ABSTRACT:
This article discusses two new subclasses of the bi-univalent functions category \(\Sigma \) in the open unit disk \(U \). The primary goal of the article is to obtain estimations of the coefficients \([a_2]\) and \([a_3]\) for the functions that are within these two new subclasses.

KEYWORDS: Taylor–Maclaurin Series, Univalent Function, Coefficient Bounds, Bi-univalent Function.

1. INTRODUCTION AND PRELIMINARIES
Assume that \(U = \{z \in \mathbb{C} \text{ such that } |z| < 1\} \) is an open disk which is called unit disk in \(\mathbb{C} \) and \(\mathcal{A} \) represents the category of functions \(f \) that are holomorphic in \(U \) with the Taylor-Maclaurin series:

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad z \in U, \quad (1.1)
\]
and normalization \(f(0) = 0, \ f'(0) = 1 \). The subclass \(\mathcal{D} \) of \(\mathcal{A} \) is the category which contains of univalent functions in \(U \) (to learn more, see (Duren, 2001) and also the most recent works (Breaz, Breaz, & Srivastava, 2009; Srivastava & Eker, 2008). The thoroughly investigation subcategory of univalent functions category \(\mathcal{S} \) are the category of starlike functions of the order \(\xi (0 \leq \xi < 1) \), denoted with the aid of using \(\mathcal{S}^*(\xi) \), and the category of convex functions of the order \(\eta \) denoted with the aid of using \(\mathcal{C}(\eta) \) in \(U \). These two classes are defined as

\[
\mathcal{S}^*(\xi) := \left\{ f \in \mathcal{S}; \Re \left(\frac{zf'(z)}{f(z)} \right) > \xi \quad (z \in U; \quad 0 \leq \xi < 1) \right\} \quad (1.2)
\]
and

\[
\mathcal{C}(\eta) := \left\{ f \in \mathcal{S}; \Re \left(1 + \frac{zf''(z)}{f'(z)} \right) > \xi \quad (z \in U; \quad 0 \leq \xi < 1) \right\} \quad (1.3)
\]

From the definitions (1.2) and (1.3) the following can be easily deduced:

\[
f(z) \in \mathcal{O}(\xi) \Leftrightarrow zf'(z) \in \mathcal{S}^*(\xi) \quad (1.4)
\]
This is commonly known that if \(f \) is a univalent function, holomorphic from the domain \(D_2 \) onto the domain \(D_2 \), then the inverse function \(g \) which is determined by

\[
g(f(z)) = z; \quad (z \in D_2)
\]
is a univalent and holomorphic function from \(D_2 \) to \(D_2 \). Additionally, we know that the image of \(U \) under any function \(f \in \mathcal{S} \) includes a disk of radius \(\frac{1}{2} \) due to the well-known Koebe One-Quarter Theorem (see (Srivastava & Eker, 2008)). So, each univalent function \(f \in U \) has an inverse \(f^{-1} \) that follows the following criteria:

\[
f^{-1}(f(z)) = z \quad (z \in U),
\]
and

\[
f^{-1}(w) = w \quad (|w| < r_0(f); \quad r_0(f) \geq \frac{1}{2}).
\]
(1.5)
The series expansion of the inverse function \(f \) in a disk about the origin is of the form:

\[
f^{-1}(w) = w + \delta_2 w^2 + \delta_3 w^3 + \ldots.
\]
(1.6)
The Koebe function’s inverse offers the tightest restriction on all \([a_k] \) in (1.6) (see (Ding, Ling & Bao, 1995; Lewin, 1967)). According to the previous steps it is clear that the univalent function \(f(z) \) and its inverse function \(f^{-1}(w) \) satisfy the condition (1.5) in the neighborhood of the origin or equivalently

\[
w = f^{-1}(w) + a_2[f^{-1}(w)]^2 + a_3[f^{-1}(w)]^3 + \ldots.
\]
Then,

\[
f^{-1}(w) = w - a_2[f^{-1}(w)]^2 - a_3[f^{-1}(w)]^3 - \ldots.
\]
(1.7)
By using (1.1) and (1.6) in (1.7), a simple computation gives

\[
g(w) = g^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_2)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \ldots.
\]
(1.8)
Ding, Ling & Bao (Ding, Ling & Bao, 1995) presented the following category $Q_3(\beta)$ of holomorphic functions defined as follows:

$$Q_3(\beta) = \left\{ f \in A; \Re \left((1-\lambda) \frac{f''(z)}{f'(z)} + \beta f'(z) \right) > \beta, \beta < 1, \lambda \geq 0 \right\}.$$

