ON $\mathbf{S}_{\mathbf{P}}$-CONNECTED SPACES

Alias Barakat Khalaf* and Hardi Ali Shareef**
*Dept. of Mathematics, College of Science, University of Duhok, Kurdistan-Region, Iraq
${ }^{* *}$ Dept. of Mathematics, Faculty of Science and Science Education, University of Sulaimani, Kurdistan-Region, Iraq

(Accepted for publication: June 9, 2013)

Abstract

In this paper we introduce a new concept of connectedness namely \mathbf{S}_{p}-connected space. This class of spaces is strictly between semi-connectedness and connectedness. Several properties and characterizations of this concept are found.

Keyword: semi-open sets, preclosed sets, semi-connected spaces, S_{p}-connected spaces.

1. INTRODUCTION

Asemi-open set was defined by Levine in [Levine, 1963] while Pipitone and Russo in [Pipitone et. al., 1975] used this set to introduced s-connectedness or semiconnectedness. By using the concept of preopen sets which introduced in [Mashhour et al, 1982], Popa defined the p-connected or preconnected [Popa, 1987]. Shareef in [Shareef, 2007] defined a new type of open sets called S_{p}-open sets .
Throughout this paper X and Y will always denote topological spaces on which no separation axioms are assumed unless explicitly stated. If U is a subset of X, then the closure of U and interior of U are denoted by $\operatorname{cl}(U)$ and $\operatorname{int}(U)$ respectively. The symbol $f: X \rightarrow Y$ represent a function from a space X into a space Y. Semiclosure of a set in any space was introduced by Crossley, and Hildebrand in [Crossley et. Al., 1971] which is the intersection of all semi-closed sets containing this set and denoted by scl, on the other hand S_{p}-closure in [Shareef, 2007] is defined by the intersection of all S_{p}-closed sets which contain it and denoted by $\mathrm{S}_{\mathrm{p}} \mathrm{cl}$.

2. Preliminaries

In this section, we give definitions and results which are used in the next section.

Definition 2.1:

A subset A of a space X is said to be semiopen [Levine, 1963] (resp. preopen [Mashhour et. al., 1982], regular open, regular closed [Steen, 1970], β-open [Abd-El-Monsef, 1983], α-open [Njastad, 1965], δ-semiopen [Ekici, 2008] and γ-open [El-Atik, 1997] (equiv. spopen [Dontchev, 1998] or b-open [Andrijevic, 1996])) set if $A \subseteq \operatorname{cl}(\operatorname{int}(A)) \quad($ resp. $A \subseteq$ $\operatorname{int}(\operatorname{cl}(A)), \quad A=\operatorname{int}(\operatorname{cl}(A)), \quad A=\operatorname{cl}(\operatorname{int}(A))$, $A \subseteq \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A))), \quad A \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$,

$\operatorname{int}(\operatorname{cl}(A)))$. A semi-open set A of a space X is said to be S_{p}-open set if for each $x \in A$, there exists a preclosed set F such that $x \in F \subseteq A$ [Mohammed, 2005].

The complement of semi-open (resp. preopen, β-open, α-open, δ-semiopen and γ-open (equiv. sp-open or b-open)) set in X is called semi-closed (resp. preclosed, β-closed, α-closed, δ semiclosed, γ-closed (equiv. sp-closed or bclosed). The complement of S_{p}-open set is called S_{p}-closed sets and their families are denoted by $\mathrm{S}_{\mathrm{p}} \mathrm{O}(X)$ and $\mathrm{S}_{\mathrm{p}} \mathrm{C}(X)$ while the families of semiopen, preopen, α-open, β-open, γ-open, and δ semiopen sets are denoted by $\mathrm{SO}(X), \mathrm{PO}(X)$, $\alpha \mathrm{O}(X), \beta \mathrm{O}(X), \gamma \mathrm{O}(X)$ and $\delta \mathrm{SO}(X)$.
Lemma 2.2:Let Y be an open subspace of X. If F is a preclosed subset in a space X, then $F \cap Y$ is preclosed in Y.
Proof: Obvious.
Lemma 2.3: [Donchev, 1998] Let X be any space. If A is semi-open set in X and B is preopen set in X, then $A \cap B$ is semi-open set in B.

Lemma 2.4: [Shareef, 2007] Let Y be a regular closed subspace of the space X. If A is an S_{p} open subset of Y, then A is S_{p}-open set in X.
Proposition 2.5: [Shareef, 2007] Let A, B be two subsets of a space X, then:

1. $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(A)$ is the smallest S_{p}-closed set which contains A.
2. A is S_{p}-closed if and only if $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(A)=A$.
3. $\operatorname{scl}(A) \subseteq \mathrm{S}_{\mathrm{p}} \mathrm{cl}(A)$.
4. If $A \subseteq B$, then $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(A) \subseteq \mathrm{S}_{\mathrm{p}} \mathrm{cl}(B)$.

Definition 2.6: [Sarker, 1985] Two non-empty subsets A and B of a space X are said to be semiseparated sets if $A \cap \operatorname{scl}(B)=\emptyset$ and $\operatorname{scl}(A) \cap$ $B=\emptyset$.
Remark 2.7: [Pipione, 1975] If B is the closure of an open set in a space X, then B and $X \backslash B$ are both semi-open sets in X.

Lemma 2.8: [Shareef, 2007] If A is a semi-open set in a space X, then $\operatorname{cl}(A)$ is S_{p}-open subset of X.
Definition 2.9: [Dontchev, 1998] A space X is said to be locally indiscrete if every open subset of X is closed.
Theorem 2.10: [Dontchev, 1998] For a space X the following conditions are equivalent:

1. X is locally indiscrete.
2. Every subset of X is preopen.
3. Every singleton in X is preopen.
4. Every closed subset of X is preopen.

