝑥2 + 𝑏𝑦2)% + 𝑘(𝑎𝑥2 + 𝑏𝑦2)(𝑐𝑥2% + 𝑘𝑥2𝑦2																		
				+𝑒𝑦2%) + 𝑒(𝑐𝑥2% + 𝑘𝑥2𝑦2 + 𝑒𝑦2%)% − 𝑦 = 0,														

𝐿h%(1)|<̅,<$ > 0, −𝐿h#(1)|<̅,<$ > 0, 	𝐿h2(1)|<̅,<$ > 0,															
𝐿h%(0)|<̅,<$ ≠ 0, 	𝐿h#(0)|<̅,<$ ≠ 0, 	𝐿h2(0)|<̅,<$ ≠ 0,																								
|𝑔/(𝑥#)| = (2𝑎𝑒 − 𝑏𝑘)(𝑐𝑥2% + 𝑘𝑥2𝑦2 + 𝑒𝑦2%)																										

+(𝑎𝑘 − 2𝑏𝑐)(𝑎𝑥2 + 𝑏𝑦2) ≠ 0,										
|𝑔/(𝑥%)| = (2𝑎𝑒 − 𝑏𝑘)𝑦 + (𝑎𝑘 − 2𝑏𝑐)𝑥 ≠ 0,																																

		𝑥2 − �̅� ≠ 0.																																										

 

 
Where 𝑎, 𝑏, 𝑐, 𝑘, 𝑒 are positive real number with 𝑎 − 1 ≠ 0,	and 
 
𝐿h%(1)|<̅ = 8𝑎%𝑒%𝑦% + 8𝑎%𝑒𝑘𝑥𝑦 + 2𝑎%𝑘%𝑥% − 2𝑏% 

							−16𝑎𝑏𝑐𝑒𝑥𝑦 − 8𝑎𝑏𝑐𝑘𝑥% − 8𝑎𝑏𝑒𝑘𝑦% − 4𝑎𝑏𝑘%𝑥𝑦 
									+8𝑏%𝑐%𝑥% + 8𝑏%𝑐𝑘𝑥𝑦 + 2𝑏%𝑘%𝑦% − 8𝑐%𝑥% + 2 
		−8𝑐𝑘𝑥𝑦 − 8𝑒%𝑦% − 8𝑒𝑘𝑥𝑦 − 2𝑘%𝑥% − 2𝑘%𝑦% 

										−2𝑎%, 
𝐿h#(1)|<̅ = −8𝑎%𝑒%𝑦% − 8𝑎%𝑒𝑘𝑥𝑦 − 2𝑎%𝑘%𝑥% + 2 

				+16𝑎𝑏𝑐𝑒𝑥𝑦 + 8𝑎𝑏𝑐𝑘𝑥% + 8𝑎𝑏𝑒𝑘𝑦% 
					+4𝑎𝑏𝑘%𝑥𝑦 − 8𝑏%𝑐%𝑥% − 8𝑏%𝑐𝑘𝑥𝑦 

																	−2𝑏%𝑘%𝑦%, 
𝐿h2(1)|<̅ = 8𝑎%𝑒%𝑦% + 8𝑎%𝑒𝑘𝑥𝑦 + 2𝑎%𝑘%𝑥% + 2𝑏% 
             −16𝑎𝑏𝑐𝑒𝑥𝑦 − 8𝑎𝑏𝑐𝑘𝑥% − 8𝑎𝑏𝑒𝑘𝑦% 	+ 2𝑎% 
          			+8𝑏%𝑐%𝑥% + 8𝑏%𝑐𝑘𝑥𝑦 + 2𝑏%𝑘%𝑦% + 8𝑐%𝑥% 
         		+8𝑐𝑘𝑥𝑦 + 8𝑒%𝑦% + 8𝑒𝑘𝑥𝑦 + 2𝑘%𝑥% + 2𝑘%𝑦% 
													+2 − 4𝑎𝑏𝑘%𝑥𝑦, 
𝐿h%(0)|<̅ = 4𝑎%𝑒%𝑦% + 4𝑎%𝑒𝑘𝑥𝑦 + 𝑎%𝑘%𝑥% 