It is obvious that $Q_3(\beta) \subset Q_3(\beta)$ for $\lambda_1 > \lambda_2 \geq 0$. Thus, for $\lambda \geq 1, 0 \leq \beta < 1$, $Q_3(\beta) \subset Q_3(\beta) = \{ f \in A; \Re f'(z) > \beta, 0 \leq \beta < 1 \}$ and hence $Q_3(\beta)$ is univalent category (see (Chichri, 1977)).

Another exciting work is done by Çağlar and Deniz (Çağlar & Deniz, 2017). They obtained the coefficient estimates for a new subclass $T_\mu(\gamma, \varphi)$ of analytic and bi-univalent functions in the open unit disk U defined by Salagean differential operator. Also Srivastava, Bulut, Çağlar and Yağmur (Srivastava, Bulut, Çağlar & Yağmur, 2013) introduced and investigated an interesting subclass $N_\mu^h(\lambda, \mu)$ of analytic and bi-univalent functions in the open unit disk U. For functions belonging to the class $N_\mu^h(\lambda, \mu)$, they obtained estimates on the first two Taylor-Maclaurin coefficients a_2 and a_3. In addition, Çağlar, Orhan and Yağmur, (Çaglar, Orhan & Yağmur, 2013) considered two new subclasses $N_\mu^h(\alpha, \lambda)$ and $N_\mu^h(\beta, \lambda)$ of bi-univalent functions defined in U and they presented some interesting results.

In 1967, Lewin (Lewin, 1967) investigated the category Σ and demonstrated that $|a_2| \leq 1.51$. Later, Brannan, David & Clunie (Brannan, David & Clunie, 1980) proved that $|a_2| \leq \sqrt{2}$. Besides that, Netanyaú and analysis, (1969).

Awhile later in 1981, Wright and Styer (Styer & Wright, 1981) showed that there exist a function $f(z) \in \Sigma$ with $|a_2| > \frac{4}{3}$. The most excellent known gauge for functions it has been acquired in 1984 by Tan (Tan, 1984), that is $|a_2| \leq 1.485$. The coefficient gauge issue including the bound of $|a_2| (n \in N(1,2))$ for every $f \in \Sigma$ given by (1.1) is unresolved. Taha and Brannan (Brannan & Taha, 1988) showed certain subcategory of the bi-univalent functions category Σ comparative to the commonplace subcategory $C(\alpha)$ and $S^*(\alpha)$ of convex and starlike function of order $\alpha (0 \leq \alpha < 1)$, (see (Brannan, Clunie & Kirwan, 1970)). Thus, according to Taha and Brannan (Brannan & Taha, 1988), a function $f \in \Sigma$ belongs to the category $S_\Sigma^x(\alpha)$ of strongly starlike functions of the order $\alpha (0 < \alpha \leq 1)$ if the conditions below are met:

$$f \in \Sigma$$

and

$$\left| \arg \left(\frac{zg'(w)}{g(w)} \right) \right| < \frac{\alpha \pi}{2}, \quad 0 < \alpha \leq 1, \quad w \in U$$

and

$$\left| \arg \left(\frac{zf'(z)}{f(z)} \right) \right| < \frac{\alpha \pi}{2}, \quad 0 < \alpha \leq 1, \quad z \in U,$$

where g is the expansion of f^{-1} on U. The categories $C^x_\Sigma(\alpha)$ and $S_\Sigma^x(\alpha)$ of bi-convex function of order α and bi-starlike functions of the order α, comparing (individually) to the work categories $C(\alpha)$ and $S^*(\alpha)$, were moreover presented similarly. For every of the function categories $C^x_\Sigma(\alpha)$ and $S_\Sigma^x(\alpha)$, they discovered non-sharp gauges on the primary two Taylor–Maclaurin coefficients $|a_2|$ and $|a_3|$ (see (Brannan & Taha, 1988)).