Definition 2.11: [Sharma, 2011] A space X is said to be T_{1}-space if for each two distinct points x and y in X there exists two open sets U and V in X containing x and y, respectively, such that $y \notin U$ and $\quad x \notin V$.
Proposition 2.12: If a space X is T_{1}-space, then $\mathrm{S}_{\mathrm{p}} \mathrm{O}(X)=\mathrm{SO}(\mathrm{X})$.
Proof: Obvious.
Theorem 2.13: [Khalaf, 2012] A space X is $S_{p^{-}}$ T_{2} if and only if for each pair of distinct points $x, y \in X$, there exists a set U which is both $\mathrm{S}_{\mathrm{p}}{ }^{-}$ open and S_{p}-closed containing one of them but not the other.
Lemma 2.14: [Pipitone, 1975] Let A be a subset of a space X, then A is semi-open set if and only if there exists an open set $G \subseteq A$ such that $\operatorname{cl}(A)=\operatorname{cl}(G)$.
Definition 2.15: A space X is said to be semiconnected [Sarker, 1985], if it cannot be expressed as the union of two semi-separated sets.
Equivalently, X is said to be semi-connected [Pipitone, 1975], if it cannot be written as a union of two non-empty disjoint semi-open sets. Otherwise we say that X is semi-disconnected.
Definition 2.16: A space X is said to be β connected [Jafari, 2003] (resp., γ-connected [Duszynski, 2011], preconnected [Jafari, 2003], connected [Sharma, 2011] and δ-semiconnected [Ekici, 2008]) if X cannot be expressed as the union of two non-empty disjoint β-open (resp., γ-open, preopen, open and δ-semiopen) sets of X.
Lemma 2.17: [Ekici, 2008] For a space X, the following properties are equivalent:

1. $\operatorname{cl}(V)=X$ for every nonempty open set V of X,
2. $U \cap V \neq \emptyset$ for any nonempty semi-open sets U and V of X,
3. X is semi-connected,
4. X is δ-semiconnected.

Definition 2.18: [Noiri, 1980] A space X is said to be extremally disconnected space if the closure of each open set in X is open.
Corollary 2.19: [Shareef, 2007] If a space X is extremally disconnected, then every S_{p}-open subset of X is preopen subsets of X.
Definition 2.20: [Jafari, 2003] A space X is said to be $P S$-space if every preopen set in X is semiopen in X.
Corollary 2.21: [Jafari, 2003] If X is extremally disconnected $P S$-space, then β-connectedness, preconnectedness, semi-connectedness and connectedness are all equivalent.
Theorem 2.22: [Sharma, 2011] A space X is disconnected if and only if X is the union of two non-empty disjoint open sets.
Theorem 2.23: [Sharma, 2011] A space X is disconnected if and only if there exists a nonempty proper subset of X which is both open and closed.

The following definitions and results are from [Duszynski, 2011].
Lemma 2.24: If a space X is γ-connected, then it is β-connected.

A space X is said to be B-SP-connected (resp., P-SP-connected) if X cannot be written as a union of two non-empty disjoint sets S_{1}, S_{2} of X such that $S_{1} \in \mathrm{BO}(\mathrm{X}), \mathrm{S}_{2} \in \beta \mathrm{O}(\mathrm{X})$ (resp., $\mathrm{S}_{1} \in \mathrm{PO}(\mathrm{X}), \mathrm{S}_{2} \in \beta \mathrm{O}(\mathrm{X})$) . A space X is said to $\boldsymbol{\alpha}$-B-connected (resp., $\boldsymbol{\alpha}$-SPconnected, $\boldsymbol{\alpha}$-S-connected) if X cannot be expressed as a union of two non-empty disjoint sets $S_{1} ; S_{2} \subset X$ such that $S_{1} \in \alpha O(X)$ and S_{2} $\in \mathrm{BO}(\mathrm{X})$ (resp., $\mathrm{S}_{2} \in \beta \mathrm{O}(\mathrm{X}), \mathrm{S}_{2} \in \mathrm{SO}(\mathrm{X})$).
Theorem 2.25: For every space X the following are equivalent:

1. X is β-connected space.
2. X is $B-S P$-connected space.
3. X is $P-S P$-connected space.

Theorem 2.26: For every space X the following are equivalent:

1. X is semi-connected space.
2. X is $\alpha-S$-connected space.
3. X is $\alpha-S P$-connected space.
4. X is $\alpha-B$-connected space.

Corollary 2.27: [Duszynski, 2006] Connectedness and α - P-connectedness are equivalent notion for every space X.
Definition 2.28: A function $f: X \rightarrow Y$ is said to be S_{p}-continuous [Shareef, 2007] (resp. continuous [Sharma, 2011], irresolute [Crossley, 1972], s-continuous or (strongly semicontinuous) [Muhammed, 2005]) if the inverse image of every open (resp. open, semi-open,
semi-open) set in Y is S_{p}-open (resp. open, semiopen, open) set in X.
Theorem 2.29: [Shareef, 2007] The following statements are equivalents for the function $f: X \rightarrow Y$:
(1) $f: X \rightarrow Y$ is S_{p}-continuous.
(2) The inverse image of every closed set in Y is S_{p}-closed set in X.
Theorem 2.30: [Sharma, 2011] A function $f: X \rightarrow Y$ is continuous if and only if the inverse image of every closed set in Y is closed in X.