								−8𝑎𝑏𝑐𝑒𝑥𝑦 − 4𝑎𝑏𝑐𝑘𝑥% − 4𝑎𝑏𝑒𝑘𝑦% 
				+4𝑏%𝑐%𝑥% + 4𝑏%𝑐𝑘𝑥𝑦 − 2𝑎𝑏𝑘%𝑥𝑦 

																+𝑏%𝑘%𝑦% + 1, 
𝐿h#(0)|<̅ = −4𝑎%𝑒%𝑦% − 4𝑎%𝑒𝑘𝑥𝑦 − 𝑎%𝑘%𝑥% 
																	+8𝑎𝑏𝑐𝑒𝑥𝑦 + 4𝑎𝑏𝑐𝑘𝑥% + 4𝑎𝑏𝑒𝑘𝑦% 
																	+2𝑎𝑏𝑘%𝑥𝑦 − 4𝑏%𝑐%𝑥% − 4𝑏%𝑐𝑘𝑥𝑦 
															−𝑏%𝑘%𝑦% + 1, 

𝐿h2(0)|<̅ = 𝐿h2(1)|<̅ 
 
With 𝑎, 𝑏, 𝑐, 𝑘, 𝑒 are positive real parameters and 
𝑥, 𝑦, 𝑥2, 𝑦2		are the variables. 
 
The semi-algebraic system 𝜓#	can be solved by using 
DISCOVERER, the resulting output shows that the system 
𝜓#	when 𝑘	 = 	2, 𝑏	 = 	𝑒	 = 	1 has at least one real solution if 
and only if one of the following conditions holds: 

𝐷# = t0 < 𝑅#,'%, 0 < 𝑅#,''w, 
𝐷% = t0 < 𝑅#,'%, 𝑅#,'( < 0w, 

 

 
Figure 1. Parameter space for system (2) to be chaotic within 

the sense of Marroto. 

Where 
 

𝑅#,'% = 	3	𝑎* − 	24	𝑎) 	+ 	6	𝑎(𝑐	 + 	66	𝑎( − 	24	𝑎'𝑐 
										−	𝑎%𝑐% − 	72	𝑎' 	+ 	34	𝑎%𝑐 + 	11	𝑎% − 	16	𝑎𝑐	

													+	32	𝑎 − 	16,	
𝑅#,'' 	= 	3	𝑎#2 − 	36	𝑎E 	+ 	12	𝑎D𝑐	 + 	174	𝑎D 

												−	108	𝑎C𝑐	 + 	14	𝑎*𝑐% − 	432	𝑎C 	+ 	366	𝑎*𝑐	
						−	76	𝑎)𝑐% 	+ 	4	𝑎(𝑐' 	+ 	579	𝑎* − 	608	𝑎)𝑐	 

          +	130	𝑎(𝑐% − 	4	𝑎'𝑐' −	𝑎%𝑐( − 		364	𝑎) 
				+	574	𝑎(𝑐 − 	112	𝑎'𝑐% 	+ 	2	𝑎%𝑐' − 	68	𝑎( 

            −	316	𝑎'𝑐	 + 	59	𝑎%𝑐% 	+ 	320	𝑎'	
          +	80	𝑎%𝑐 − 	16	𝑎𝑐% − 	256	𝑎% 	+ 	96	𝑎 − 	16, 
 
𝑅#,'( 	= 	25	𝑎%( − 	700	𝑎%' 	+ 	250	𝑎%%𝑐	 
				+	8920	𝑎%% − 	6220	𝑎%#𝑐	 + 	1085	𝑎%2𝑐% 
				−	68400	𝑎%# + 	69740	𝑎%2𝑐 − 	23600	𝑎#E𝑐%		
					+	351414	𝑎%2 − 	465328	𝑎#E𝑐 + 	2680	𝑎#D𝑐'	

					+	228448	𝑎#D𝑐% − 	49904	𝑎#C𝑐' 	+ 	4146	𝑎#*𝑐(	
		−	1272808	𝑎#E 	+ 	2053792	𝑎#D𝑐 + 	3320276	𝑎#D 
−	1297232	𝑎#C𝑐% 	+ 	406688	𝑎#*𝑐' + 	4156	𝑎#(𝑐)		
			−64264	𝑎#)𝑐	( − 	6295096	𝑎#C𝑐	 − 	51560	𝑎#'𝑐) 

	+	4792736	𝑎#*𝑐% − 	1906592	𝑎#)𝑐' 	+ 	425840	𝑎#(𝑐(	
+	2690	𝑎#%𝑐* − 	6218208	𝑎#C 	+ 	13639140	𝑎#*𝑐 

−	12060296	𝑎#)𝑐% 	+ 	5683056	𝑎#(𝑐' −	1577872	𝑎#'𝑐( 
+	264056	𝑎#%𝑐	) − 	25200	𝑎##𝑐* 	+ 	1080	𝑎#2𝑐C		