Using the method of convolution on category of holomorphic functions A, Ruscheweyh (Ruscheweyh, 1975) considered the operator R as follows:

$$R^n f(z) = f(z) + \sum_{k=2}^{\infty} \sigma(n,k) a_k z^k,$$

where

$$\sigma(n,k) = \frac{\Gamma((n + k)/2)}{(n - 1)!} \Gamma((n + 1)/2).$$

The expression $R^n f(z)$ is said to be the Ruscheweyh derivative of order n of f and the sign \ast represents the Hadamard product. We can deduce that (Hussain, Khan, Zaighum, Darus, & Shareef, 2017)

$$R^n f(z) = z + \sum_{k=2}^{\infty} \sigma(n,k) a_k z^k,$$

where

$$\sigma(n,k) = \frac{\Gamma((n + k)/2)}{(n - 1)!} \Gamma((n + 1)/2).$$

The aim of this article is to define two new categories of functions in the class Σ, depending on the Ruscheweyh operator, and obtain estimates the coefficients $|a_2|$ and $|a_3|$ for all elements of these categories by using techniques that are used previously by Srivastava, Mishra, & Gochhayat. (Srivastava, Mishra, & Gochhayat, 2010), see also, (Frasin & Aouf, 2011; Xu et al., 2012).

Definition 1.1. A function f which is given by (1.1) is called in the category $H_\Sigma(n, \gamma, \alpha)$ if $f \in \Sigma$ and

$$\left| \arg \left(\frac{R^n f(z)}{f(z)} \right) + \gamma z (R^n f(z))' \right| < \frac{\pi}{n}, \quad z \in U,$$

and

$$\left| \arg \left(\frac{R^n g(w)}{g(w)} \right) + \gamma w (R^n g(w))' \right| < \frac{\pi}{n}, \quad w \in U,$$

where $n \in N_0 = N \cup \{0\}$, $\gamma > 0$, $0 < \alpha \leq 1,$

$$2(1-\alpha) \sum_{i=1}^{\infty} \frac{(-1)^{i-1}}{\gamma i + 1} \leq 1$$

and the function $g(z)$ is of the form (1.8).

Definition 1.2. A function f which is of the form (1.1) is called in the category $H_\Sigma(n, \gamma, \beta)$ if $f \in \Sigma$ and

$$\left| \arg \left(\frac{R^n f(z)}{f(z)} \right) + \gamma z (R^n f(z))' \right| > \beta, \quad z \in U,$$

and

$$\left| \arg \left(\frac{R^n g(w)}{g(w)} \right) + \gamma w (R^n g(w))' \right| > \beta, \quad w \in U.$$

In this article, we have two main results that are expressed in the form of two theorems, and to prove these results, we must remind the next lemma.

Lemma 1.3. (Pommerenke & Rapoche, 1975) Assume that h belongs to P then $|c_i| \leq 2$ for every $i \geq 1,$ in which P is the collection of all holomorphic functions h in U, $\Re(h(z)) > 0$ and

$$h(z) = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots; \quad z \in U.$$

2. BOUNDS OF THE COEFFICIENTS OF THE FUNCTION SUBCLASS $H_\Sigma(n, \gamma, \alpha)$

In this section, we obtained the estimations of the Taylor coefficients $|a_2|$ and $|a_3|$ of the functions which is belong to this category $H_\Sigma(n, \gamma, \alpha)$.

Theorem 2.1. If f is given by (1.1) is in the category $H_\Sigma(n, \gamma, \alpha)$, in which $n \in N_0$, $\gamma > 0$, $0 < \alpha < 1,$ and

$$2(1-\alpha) \sum_{i=1}^{\infty} \frac{(-1)^{i-1}}{\gamma i + 1} \leq 1.$$

then

$$|a_2| \leq \frac{2a}{\sqrt{3a(1+2\gamma)(n+1)(n+2)-(4\alpha-1)(\gamma+1)^2(n+1)^2)}},$$

and

$$|a_3| \leq \frac{4a}{(\gamma+1)^2(n+1)^2}.$$

Proof. From (1.9) and (1.10), it follows that

$$\left(R^n f(z) \right)' + \gamma z (R^n f(z))'' = [h_i(z)]^\ast; \quad z \in U.$$

(2.1)
\[R^n g(w) = \frac{a^2(c_2 + d_2)}{6a(1 + 2y)(\sigma(n, 3) - 4(\alpha - 1)(1 + y)^2(\sigma(n, 3))^2)} \]

By using lemma (1.3), we have

\[|a_2|^2 \leq \frac{3a(1 + 2y)(n + 1)(n + 2) - 4(\alpha - 1)(1 + y)^2(n + 1)^2}{4a^2} \]

or

\[|a_2|^2 \leq \frac{3a(1 + 2y)(n + 1)(n + 2) - 4(\alpha - 1)(1 + y)^2(n + 1)^2}{4a^2} \]

Hence, we get

\[|a_2|^2 \leq \frac{2a}{(1 + 2y)(n + 1)(n + 2) - 4(\alpha - 1)(1 + y)^2(\sigma(n, 3))^2} \]

Finally, we obtained the required bound for \(|a_2| \).

