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ABSTRACT: 
Human muscles can be read by using electromyography (EMG) sensors, which are electrical signals generated by the muscles of 
human and animal bodies. This means it is possible to use electricity generated by muscles to control actuators/servo motors for 
any specific tasks. This could support a wide range of applications, especially for people with disabilities. One such application 
would be making bionic limbs based on servo motors. According to a study held by the K4D helpdesk report based on estimations 
that 15.3% of the world’s population has a moderate or severe disability, this proportion is likely to increase to 18-20% in conflict-
affected areas (Thompson, 2017). The goal of this study is to make bionic limbs affordable by minimizing the cost while 
maintaining accuracy at an acceptable rate. To achieve this goal, the study proposes a new idea for using electromyography (EMG) 
sensors in bionic limbs, which suggests a decrease in the number of EMG sensors to decrease the cost and power consumption.  
Decreasing the number of EMG sensors will result in a loss of accuracy in controlling actuators (servo motors) because usually, 
each sensor is responsible for activating one servo motor. In normal projects, one will need at least six EMG sensors to control six 
servo motors. The study will use only three EMG sensors to control/activate six servo motors depending on the binary trick idea 
suggested by this study, which is manipulating all three input signals from EMG sensors at once and then deciding which servo 
motor to activate by using a supervised machine learning technique such as K-nearest neighbors (kNN). 
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1. INTRODUCTION 

According to the Humanitarian Needs Assessment 
Programme (HNAP) in Syria, there are 3.7 million or 27 
percent of the total population (aged 12+) have a disability 
(Humanitarian Needs Assessment Programme (HNAP), 
2019). This number is likely way more than the mentioned 
one due to the lack of accessibility in the majority of the war 
zone locations by humanitarian organizations, such a huge 
number of people with disabilities is a problem not only for 
the individual themselves but also for their families as well. 
It is also important to mention that disability has a direct 
impact on the economic growth of the countries too. 
Although these individuals are suffering from fulfilling day-
to-day basic duties, this leads to more serious problems such 
as mental disease. 
According to Cree et al., (2020) adults with disabilities report 
experience frequent mental distress, almost five times more 
than adults without disabilities. Based on these data, we do 
believe more efforts should be spent on helping individuals 
with disabilities. Starting with bionic limbs, since the 1960s   
many efforts have been made on making bionic limbs help 
people with disability (Cree et al., 2020; Parker & Scott, 
1986). The majority of studies were focusing on the hand 
because it is one of the most important and functional parts 
of the human body and the part that does a lot of complex 
tasks. Most methods are based on reading the electrical signal 
(amplitude) generated by an EMG sensor to move or control 
one of the servos that are attached to Degrees of Freedom 
(DOF) (Farina et al., 2014). One of the major problems for 
Myoelectric (ME) prostheses not being used by people who 
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need them, is due to their high cost as shown in Table I (Williams, 
2021).  