+	8025417	𝑎#* − 	20661808	𝑎#)𝑐		 + 	3588844	𝑎#%𝑐(	
+	20946004	𝑎#(𝑐% − 	11221560	𝑎#'𝑐' + 	245	𝑎D𝑐D	
−	722848	𝑎##𝑐) 	+ 	92064	𝑎#2𝑐* − 	6960	𝑎E𝑐	C	

−	6097196	𝑎#) + 	20523174	𝑎#(𝑐 − 	24613744	𝑎#'𝑐%	 
+	14766468	𝑎#%𝑐' − 	5166040	𝑎##𝑐( + 	26	𝑎*𝑐E	

+	1141312	𝑎#2𝑐) − 	165424	𝑎E𝑐* 	+ 	15744	𝑎D𝑐C			
+	302300	𝑎	#( − 	9961596	𝑎#'𝑐	 + 	17839255	𝑐%	
+	4647148	𝑎#2𝑐( − 	1032680	𝑎E𝑐) 	− 	924	𝑎C𝑐D 
−	12521456	𝑎##𝑐' + 	147056	𝑎D𝑐* + 	952	𝑎*𝑐D	

−	14112	𝑎C𝑐C 	− 	44	𝑎)𝑐	E + 	𝑎(𝑐	#2 + 	5363760	𝑎#'	
−	4670704	𝑎#%𝑐 − 4665928	𝑎##𝑐% + 	6002292	𝑎#2𝑐'	
−	2436544	𝑎E𝑐( 	+ 	476364	𝑎D𝑐) − 	45592	𝑎C𝑐*	 
+	1456	𝑎*𝑐C + 	64	𝑎)𝑐D − 	4	𝑎(𝑐E − 	6324880	𝑎#%	 

+	12746656	𝑎##𝑐 − 	5119032	𝑎#2𝑐% − 	612024	𝑎E𝑐'	
	+	627399	𝑎D𝑐( − 	66704	𝑎C𝑐) − 	16932	𝑎*𝑐*	 
+	4696	𝑎)𝑐C − 	434	𝑎(𝑐	D + 	16	𝑎'𝑐E 	+ 	2485296	𝑎## 
−	10668224	𝑎#2𝑐	 + 	6983296	𝑎E𝑐% − 	1844	𝑎(𝑐C	
−	1062224	𝑎D𝑐' − 	118524	𝑎C𝑐( 	+ 	10118	𝑎*𝑐)	 
+	10128	𝑎)𝑐* + 	96	𝑎'𝑐	D + 	1957456	𝑎#2	 
+	3947904	𝑎E𝑐 − 	4314000	𝑎D𝑐% 	+ 	719776	𝑎C𝑐'	
+	152348	𝑎*𝑐( − 	46732	𝑎)𝑐	) + 	3705	𝑎(𝑐* 
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−	208	𝑎'𝑐C 	+ 	16	𝑎%𝑐	D − 	3474240	𝑎E + 	860032	𝑎D𝑐		
+	1676448	𝑎C𝑐% − 	319680	𝑎*𝑐' − 	108464	𝑎)𝑐	(	
+	31648	𝑎(𝑐) − 	2896	𝑎'𝑐* 		+ 	2245280	𝑎D 

−	2049216	𝑎C𝑐 − 	439456	𝑎*𝑐% 	+ 	182592	𝑎)𝑐' 
+	128	𝑎%𝑐C + 	25344	𝑎(𝑐( − 	7744	𝑎'𝑐) + 	416	𝑎%𝑐*	 
−	499520	𝑎C 	+ 	1357856	𝑎*𝑐	 + 	59968	𝑎)𝑐%	
−	97152	𝑎(𝑐' 	+ 	2288	𝑎'𝑐( 	+ 	608	𝑎%𝑐) 
−	337664	𝑎* − 	532864	𝑎)𝑐	 + 	16480	𝑎(𝑐%	
+	32704	𝑎'𝑐' − 	1904	𝑎%𝑐( 	+ 	349696	𝑎)	 
+	127360	𝑎(𝑐 − 	14144	𝑎'𝑐	% − 	6176	𝑎%𝑐'	
+	256	𝑎𝑐( − 	139776	4 − 	14592	𝑎'𝑐	 
+	4224	𝑎%𝑐% 	+ 	512	𝑎𝑐	' + 	21760	𝑎' − 	512	𝑎%𝑐	
−	512	𝑎𝑐% 	+ 	3584	𝑎% 	+ 	256	𝑎𝑐 − 	2048	𝑎	 
		+	256. 
In a few comparable steps, we will fathom and get that there's 
no given number of real solution(s) for the semi-algebraic 
system 2 when 𝑘	 = 	2, 𝑏	 = 	𝑒	 = 	1. We notice that the 
polynomial expressions included within the analysis of chaotic 
behavior are huge, and Maple was unable to reclaim sufficient 
memory during a calculation indeed for three free parameters 
among 𝑎, 𝑏, 𝑐, 𝑘, 𝑒. In summary, we know that if one of the 
conditions: 𝐷# or 𝐷% is satisfied, the equilibrium point �̅�	of 
system (2) is a snapback repeller. 
Now we take the conditions	𝐷# ∪ 𝐷% to demonstrate the 
parametric region where the equilibrium point �̅� could be a 
snapback repeller for a visual understanding on the conditions 
above. The dotted lines in Figure 1 are the critical boundaries 
determined by the polynomials showing up in conditions 𝐷# ∪
𝐷%, and the shadowed region is the parameter space where all 
the inequalities hold. 
 