3. S_{p}-Connected Space

Definition 3.1: Two non-empty subsets A and B of X are said to be S_{p}-separated sets if $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(A) \cap$ $B=\emptyset$ and $A \cap \mathrm{~S}_{\mathrm{p}} \mathrm{cl}(B)=\varnothing$.
Example 3.2: Let $X=\{a, b, c\}$ and $\tau=$ $\{\varnothing, X,\{a\},\{b\},\{a, b\}\}$. Then $\{a\}$ and $\{b\}$ are $S_{p^{-}}$ separated sets in X because $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(\{a\}) \cap\{b\}=$ $\{a\} \cap\{b\}=\varnothing \quad$ and $\quad\{a\} \cap \mathrm{S}_{\mathrm{p}} \mathrm{cl}(\{b\})=\{a\} \cap$ $\{b\}=\emptyset$.
Proposition 3.3: Let Y be an open subspace of a space X and $A \in \mathrm{~S}_{\mathrm{p}} \mathrm{O}(X)$. Then $A \cap Y \in \mathrm{~S}_{\mathrm{p}} \mathrm{O}(Y)$.
Proof: Let Y be an open subspace of a space X and $A \in \mathrm{~S}_{\mathrm{p}} \mathrm{O}(X)$. Then $A \in \mathrm{SO}(X)$ and $A=$ $\mathrm{U}_{\alpha \in I} F_{\alpha}$, where $F_{\alpha} \in \mathrm{PC}(X)$ for each $\alpha \in I$. Now since Y is preopen set in X and A is semi-open set in X so by [Lemma 2.3] $A \cap Y \in \mathrm{SO}(Y)$ and $A \cap Y=\left(\mathrm{U}_{\alpha \in I} F_{\alpha}\right) \cap Y=\mathrm{U}_{\alpha \in I}\left(F_{\alpha} \cap Y\right)$, but by [Lemma 2.2] $F_{\alpha} \cap Y \in \mathrm{PC}(Y)$ for each $\alpha \in I$; therefore $A \cap Y \in \mathrm{~S}_{\mathrm{p}} \mathrm{O}(Y)$.
Lemma 3.4: Let Y be an open subspace of a space X and $A \subseteq Y$, then $\mathrm{S}_{\mathrm{p}} \mathrm{cl}_{Y}(A) \subseteq \mathrm{S}_{\mathrm{p}} \operatorname{cl}(A)$ where $\mathrm{S}_{\mathrm{p}} \mathrm{cl}_{Y}$ denote the S_{p}-closure relative to the subspace Y.
Proof: Let $x \notin \mathrm{~S}_{\mathrm{p}} \mathrm{cl}(A)$ implies that there exists an S_{p}-open set U containing x such that $U \cap A=$ \emptyset. Then $U \cap Y \cap A=\emptyset$, let $G=U \cap Y$. Since $U \in \mathrm{~S}_{\mathrm{p}} \mathrm{O}(X)$ and Y is open in X so by [Lemma 3.3] $G=U \cap Y \in \mathrm{~S}_{\mathrm{p}} \mathrm{O}(Y)$; therefore $G \cap A=\varnothing$ implies that $x \notin \mathrm{~S}_{\mathrm{p}} \mathrm{cl}_{Y}(A)$, hence $\mathrm{S}_{\mathrm{p}} \mathrm{cl}_{Y}(A) \subseteq$ $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(A)$.
Lemma 3.5: Let Y be a regular closed subspace of a space X and $A \subseteq Y$. Then $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(A) \subseteq$ $\mathrm{S}_{\mathrm{p}} \mathrm{cl}_{Y}(A)$.
Proof: Let $x \notin \mathrm{~S}_{\mathrm{p}} \mathrm{cl}_{Y}(A)$ implies that there exists an S_{p}-open set U in Y containing x such that $U \cap A=\emptyset$. Since Y is regular closed set in X then by [Lemma 2.4] U is S_{p}-open set in X implies that $x \notin \mathrm{~S}_{\mathrm{p}} \mathrm{cl}(A)$, so $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(A) \subseteq \mathrm{S}_{\mathrm{p}} \mathrm{cl}_{Y}(A)$.
Theorem 3.6: Let $\left(Y, \tau_{Y}\right)$ be an open subspace of a space (X, τ) and let $A, B \subseteq Y$. If A and B are S_{p}-separated sets in X, then A and B are $\tau_{Y}-\mathrm{S}_{\mathrm{p}}{ }^{-}$ separated sets.

Proof: Let A and B be two τ - S_{p}-separated sets implies that $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(A) \cap B=\emptyset$ and $A \cap \mathrm{~S}_{\mathrm{p}} \mathrm{cl}(B)=$ \emptyset. But since Y is open subspace of X so by [Lemma 3.4], $\quad \mathrm{S}_{\mathrm{p}} \mathrm{cl}_{Y}(A) \subseteq \quad \mathrm{S}_{\mathrm{p}} \mathrm{cl}(A) \quad$ and $\mathrm{S}_{\mathrm{p}} \mathrm{cl}_{Y}(B) \subseteq \mathrm{S}_{\mathrm{p}} \mathrm{cl}(B)$ implies that $\mathrm{S}_{\mathrm{p}} \mathrm{cl}_{Y}(A) \cap B=$ \emptyset and $A \cap \mathrm{~S}_{\mathrm{p}} \mathrm{cl}_{Y}(B)=\emptyset$. Thus A and B are $\tau_{Y}-\mathrm{S}_{\mathrm{p}}$ separated sets in Y.
Theorem 3.7: Let Y be a regular closed subset of a space (X, τ) and $A, B \subseteq Y$. If A and B are $\tau_{Y}-\mathrm{S}_{\mathrm{p}}$-separated sets in Y, then they are τ - S_{p} separated sets in X.
Proof: Let A and B be $\tau_{Y}-S_{\mathrm{p}}$-separated sets in Y. Then $\mathrm{S}_{\mathrm{p}} \mathrm{cl}_{Y}(A) \cap B=\emptyset$ and $A \cap \mathrm{~S}_{\mathrm{p}} \mathrm{cl}_{Y}(B)=\emptyset$. Since Y is regular closed subspace of X, so by $\left[\begin{array}{ll}\text { Lemma } & \text { 3.5], }\end{array} \mathrm{S}_{\mathrm{p}} \mathrm{cl}(A) \subseteq \mathrm{S}_{\mathrm{p}} \mathrm{cl}_{Y}(A) \quad\right.$ and $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(B) \subseteq \mathrm{S}_{\mathrm{p}} \mathrm{cl}_{Y}(B)$ this implies that $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(A) \cap$ $B=\emptyset$ and $A \cap \mathrm{~S}_{\mathrm{p}} \mathrm{cl}(B)=\emptyset$. Thus A and B are τ - S_{p}-separated sets in X.
Proposition 3.8: Two S_{p}-closed (S_{p}-open) subsets of a space X are S_{p}-separated if and only if they are disjoint.
Proof: Necessity. Let A and B be two disjoint S_{p}-closed sets in X. Then $A \cap B=\emptyset$ and since they are S_{p}-closed sets in X so by [Proposition 2.5], $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(A)=A$ also $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(B)=B$ this implies that $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(A) \cap B=\emptyset$ and $A \cap \mathrm{~S}_{\mathrm{p}} \mathrm{cl}(B)=\emptyset$. Thus A and B are S_{p}-separated sets.
Sufficiency: Obvious.
Definition 3.9: A space X is said to be S_{p} connected space if it cannot be expressed as a union of two non-empty proper S_{p}-separated sets of X.
Proposition 3.10: Every semi-connected space is S_{p}-connected.
Proof: Let X be semi-connected space. Then X cannot be expressed as a union of two semi-separated sets, to show X is S_{p}-connected space if possible suppose that X is not S_{p}-connected, then there exists two S_{p}-separated sets A and B such that $X=A \cup B$. Now $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(A) \cap B=\varnothing$ and $A \cap \mathrm{~S}_{\mathrm{p}} \mathrm{cl}(B)=\emptyset$, then by [Proposition 2.5], $\quad \operatorname{scl}(A) \cap B=\varnothing \quad$ and $A \cap \operatorname{scl}(B)=\emptyset$ this implies that by [Definition 2.15], A and B are semi-separated sets. Therefore, X can be written as a union of semiseparated sets this implies that X is semiconnected which is a contradiction. Thus X is S_{p}-connected space.