Next, we can obtain the bound for \(|a_3| \) by simple calculation so,

\[6(1 + 2y)\sigma(n, 3) a_3 - 6(1 + 2y)\sigma(n, 3) a_3^2 = a(c_2 - d_2) + \frac{\alpha(a^{-1})}{2} (c_1^2 - d_1^2) \]

By using (2.15) and (2.16), we obtain

\[6(1 + 2y)\sigma(n, 3) a_3 = a(c_2 - d_2) + 6(1 + 2y)\sigma(n, 3)(a_3^2) \]

Then

\[a_3 = \frac{a(c_2 - d_2) + \alpha(a^{-1})}{6(1 + 2y)\sigma(n, 3) + 4(1 + y)^2(\sigma(n, 2))^2} \]

Obtaining this bound concludes the proof of the theorem.

Putting \(y = 1 \) in Theorem 2.1, we obtain the next outcome:

Corollary 2.2. If \(f \) is given by (1.1) in the category \(H_n^2(n, 1, \alpha) \), where \(n \in \mathbb{N} \), \(a < \alpha \leq 1 \), and \(2(1 - \alpha) \sum_{n=1}^{\infty} \frac{(-1)^n}{\gamma n} \leq 1 \). Then

\[|a_2| \leq \frac{2a}{\sqrt{9a(n + 1)(n + 2) - 16(\alpha - 1)(n + 1)^2}} \]

and

\[|a_3| \leq \frac{4a}{9a(n + 1)(n + 2) + 4a^2} \]

3. Coefficient Bounds for the Function Subclass \(H_n^2(n, \gamma, \beta) \)

Here, we discussed another subclass of \(\mathcal{H}_n^2(n, \gamma, \beta) \), and we obtained the estimation of the Taylor coefficients \(|a_2| \) and \(|a_3| \) of the functions which is belong to this category.

Theorem 3.1. If \(f \) is given by (1.1) in the category \(\mathcal{H}_n^2(n, \gamma, \beta) \), where \(n \in \mathbb{N}, \gamma > 0, 0 < \beta < 1 \) and \(2(1 - \alpha) \sum_{n=1}^{\infty} \frac{(-1)^n}{\gamma n} \leq 1 \). Then

\[|a_2| \leq \sqrt{\frac{2(1 - \beta)}{8(1 + y^2)(n + 1)(n + 2)}} \]

and

\[|a_3| \leq \frac{(1 - \beta)^2}{4a^2} \]

Proof. From (1.11) and (1.12), it follows that there are two functions \(h_1 \) and \(h_2 \) in \(\mathcal{P} \) such that

\[R^n g(z) = \beta + (1 - \beta)h_1(z); z \in \mathbb{U}. \]

(3.1) and

\[\mathcal{R}^n g(w) = \frac{a^2(c_2 + d_2)}{a^2(c_2 + d_2)}. \]

Therefore,

\[(1 + (1 - \beta)h_2(w); w \in \mathbb{U}. \]

(3.2)

where \(h_1 \) and \(h_2 \) are in \(\mathcal{P} \) which have the forms (2.3) and (2.4) respectively.

So,

\[\beta + (1 - \beta)h_1(z) = 1 + (1 - \beta)\gamma w + (1 - \beta)\gamma^2 z^2 + \cdots. \]

(3.3)
and
\[\beta + (1 - \beta)h_{2}(w) = 1 + (1 - \beta)d_{1}w + (1 - \beta)d_{2}w^{2} + \ldots. \] (3.4)

Now, equating the equations (2.5) and (3.3), we get
\[1 + 2(1 + \gamma)(n, 2)a_{3}z^{2} + 3(1 + 2\gamma)(n, 3)a_{4}z^{3} + \ldots = 1 + (1 - \beta)cz_{2} + (1 - \beta)cz_{2}^{2} + \ldots. \] (3.5)