3.2 Analysis of Bifurcations and Chaos for System (3)  
 
Since the calculations and arguments of bifurcations and chaos 
for system (3) are quite similar to those used in 
the previous section, we omit the detailed steps. We summarize 
our results as follows. 

(i)  When 𝐾	 = 	2, 𝑅%,# 	> 	0, system (3) has two 
(distinct) equilibrium points; when 𝐾	 =
	2, 𝑅%,# 	< 	0; 	0 ≤ 𝑅%,%, 𝑅%,' ≤ 0, system (3) 
has four (distinct) equilibrium points. 

(ii) When 𝐾	 = 	2, 𝐸	 = 	𝐵	 = 	1, 𝑅%,( 	< 	0, system 
(3) has two (distinct) equilibrium points, of 
which one is 

stable; system (3) cannot have two or more stable equilibrium 
points. 

(iii) When 𝐾	 = 	2, 𝐸	 = 	1, 𝑅%,) = 	0, system (3) 
may undergo a NSB, and no PDB occurs for this 
system. 

(iv) When 𝐴	 = 	10, 𝐵	 = 	5, 𝐶	 = 	2, 𝐸	 = 	1, 
system (3) has a snapback repeller in case of the 
following conditions 

holds: 
 

𝜀# =	 [𝐾	 > 0,2𝐾 − 3	 < 0]	, 
 

𝜀% =	 [0	 < 2𝐾 − 3,4	𝐾( − 52	𝐾' + 227	𝐾%	 − 375	𝐾
+ 203	 < 0]	, 

𝜀' =	 [0	 < 2𝐾 − 3,2	𝐾% − 13	𝐾 + 14	 < 0]	. 
 
The explicit expressions of 𝑅%,+ , 𝑖 = 1,2,… ,5 are as follows: 
 
𝑅%,# =	−𝐴(𝐵(𝐶𝐸 +	4𝐴)	𝐵%𝐸%	 +	16𝐴%𝐵%𝐶𝐸% +
4𝐴%𝐵)𝐶% +	16𝐴%𝐵(𝐶%𝐸 − 32𝐴)𝐸' −	64𝐴(𝐶𝐸' −
	16𝐴'𝐵'𝐶	𝐸 −	64	𝐴'𝐵%𝐶	𝐸% − 64	𝐴%𝐵'𝐶%	𝐸 −
	256	𝐴%𝐵%𝐶%𝐸% −	32	𝐵)𝐶' −	64	𝐵(𝐶'	𝐸 −	8𝐴(𝐵	𝐸% −
	32	𝐴(𝐸' + 128	𝐴'𝐵𝐶𝐸% + 512	𝐴'𝐶𝐸' +	256	𝐴%𝐵𝐶%𝐸% +
	1024	𝐴%𝐶%𝐸' −	8	𝐴𝐵(𝐶% +	128	𝐴𝐵'𝐶%𝐸 +
	256	𝐴𝐵%𝐶%𝐸% −	32	𝐵(𝐶' +	512	𝐵'𝐶'𝐸 +
	1024	𝐵%𝐶'𝐸% +	62	𝐴%𝐵%𝐶𝐸 +	256	𝐴%	𝐵𝐶𝐸% +
	512	𝐴%𝐶	𝐸' +	256	𝐴𝐵%𝐶%	𝐸 −	1024	𝐴	𝐵𝐶%𝐸% −
	2048	𝐴𝐶%𝐸' +	512	𝐵%𝐶'	𝐸 −	2048	𝐵𝐶'𝐸% −
4096	𝐶'𝐸' +	4	𝐴'𝐸% −	240	𝐴%	𝐶	𝐸% −	1536	𝐴𝐶%𝐸% +
	4	𝐵'𝐶% −		240	𝐵%𝐶%𝐸 −	1536	𝐵𝐶%𝐸% − 2048	𝐶'𝐸% −
	2048	𝐶%𝐸' − 	72	𝐴𝐵𝐶	𝐸 −	288	𝐴𝐶	𝐸% −	288	𝐵𝐶%𝐸 −
	1152	𝐶%𝐸% + 27	𝐶𝐸,  
𝑅%,% =	𝐴%𝐸 − 2𝐵𝐶 − 8𝐶𝐸,	      