The converse of [Proposition 3.10] is not true in general as it is shown in the following example:
Example 3.11: Let $X=\{a, b, c\}$ and $\tau=$ $\{\emptyset, X,\{a\},\{b\},[a, b\}\}$. Then X is S_{p}-connected space but it is not semi-connected since
$X=\{a\} \cup\{b, c\}$, where $\{a\}$ and $\{b, c\}$ are semiseparated sets.
Corollary 3.12: Every β-connected space is $\mathrm{S}_{\mathrm{p}^{-}}$ connected.
Proof: Follows from [Definition 2.16] and [Proposition 3.10].
Theorem 3.13: A space X is S_{p}-connected if and only if there is no non-empty proper subset of X which is both S_{p}-open and S_{p}-closed.
Proof: Let X be S_{p}-connected space and there exists a non-empty proper subset A of X which is both S_{p}-open and S_{p}-closed. Then $B=X \backslash A$ is also non-empty S_{p}-open and S_{p}-closed, but $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(A) \cap B=A \cap B=\varnothing \quad$ and $\quad A \cap \mathrm{~S}_{\mathrm{p}} \mathrm{cl}(B)=$ $A \cap B=\emptyset$ this implies that A and B are $\mathrm{S}_{\mathrm{p}^{-}}$ separated set and $X=A \cup B$, then X is not $\mathrm{S}_{\mathrm{p}^{-}}$ connected space which is a contradiction. Thus there is no non-empty proper subset of X which is both S_{p}-open and S_{p}-closed.

Conversely: Let the hypothesis be satisfied, to show X is S_{p}-connected space. If possible suppose that X is not S_{p}-connected space, then there exists S_{p}-separated sets A and B such that $X=A \cup B$. Since $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(A) \cap B=\emptyset$ implies that $A \cap B=\emptyset$, then $A=X \backslash B$ and now $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(A) \subseteq$ $X \backslash B=A$ so A is S_{p}-closed set, and since $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(B) \cap A=\emptyset$ then $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(B) \subseteq X \backslash A=B$ this implies that B is $\quad \mathrm{S}_{\mathrm{p}}$-closed set. Now $X \backslash B$ is S_{p}-open set, but $A=X \backslash B$; therefore A is a non-empty proper subset of X which is both $\mathrm{S}_{\mathrm{p}}{ }^{-}$ open and S_{p}-closed that is a contradiction. Hence X must be S_{p}-connected space.
Corollary 3.14: A space X is S_{p}-connected if and only if the only subsets of X which are both S_{p}-open and S_{p}-closed sets are \emptyset and X.

Proof: Follows from [Theorem 3.13].

Proposition 3.15: A space X is S_{p}-connected if and only if X cannot be expressed as the union of two non-empty disjoint S_{p}-open sets.
Proof: Let X be S_{p}-connected space and if possible suppose that X there exists two disjoint non-empty S_{p}-open sets A and B such that $X=A \cup B$. Then by [Proposition 3.8], A and B are $\quad \mathrm{S}_{\mathrm{p}}$-separated sets this implies that X is not S_{p}-connected space which is a contradiction. Thus X cannot be expressed as the union of two non-empty disjoint S_{p}-open sets.

Conversely: Let the hypothesis be satisfied and if possible suppose that X is not $\mathrm{S}_{\mathrm{p}^{-}}$ connected. Then there exist two S_{p}-separated sets A and B such that $X=A \cup B$, now since $\mathrm{S}_{\mathrm{p}} \operatorname{cl}(A) \cap B=\emptyset$ implies that $A \cap B=\emptyset$, but $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(A) \subseteq X \backslash B=A$ this implies that A is $\mathrm{S}_{\mathrm{p}}{ }^{-}$
closed set and by the same way B is also S_{p} closed set, and then A and B are also S_{p}-open sets implies that A and B are disjoint non-empty S_{p} open sets such that $X=A \cup B$ which is a contradiction. Thus X must be S_{p}-connected space.
Corollary 3.16: If a space X is S_{p}-connected $\mathrm{T}_{1^{-}}$ space, then it is semi-connected.
Proof: Let X be an S_{p}-connected T_{1}-space, then by [Theorem 3.15], X cannot expressed as the union of two non-empty disjoint S_{p}-open sets and since X is T_{1}-space, so by [Proposition 2.12] X cannot expressed as the union of two non-empty disjoint semi-open sets. This implies that X is a semi-connected space.
Remark 3.17: A space X is S_{p}-connected if and only if it cannot be written as a union of two non-empty disjoint S_{p}-closed sets.