2. EMG SENSOR AND RELATED WORK 

surface electromyography (EMG), lately has gained a lot of 
popularity among researchers, because EMG signal can provide 
information about a person's desire to move skilfully, therefore, 
it can easily be integrated with robotic control commands. EMG 
used placed on the skin surface by using electrodes, and can 
encode information generated by the human brain (Wallroth et 
al., 2018). The skin can either be dry or wet to interface it with 
electrodes, when the skin is wet gel is required on between 
electrode and the skin to reduce the electric resistant and improve 
the stability of electrodes (Laferriere et al., 2011). While for the 
dry skin no gel is required to interface it with the electrode, up to 
now, many researchers have investigated EMG sensors and 
applied it to control robotic interface, these investigations can be 
divided into three categories: controlling prosthetic arms, 
remotely operated robots mainly used in medical surgeries, and 
the application of orthoses. (Bitzer & Van Der Smagt, 2006) 
controlled a four-fingered robot hand using EMG sensor inputs 
from 10 forearm muscles, according to (Cimolato et al., 2022) 
the results indicates that there is a lack of quantitative and 
standardized measurements among the researchers that work on 
EMG based bionic limbs which hinders the possibility to analyze 
and compare the performances of different EMG-driven 
controllers. 
It is important to mention that all EMG based prosthetics need to 
consume a lot of muscle power (squeezing muscle) to activate the 
prosthetic limb, which consequently leads to the majority of 
amputees abandoning the prosthetic limbs (Cordella et al., 2016). 
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One of the key factors of prosthetic rejection is comfort, in 
which none of the commercial prosthetic arms succeeded in 
making a long-term comfortable prosthetic arm (Biddiss & 
Chau, 2007), according to (Gailey et al., 2010; Roffman et 
al., 2014; Walden, 2017), the major reason that ultimately 
leads to abandonment of the device is poor mobility. 
Additionally, amputees continue using their prosthetics will 
exposure to significant risks of acquiring a number of 
cardiovascular and neuromusculoskeletal diseases. (Burke et 
al., 1978; Gailey et al., 2008; Kušljugić et al., 2006; Naschitz 
& Lenger, 2008) the EMG sensors to control servo motors as 
DOFs for hand. Usually, the number of EMG sensors should 
be at least equal to or more than the servo motors number to 
increase accuracy, DOF and control as many servos as 
possible. However, by increasing the number of EMG 
sensors the cost, power consumption, and complexity also 
increase proportionally, since each EMG sensor is 
responsible for activating one of the servo motors. This study 
suggests decreasing the number of EMG sensors for the 
purpose of decreasing the cost and complexity, it decreases 
accuracy as well. To solve the issues related to the accuracy 
a pattern recognition (PR) technique will be considered in 
this paper as it has been used by (Lee & Saridis, 1984; Li et 
al., 2019; Williams, 2021). This article will provide a new 
concept for bionic limbs based on EMG sensors to decrease 
building cost by decreasing the number of EMG sensors and 
Leaving DOFs as it is. The evaluation of the obtained results 
will be compared with state of art results based on accuracy, 
responsiveness in milliseconds (ms), and the number of 
classes.  As for testing purposes, six DOFs will be controlled 
via six servos by using only three EMG sensors and applying 
a new idea called binary trick by manipulating all three 
signals generated by EMG sensors at once and then deciding 
which servo motor will activate/fire by using machine 
learning techniques. 
The rest of the paper is organized as: Section one technical 
details about hardware are discussed. Section II explains the 
hardware, and software architecture of the entire system, as 
well as the basic pattern recognition (PR) algorithm that runs 
on the embedded system. Section III details the EMG PR 
experiment with real-time performance measurements for 
several classifiers and features. Section IV summarizes the 
findings of the experiment. 
 

TABLE I.  COST OF SOME EMG BASED BIONIC LIMBS SYSTEM 

Bionic Hand Price Category 
(USD) Current Availability 

Ability Hand $20,000 to 
$30,000 USA 

Adam’s Hand $30,000 to 
$40,0001 

Italy Q1 2022, USA, 
Germany, 

France, and Spain later in 
2022 

Atom Touch More than 
$50,0002 USA (launch date 2024) 

Bebionic Hand $30,000 to 
$40,000 Global 

BrainRobotics 
Hand 

$20,000 to 
$30,000 

USA (launch date 
2021/2022) 

Grippy $10,000 to 
$20,0003 India 

Hero Arm $10,000 to 
$20,000 

USA, UK, Europe, 
Australia, 

New Zealand 

i-Limb Access $40,000 to 
$50,000 Global 

i-Limb Ultra & 
Quantum More than $50,000 Global 

3. SYSTEM CONSTRUCTION 

The system consists of three main parts, three EMG sensors each 
of them has three channels, 6 servo motors, one unit of Arduino 
Uno chip, and two units of 9v batteries, and machine learning 
techniques such as SVM (Support Vector Machine) and KNN 
(K-nearest neighbor) to make the right decisions and control 
which servo should operate once an EMG sensor amplifies. 
Because the EMG signals have varying voltage thresholds, it 
results in a lot of noise while acquiring signal data. To solve this 
issue, some prepossessing steps are required before applying any 
classification method. General diagram of the system is shown in 
Figure 1 