𝑅%,' =	−𝐴%𝐵%𝐶𝐸 +	2	𝐴'𝐸% +	8	𝐴%𝐶	𝐸% +	2	𝐵'𝐶% 
+8	𝐵%𝐶%𝐸 − 4	𝐴𝐵𝐶𝐸	 − 16	𝐴𝐶	𝐸% −	16	𝐵𝐶%𝐸 

				−		64	𝐶%𝐸% + 9𝐶𝐸, 
𝑅%,( =	28	𝐴) +	49	𝐴(𝐶 + 40	𝐴( −	560	𝐴'𝐶 −
	980	𝐴%𝐶% −	4	𝐴' − 590	𝐴%	𝐶 + 3976	𝐴𝐶% + 6272	𝐶' +
	+360	𝐴𝐶 + 5260	𝐶% 	− 27𝐶,   
𝑅%,) =	−𝐴(𝐵(𝐶 + 4	𝐴%𝐵)𝐶% + 16	𝐴%𝐵(𝐶% 

−	32	𝐵)𝐶' + 4	𝐴)𝐵% + 16	𝐴(𝐵%𝐶 −	16	𝐴'𝐵'𝐶 
	−	64	𝐴%𝐵'𝐶% −	8	𝐴𝐵(𝐶% −	96	𝐵(𝐶' −	64	𝐴'𝐵%𝐶 
−	256	𝐴%𝐵%𝐶% + 128	𝐴𝐵'𝐶% +	512	𝐵'𝐶' −	32	𝐴) 

−	8	𝐴(𝐵 −	86	𝐴(𝐶 + 128	𝐴'𝐵𝐶 + 70	𝐴%𝐵%𝐶 
+	256	𝐴%𝐵𝐶% +	512	𝐴𝐵%𝐶% −	12	𝐵'𝐶% 

+	1536	𝐵%𝐶' −	32	𝐴( +	512	𝐴'𝐶 +	256	𝐴%𝐵𝐶 
+	1024	𝐴%𝐶% −	304	𝐵%𝐶% −	2048	𝐵𝐶' −	12	𝐴' 
+	208	𝐴%𝐶 − 40	𝐴𝐵𝐶 −		3584	𝐴𝐶% −	1696	𝐵𝐶% 

			−	6144	𝐶' − 160	𝐴𝐶 − 2688	𝐶% − 125	. 
 
We take the conditions 𝑅%,( 	< 	0 and 𝑅%,) = 0 to illustrate the 
parametric region where system (3) has a stable equilibrium 
point and may have a NSB for a visual understanding. 
In summary, we provide in table 1 all the timings for analysing 
the dynamical behaviors of the parametric planar quadratic 
maps (2) and (3). 
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Figure 2. Illustration of system (3). 

 
Table 1. Runtimes (in seconds) on the obtained conditions 
for maps (2) and (3). 

Dynamical types Map (2) Map (2) 
Stability of equilibrium points 0.844s 0.282s 
NSB 48.109s 1.047s 
PDB 33.187s -- 
Snapback repeller 29.047s 11.406s 

4. CONCLUSION 

Our experiments illustrate the viability and expediency of our 
algebraic approach for stability, bifurcation and chaos analysis 
of the planar quadratic maps (2) and (3). Due to the immensity 
of the polynomial expression in the analysis, computation has 
become very difficult to be done. As per some observations, it 
indicates conditions on the parameters for the bifurcation and 
chaos can be only attained under some restrictions. How to 
facilitate and enhance the steps of symbolic computations in 
the current approach stays a question which requires further 
study. The conditions for discrete dynamical system to attain a 
certain form of bifurcation or a snapback repeller we can obtain 
are only essential ones. The way of checking the adequacy of 
the conditions and determining the type of each bifurcation are 
areas worth of study. Furthermore, we are trying to prove an 
intriguing and challenging various models in different fields 
that stability, bifurcations and chaos could be significantly 
analyzed by our approach. The experimental results provide a 
partial answer to the problem stated in (Huang, & Niu, 2020c). 
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