The property of S_{p}-connectedness is not hereditary as shown by the following example:
Example 3.18:- Let $X=\{a, b, c, d\} \quad$ and $\tau=\{\varnothing, X,\{a\},\{a, b\},\{a, c\},\{a, b, c\}\}$. Then $S_{\mathrm{p}} \mathrm{O}(X)=\{\emptyset, X\}$, so the only non-empty subset of X which is both S_{p}-open and S_{p}-closed is X itself, therefore by [Corollary 3.14], X is S_{p} connected space. Now let $Y=\{b, c\}$, then $\tau_{Y}=\{\emptyset, Y,\{b\},\{c\}\}$ and $\mathrm{S}_{\mathrm{p}} \mathrm{O}(Y)=\tau_{Y}$ implies that Y can be expressed as the union of two nonempty disjoint S_{p}-open sets in Y. Thus Y is not S_{p}-connected subspace.
Theorem 3.19: Let A be S_{p}-connected set in X and C, D be S_{p}-separated sets of X such that $A \subseteq C \cup D$. Then either $A \subseteq C$ or $A \subseteq D$.
Proof: Let A be S_{p}-connected set in X and C, D be S_{p}-separated sets of X such that $A \subseteq C \cup D$ and let $A \nsubseteq C$ and $A \nsubseteq D$. Now Suppose that $A \cap C \neq \varnothing$ and $A \cap D \neq \varnothing$, since $A \cap(C \cup D)=$ A implies that $A=(A \cap C) \cup(A \cap D)$. But since C and D are S_{p}-separated sets so $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(C) \cap D=$ \emptyset and $C \cap \mathrm{~S}_{\mathrm{p}} \mathrm{cl}(D)=\emptyset$. Now $(A \cap C) \cap \mathrm{S}_{\mathrm{p}} \mathrm{cl}(A \cap$ $D) \subseteq(A \cap C) \cap \mathrm{S}_{\mathrm{p}} \mathrm{cl}(D)=A \cap\left(C \cap \mathrm{~S}_{\mathrm{p}} \mathrm{cl}(D)\right)=$ \emptyset this implies that $(A \cap C) \cap S_{\mathrm{p}} \mathrm{cl}(A \cap D)=\varnothing$. By the same way we can get $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(A \cap C) \cap$ $(A \cap D)=\emptyset$, so $A \cap C$ and $A \cap D$ are S_{p} separated sets such that $A=(A \cap C) \cup(A \cap D)$ this implies that A is not S_{p}-connected set which is a contradiction. Thus either $A \subseteq C$ or $A \subseteq D$.
Theorem 3.20: Let X be a space such that any two elements x and y in X are contained in an S_{p}-connected subspace of X, then X is S_{p} connected.
Proof: Suppose that X is not S_{p}-connected space, then X is the union of two non-empty S_{p} separated sets A and B. Now since A and B are
non-empty sets, so there exists $a \in A$ and $b \in B$ this implies that by hypothesis a and b are contained in some S_{p}-connected subspace Y of X, but $X=A \cup B$ implies that $Y \subseteq A \cup B$ and then by [Theorem 3.19], either $Y \subseteq A$ or $Y \subseteq B$ this implies that either a, b are both in A or are both in B which is a contradiction. Hence X must be S_{p}-connected space.
Proposition 3.21: If U is an S_{p}-connected set in a space X, then $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(U)$ is also S_{p}-connected set in X.
Proof: Let U be S_{p}-connected set in a space X and $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(U)$ not S_{p}-connected in X. Then there exists two S_{p}-separated sets A and B in X such that $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(U)=A \cup B$, but $U \subseteq \mathrm{~S}_{\mathrm{p}} \mathrm{cl}(U)$ implies that $U \subseteq A \cup B$ and since U is S_{p}-connected set in X so by [Theorem 3.19] either $U \subseteq A$ or $U \subseteq B$. Now if $U \subseteq A$, then by [Proposition 2.5] $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(U) \subseteq \mathrm{S}_{\mathrm{p}} \mathrm{cl}(A)$ and since $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(A) \cap B=\varnothing$ implies that $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(U) \cap B=B=\varnothing$ which is a contradiction. And if $U \subseteq B$, then by [Proposition 2.5] $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(U) \subseteq \mathrm{S}_{\mathrm{p}} \mathrm{cl}(B)$ and $A \cap \mathrm{~S}_{\mathrm{p}} \mathrm{cl}(B)=\emptyset$ implies that $A \cap \mathrm{~S}_{\mathrm{p}} \mathrm{cl}(U)=A=$ \emptyset which is a contradiction. Then in both cases we get a contradiction. Hence $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(U)$ is an $\mathrm{S}_{\mathrm{p}}{ }^{-}$ connected set in X.
Theorem 3.22: Let U and V be two subsets of a space X. If U is S_{p}-connected in X such that $U \subseteq V \subseteq \mathrm{~S}_{\mathrm{p}} \mathrm{cl}(U)$, then V is also S_{p}-connected set in X.
Proof: Let V be not S_{p}-connected set in X. Then there exists two S_{p}-separated sets A and B such that $V=A \cup B$, since $U \subseteq V$ this implies that $U \subseteq A \cup B$ and since U is S_{p}-connected set in X so by [Theorem 3.19] either $U \subseteq A$ or $U \subseteq B$. If $U \subseteq A$, then by [Proposition 2.5] $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(U) \subseteq$ $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(A)$ and since A and B are S_{p}-separated sets so $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(U) \cap B=\emptyset$, but $A \cup B=V \subseteq \mathrm{~S}_{\mathrm{p}} \mathrm{cl}(U)$ this implies that $V \cap B=B=\varnothing$ which is a contradiction. By the same way if $U \subseteq B$ we get a contradiction. Thus V must be S_{p}-connected set in X.
Proposition 3.23: If for every non-empty $\mathrm{S}_{\mathrm{p}}{ }^{-}$ open subset U of a space $X, \mathrm{~S}_{\mathrm{p}} \mathrm{cl}(U)=X$, then X is S_{p}-connected.
Proof: Suppose that X is not S_{p}-connected space. Then by [Proposition 3.15] there exists two non-empty disjoint S_{p}-open sets U and V such that $X=U \cup V$, now since $U \cap V=\emptyset$ this implies that $U=X \backslash V$ and $V=X \backslash U$ and then they are also non-empty S_{p}-closed sets in X; therefore by [Proposition 2.5] $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(U)=U \neq X$ and $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(V)=V \neq X$ which is a contradiction to the hypothesis. Thus X is S_{p}-connected .