Again, equating the equations (2.7) and (3.4), we get
\[1 - 2(1 + \gamma)(n, 2)d_{1}w + 3(1 + 2\gamma)(n, 3)(2a_{4} - a_{5})w^{2} + \ldots = 1 + (1 - \beta)d_{1}w + (1 - \beta)d_{2}w^{2} + \ldots. \] (3.6)

In this step, we will equate the coefficients in (3.5) and (3.6)
\[2(1 + \gamma)(n, 2)a_{2} = (1 - \beta)c_{1}, \] (3.7)
\[3(1 + 2\gamma)(n, 3) - a_{2} = (1 - \beta)c_{2}, \] (3.8)
and
\[-2(1 + \gamma)(n, 2)a_{2} = (1 - \beta)d_{1}. \] (3.9)
\[3(1 + 2\gamma)(n, 3)(2a_{2} - a_{3}) = (1 - \beta)d_{2}. \] (3.10)

Putting (3.11) in (3.10), we get
\[c_{1} = -d_{1}. \] (3.11)
and
\[c_{2}^{2} + d_{1}^{2} = \frac{3(1 + 2\gamma)(n, 2)^{2}}{(1 - \beta)^{2}}a_{2}^{2}. \] (3.12)

By using (3.8) and (3.10), we get
\[a_{2}^{2} = \frac{(1 - \beta)(c_{2} + d_{2})}{6(1 + 2\gamma)(n, 3)}. \] (3.13)

By using lemma (1.3), we get
\[|a_{2}| \leq \frac{2\sqrt{1 - \beta}}{\sqrt{3(1 + 2\gamma)(n + 1)(n + 2)}}, \] which is the bound for \(|a_{2}|\) as given in the theorem.

To obtain the bound for \(|a_{3}|\), substituting (3.10) from (3.8), we get
\[a_{3} = a_{2}^{2} + \frac{(1 - \beta)(c_{2} - d_{2})}{6(1 + 2\gamma)(n, 3)}. \]

Now, using (3.11) and (3.12)
\[a_{3} = \frac{(1 - \beta)^{2}c_{2}^{2} + (1 - \beta)(c_{2} - d_{2})}{4(1 + \gamma)^{2}(n, 2)^{2} + 6(1 + 2\gamma)(n, 3)}. \]

Applying lemma (1.3), we get
\[|a_{3}| \leq \frac{1 - \beta}{2} \frac{(1 + \gamma)^{2}(n + 1)^{2}}{2} + \frac{4(1 - \beta)}{3(1 + \gamma)(n + 1)(n + 2)}. \]

which is the bound for \(|a_{3}|\) as mentioned in the text of the theorem. ■

Putting \(\gamma = 1\) in the Theorem 3.1, we obtain the next outcome:

Corollary 3.2. If \(f\) is given by (1.1) in the category \(H_{\infty}(n, 1, 0, \beta)\), where \(n \in N_{0}, 0 \leq \beta < 1\) and \((2 - \beta)\sum_{i=1}^{n-3} \frac{i^{i-1}}{i+1} \leq 1\). Then
\[|a_{2}| \leq \frac{2\sqrt{1 - \beta}}{3 \sqrt{(n + 1)(n + 2)}}, \]
and\[|a_{3}| \leq \frac{(1 - \beta)^{2}}{4(n + 1)^{2}} + \frac{4(1 - \beta)}{9(n + 1)(n + 2)}. \][star]

4. CONCLUSION

In this article, our investigation is due to the fact that we can find interesting and useful applications of special functions and especially bi-univalent functions. The new bi-univalent function subclasses \(H_{\infty}(n, \gamma, \alpha)\) and \(H_{\infty}(n, \gamma, \beta)\) in the open disk \(U\), was examined in this paper. We discovered the coefficients of \(|a_{2}|\) and \(|a_{3}|\) in the Taylor series of them. Additionally, we discovered some corollaries and implications of the primary findings. Furthermore, the provided bounds improve and extend some previous results.

5. ACKNOWLEDGMENT

The authors like to convey their gratitude and appreciation to the arbitrators who read this article and participated in the development of it.

REFERENCES

Netanyahu, E. (1969). The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in \(\mathbb{C}\). Archive for rational mechanics and analysis, 32(2), 100-112.