Remark 3.24: Let X be a δ-semi-connected space, then by [Lemma 2.17], X is semiconnected space and by [Proposition 3.10], X is S_{p}-connected space.
Proposition 3.25: If a space X is extremally disconnected (or locally indiscrete) preconnected space, then X is S_{p}-connected.
Proof: Suppose that X is not S_{p}-connected space this implies that by [Proposition 3.15], there exist two non-empty disjoint S_{p}-open sets U and V such that $X=U \cup V$. Since X is extremally disconnected (locally indiscrete) space so by [Corollary 2.19] or([Theorem 2.10]), U and V are preopen sets in X this implies that by [Definition 2.16], X is not preconnected which is a contradiction. Thus X must be S_{p}-connected space.
Corollary 3.26: Let X be extremally disconnected $P S$-space. If X is preconnected (resp. connected) space, then X is S_{p}-connected.
Proof: Follows from [Proposition 3.25] and [Corollary 2.21].
Theorem 3.27: If a space X is disconnected, then X is not S_{p}-connected space.
Proof: Let X be disconnected space. Then by [Theorem 2.23] there exists a non-empty proper subset U of X which is both open and closed, and then $X \backslash U$ is open and closed set in X. But every clopen set is S_{p}-open set and $X=U \cup(X \backslash U)$ this implies that X is written as the union of two non-empty disjoint S_{p}-open sets so by [Proposition 3.15], X is not S_{p}-connected space.
From the above theorem we get the following result.
Corollary 3.28: Every S_{p}-connected space is connected.
Lemma 3.29: Any $S_{p}-T_{2}$ space which contains at least two distinct points is not S_{p}-connected space.
Proof: Let X be $S_{p}-T_{2}$ space contains at least two distinct points. Then by [Theorem 2.13] there exists an S_{p}-clopen set U containing one of them but not the other this implies that X contains a non-empty proper set which is both S_{p}-open and S_{p}-closed set; therefore by [Theorem 3.13] X is not S_{p}-connected space.
Theorem 3.30: For a locally indiscrete space X the following statements are equivalent:

1. X is S_{p}-connected space.
2. $\quad \mathrm{S}_{\mathrm{p}} \mathrm{cl}(U)=X$, for every non-empty S_{p}-open set U in X.
3. $U \cap V \neq \emptyset$, for any two non-empty S_{p}-open subsets U and V of X.
Proof: (1) \rightarrow (2)

Let X be S_{p}-connected space and let there exists an non-empty S_{p}-open set U in X such that $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(U) \neq X$. Then there exists $y \in X$ such that $y \notin \mathrm{~S}_{\mathrm{p}} \mathrm{cl}(U)$ this implies that there exists an $\mathrm{S}_{\mathrm{p}}-$ open set V containing y such that $U \cap V \neq \varnothing$, and since U is semi-open set so by [Lemma 2.14] there exists an open set $G \subseteq U$ in X such that $\operatorname{cl}(G)=\operatorname{cl}(U)$ and $G \subseteq U$ so by [Remark 2.7] $\mathrm{cl}(U)$ and $X \backslash \operatorname{cl}(U)$ are semi-open sets in X. Now by [Lemma 2.8] $\operatorname{cl}(U)$ is S_{p}-open set also by [Theorem 2.10] $\operatorname{cl}(U)$ is preopen set this implies that $X \backslash \operatorname{cl}(U) \neq \varnothing$ is semi-open and preclosed set in X; therefore $X \backslash \operatorname{cl}(U)$ is S_{p}-open set. But $X=\operatorname{cl}(U) \cup(X \backslash \operatorname{cl}(U))$ and $\operatorname{cl}(U) \cap$ $(X \backslash \operatorname{cl}(U))=\varnothing$ this implies that X is the union of two non-empty disjoint S_{p}-open sets, then by [Proposition 3.15] X is not S_{p}-connected which is a contradiction. Thus the condition (2) must be satisfied.
(2) \rightarrow (1)

Follows from [Proposition 3.23].
(2) \rightarrow (3)

Suppose that there exists two non-empty S_{p} open sets U and V in X such that $U \cap V=\varnothing$. Since $U \neq \varnothing$ and $V \neq \varnothing$ so $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(U) \neq X$ this contradicts condition (2). Thus $U \cap V \neq \emptyset$, for any two non-empty S_{p}-open subsets U and V of X.
(3) \rightarrow (2)

Suppose that there exists a non-empty S_{p} open set U such that $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(U) \neq X$. Then there exists $y \in X$ such that $y \notin \mathrm{~S}_{\mathrm{p}} \mathrm{cl}(U)$, so there exists an S_{p}-open set V containing y such that $U \cap V=\emptyset$ which contradicts condition (3). Hence the proof is complete.
Corollary 3.31: Every γ-connected space is S_{p} connected.
Proof: Follows from [Lemma 2.24] and [Corollary 3.12].
Corollary 3.32: Every $B-S P$-connected (resp. P $S P$-connected) space is S_{p}-connected.
Proof: Follows from [Theorem 2.25] and [Corollary 3.12].
Corollary 3.33: Every $\alpha-S$-connected (resp. α $S P$-connected, α - B-connected) space is S_{p}-connected space.
Proof: Follows from [Theorem 2.26] and [Proposition 3.10].
Corollary 3.34: Every S_{p}-connected space is α -P-connected.
Proof: Let X be S_{p}-connected space. Then by [Corollary 3.28] X is connected and by [Corollary 2.27] X is $\alpha-P$-connected.

Proposition 3.35: If Y is a regular closed subspace of a locally indiscrete S_{p}-connected space X, then Y is S_{p}-connected subspace.
Proof: Let Y be a regular closed subspace of a locally indiscrete S_{p}-connected space. To show Y is S_{p}-connected subspace, let U be a non-empty S_{p}-open set in Y, since Y is regular closed in X then by [Lemma 2.4], U is S_{p}-open in X and since X is locally indiscrete S_{p}-connected space so by [Theorem 3.30], $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(U)=X$. But Y is regular closed in X, then by [Lemma 3.5], $\mathrm{S}_{\mathrm{p}} \mathrm{cl}_{Y}(U)=X$ this implies that by [Theorem 3.30] Y is S_{p}-connected subspace.

Theorem 3.36: A space X is S_{p}-connected if there exists a locally indiscrete S_{p}-connected subspace such that Y is open and $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(Y)=X$
Proof: Let Y be a locally indiscrete S_{p}-connected subspace of a space X such that $\mathrm{S}_{\mathrm{p}} \mathrm{cl}(Y)=X$ and Y be open in X. Now let A and B be two nonempty S_{p}-open sets in X, since $\mathrm{S}_{\mathrm{p}} \mathrm{Cl}(Y)=X$ and Y is open set in X, so by [Proposition 3.3], $A \cap Y$ and $B \cap Y$ are S_{p}-open sets in Y and they are non-empty also. But since Y is locally indiscrete S_{p}-connected subspace, so by [Theorem 3.30], $\varnothing \neq(A \cap Y) \cap(B \cap Y) \subseteq A \cap$ B this implies that by [Theorem 3.30], X is S_{p} connected space.
Theorem 3.37: Let X be a space and let $\left\{C_{\alpha}: \alpha \in\right.$ $\Delta\}$ be a collection of S_{p}-connected sets in X such that $\bigcap_{\alpha \in \Delta} C_{\alpha} \neq \emptyset$. Then $\mathrm{U}_{\alpha \in \Delta} C_{\alpha}$ is S_{p}-connected set in X.
Proof: Suppose that $\mathrm{U}_{\alpha \in \Delta} C_{\alpha}$ be not S_{p} connected in X, then $\mathrm{U}_{\alpha \in \Delta} C_{\alpha}$ can be expressed as the union of two S_{p}-separated sets A and B this implies that $\cup_{\alpha \in \Delta} C_{\alpha}=A \cup B$. Now since for all $\alpha \in \Delta, \quad C_{\alpha} \subseteq \mathrm{U}_{\alpha \in \Delta} C_{\alpha}$ implies that $C_{\alpha} \subseteq A \cup B$ and since C_{α} is S_{p}-connected set in X for each $\alpha \in \Delta$, then by [Theorem 3.19] either $C_{\alpha} \subseteq A$ or $C_{\alpha} \subseteq B$ for all $\alpha \in \Delta$. If $C_{\alpha} \subseteq A$ for all $\alpha \in \Delta$, then $\mathrm{U}_{\alpha \in \Delta} C_{\alpha} \subseteq A$ which is a contradiction of the assumption that A and B are S_{p}-separated of $\mathrm{U}_{\alpha \in \Delta} C_{\alpha}$. By the same way if $C_{\alpha} \subseteq B$ we get a contradiction. Thus $\mathrm{U}_{\alpha \in \Delta} C_{\alpha}$ must be S_{p}-connected set in X.
Proposition 3.38: A space X is S_{p}-connected if and only if each S_{p}-continuous function from X into a discrete two point space $\{a . b\}$ is constant.
Proof: Let X be S_{p}-connected space and $f: X \rightarrow\{a, b\}$ be S_{p}-continuous function, where Y is a discrete space of at least two points. Now since f is S_{p}-continuous so by [Theorem 2.29] for each $y \in f(X) \subseteq\{a, b\}, f^{-1}(\{y\})$ is S_{p}-open, S_{p}-closed and non-empty set in X. But since X is S_{p}-connected space, so by [Corollary 3.14],
$f^{-1}(\{y\})=X$ this implies that $f(x)=y$ for all $x \in X$, then f is a constant function.

Conversely: Let the hypothesis be satisfied and suppose that X is not S_{p}-connected. Then by [Theorem 3.13], there exists a proper subset A of X which is both S_{p}-open and S_{p}-closed in X. This implies that $X \backslash A$ is also non-empty proper subset of X which is both S_{p}-open and S_{p}-closed in X. Now define a function $f: X \rightarrow\{a, b\}$ by setting $f(x)=a$ if $a \in A$ and $f(x)=b$ if $x \in X \backslash A$, since $\{a, b\}$ is discrete and $A \cap$ $(X \backslash A)=\emptyset$, then the definition of f shows that $f^{-1}(\varnothing)=\emptyset, f^{-1}(\{a, b\})=X$. Also $f^{-1}(\{a\})=$ A and $f^{-1}(\{b\})=X \backslash A$. Thus we have shown that the inverse image of every open set in $\{a, b\}$ is S_{p}-open in X, then by [Definition 2.28], f is S_{p}-continuous function, but f is not constant which is a contradiction. Hence X must be S_{p} connected space.
Theorem 3.39: Let $f: X \rightarrow Y$ be a surjective $\mathrm{S}_{\mathrm{p}}{ }^{-}$ continuous function. If X is an S_{p}-connected space, then Y is connected.
Proof: Let X be S_{p}-connected and suppose that Y is disconnected, then by [Theorem 2.22], Y is the union of two non-empty disjoint open sets U and V of Y. Since f is S_{p}-continuous function so by [Definition 2.28] $f^{-1}(U)$ and $f^{-1}(V)$ are non-empty disjoint S_{p}-open sets in X, but $f(X)=Y=U \cup V$ this implies that $X=$ $f^{-1}(U) \cup f^{-1}(V)$, and then X is the union of two non-empty disjoint S_{p}-open sets which implies that X is not S_{p}-connected this is a contradiction. Thus Y is connected.
Theorem 3.40: Let $f: X \rightarrow Y$ be a surjective irresolute function. If X is an semi-connected space, then Y is S_{p}-connected.
Proof: Let X be s-connected and Y is not an $\mathrm{S}_{\mathrm{p}}-$ connected space. Then by [Proposition 3.15], there exist two disjoint non-empty S_{p}-open sets U and V such that $Y=U \cup V$, and since f is irresolute and U, V are semi-open in Y sets, so by [Definition 2.28], $f^{-1}(U)$ and $f^{-1}(V)$ are also non-empty disjoint semi-open sets in X. Now $f(X)=Y=U \cup V$ this implies that $X=$ $f^{-1}(U) \cup f^{-1}(V)$; therefore X is the union of two non-empty disjoint semi-open sets, and then by [Definition 2.15], X is not semi-connected space which is a contradiction. Thus Y must be S_{p}-connected space.
Theorem 3.41: Let $f: X \rightarrow Y$ be a surjective open continuous function. If X is S_{p}-connected space, then Y is also S_{p}-connected.
Proof: Let Y be not S_{p}-connected space. Then by [Proposition 3.15], Y can be expressed as the
union of two non-empty disjoint S_{p}-open sets U and V in Y, but since f is continuous and open function so by [Proposition 2.30], $f^{-1}(U)$ and $f^{-1}(V)$ are non-empty disjoint S_{p}-open sets in X. And since $f(X)=Y=U \cup V$ implies that $X=f^{-1}(U) \cup f^{-1}(V)$, then by [Proposition 3.15], X is not S_{p}-connected which is a contradiction. Thus Y must be S_{p}-connected space.
Theorem 3.42: Let $f: X \rightarrow Y$ be a surjective scontinuous function. If X is connected space, then Y is S_{p}-connected space.
Proof: Let Y be not S_{p}-connected space. Then by [Proposition 3.15], there exists two disjoint non-empty S_{p}-open sets U and V in Y such that $Y=U \cup V$. Since f is s-continuous and U, V are semi-open sets in Y, so from [Definition 2.28] we have $f^{-1}(U)$ and $f^{-1}(V)$ are non-empty disjoint open sets in X, but $f(X)=Y=U \cup V$ implies that $X=f^{-1}(U) \cup f^{-1}(V)$ and then by [Theorem 2.22] X is disconnected which is a contradiction. Thus Y must be S_{p}-connected space.

REFERENCES

- Abd-El-Monsef M. E., El-Deeb S. N. and Mahmoud R. A., (1983), " β-open sets and β-continuous mappings", Bull. Fac. Assint, Vol. 12, pp. 77-90.
- Andrijevic D., (1996), "on b-open sets", Mat. Vesnik, Vol. 48, pp. 59-64.
- Crossley S. G., and Hildebrand S. K., (1971), "Semiclosure", Texas J. Sci., Vol. 22, pp. 99-112.
- Crossley S. G. and Hildebrand S. K., (1972), "Semitopological properties", Fundamenta Mathematicae, Vol. 74, pp. 233-254.
- Dontchev J., (1998), "Survey on preopen sets", ArXiv: Math., Vol. 1, pp. 1-18.
- Duszynski Z., (2006), "On some concepts of weak connectedness of topological spaces", Acta Math. Hungar., Vol. 110, pp. 81-90.
- Duszynski Z., (2011), " β-connectedness and Sconnectedness of topological spaces", Matematiqki Vesnik, Vol. 63, No. 2, pp. 115-126.
- Ekici E., and Noiri T., (2008), "A note on almost δ semicontinuous functions", Bol. Soc. Paran. Mat., Vol. 26, pp. 65-70.
- El-Atik A. A., (1997), "A Study of some Types of Mappings on Topological Spaces", M. Sc. thesis, Tanta Univ. Egypt.
- Jafari S., and Noiri T., (2003), "Properties of β-connected spaces", Acta Math. Hungar., Vol. 101 (3), pp. 227236.
- Khalaf A. B., Shareef H. A., (2012), " S_{p}-separation axioms", International Journal of Scientific \& Engineering Research, Vol. 3, pp. 1-6.
- Levine N., (1963), "Semi-open sets and semi-continuity in topological spaces", Amer. Math. Monthly, Vol. 70, pp. 36-41.
- Mashhour A. S., and Abd-El-Monsef M. E. and El-Deeb S. N., (1982), "On pre-continuous and weak precontinuous mappings", Proc. Math. Phys. Soc. Egypt, Vol. 53, pp. 47-53.
- Muhammed B. A., (2005), "On a Special Type of Semiopen Sets in Topological Spaces", M. Sc. Thesis, University of Duhok, Iraq.
- Njastad O., (1965), "On some classes of nearly open sets", Pacific J. Math., Vol. 15 (3), pp. 961-970.
- Noiri T., (1980), "A note on extremally disconnected spaces", Proc. Amer. Math. Soc., Vol. 79, No. 2, pp. 327-330.
- Pipitone V., and Russo G., (1975), "Spazi semiconnessi e spazi semiaperti", Rend. Circ. Mat. Palermo, Vol. 24 (2), pp. 273-285.
- Sarker J. P., and Dasgupta H., (1985), "Locally semiconnectedness in topological spaces", Indian J. Pure Appl. Math., Vol. 16 (12), pp. 1488-1494
- Shareef H. A., (2007), " S_{p}-open Sets, S_{p}-continuity and S_{p} compactness in Topological Spaces", M. Sc. Thesis, University of Sulaimani, Iraq.
- Sharma J. N., and Chauhan J. P., (2011), "Topology (General and Algebraic)", Krishna Prakashsan Media, Indai.
- Steen L. A. and Seebach J. A., (1970), "Counterexamples in Topology", Hollt, Rinehart and Winston, Inc., New York.

حول الفضاءات المتصلة من النمط

ل دوّر ثالاهييّن بِيكفه ز ر جوركّ