 
Figure 1. Schematic diagram of bionic limbs based on EMG 

sensor 

3.1 Electromyography (EMG) 

EMG is a technique for evaluating and recording the electrical 
activity produced by skeletal muscles, (Paoletti et al., 2020; Park 
& Lee, 1998). The generated amplitude from muscle activity for 
surface EMG is ranged between 0 to 10mV (milliVolt) 
(Robertson et al., 2013). When muscle cells are electrically or 
neurologically activated, electromyography monitors the electric 
potential generated by these cells (Shetty et al., 2010). The 
signals can be studied to look for abnormalities, levels of 
activation, or recruitment orders, as well as to look at the 
biomechanics of human or animal movement. Many research 
emphasizes that the location of EMG sensors on human 
muscle/skin has a huge impact on output signal characteristics 
(De Luca, 1997; Elfving et al., 2002; Farina et al., 2002; Hermens 
et al., 2000; Jensen et al., 1996; Kleine et al., 2001), although it 
is known that one or more sensors are being used to read each 
muscle’s move, which means for each system a bunch of EMG 
sensors is required to obtain accurate results (Falla et al., 2002; 
Farina et al., 2001; Jensen et al., 1996). There are two types of 
EMG sensors, surface EMG and intramuscular EMG. In this 
study, only three surface EMG sensors have been used to control 
five DoFs (degrees of freedom) for bionic limbs. 

 
Figure 2. EMG sensor unit 
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The reason for choosing surface EMG sensors is that they are 
more affordable and easier to wear, however, intramuscular 
EMG is more accurate. A raw sample of muscle activity from 
the surface EMG sensor can be seen in Figure 2., which is 
generated by the Arduino analogue data reader window. The 
sensor type that has been used in this study contains a small, 
printed circuit board (PCB) with three electrodes for the skin 
surface; one of the electrodes is placed on a bony feature as a 
ground reference point; the other two electrodes for voltage 
measuring of any potential within muscles.  

 
Figure 3. EMG sensor unit 

3.2 Pre-processing 

After reading the raw Data from the EMG signal, the first 
step would be pre-processing, since human muscle can 
generate many unwanted muscle activities and various noise 
components, such as powerline interference (PLI), baseline 
wandering (BW), and white Gaussian noise, are erratically 
affecting the surface of EMG signal. These noises have a 
direct impact on the EMG processing efficiency, accuracy, 
and reliability of the system. To solve some of these problems 
we decided to use a Hampel filter, which can easily detect 
and remove outliers in the input signal. The Hampel identifier 
is a statistical version of the three-sigma rule that is robust to 
outliers (Allen, 2009). Figure 3. demonstrates the 
performance of the Hampel identifier algorithm. The filter is 
applied by using the SKTIME framework, by setting the 
sliding window step size to 10 and leaving sigma value three 
as default. The resulting signal is way more robust for 
processing compared to the original signal, furthermore, it 
can be seen the large outliers have been removed. To be more 
precise about the filtering process, the more filtering 
techniques we apply, or use, the better results we could get, 
but it will negatively affect the performance. The study 
believes that the choice of the Hample filter is a good balance 
between performance and accuracy. 
 

 
Figure 4. Applying Hample filter on raw EMG signal 

3.3 Classification method 

The major step in bionic limb systems is the input signal 
generated by the EMG sensor, it is represented as a Feature 
vector in the feature extraction step, which is forwarded as an 
input to the classifier. Since there is a lot of randomness and 
noise level generated by unwanted muscle movement, it is 
highly affecting the EMG signal shape, for that reason, it 
cannot be forwarded directly into the classifier, the 
classification method and step depends on the EMG signal to 

perform a good accuracy (Langzam et al., 2007; Zardoshti-
Kermani et al., 1995). In the presented study, the KNN (K-
Nearest Neighbor) classification technique has been used by 
using a python programming language in collaborator with 
google to perform the classification activity. Many researchers 
applied different classification methods and their performance is 
evaluated as shown in table 2. This study preferred the k-nearest 
neighbors (KNN) algorithm as the classifier to perform EMG 
signal recognition and decide which actuator (servo motor) to 
activate. The reason behind choosing the KNN algorithm is due 
to its light performance for performing calculations in real-time, 
ease of implementation, and fast retraining. The downside of 
using KNN, it may lead to inaccurate results and consumes a lot 
of space in Random Access Memory (RAM) by storing all the 
training data for each time making a prediction. The KNN 
method is based on two phases: the first one is the learning phase, 
in EMG signal data which is generated in real-time and collected 
to perform the training process, while the second phase is the 
classification phase, the new input data is compared with all the 
training data and then decided to what class it belongs with the 
most-similar training data. This study got benefit of (Shi et al., 
2018) research of four k-values: 5, 7, 9, and 11 were tested in this 
study k-value with 11 performing most accurately among other 
k-values. 

4. RESULTS AND DISCUSSION 

The majority of studies which work in the field of bionic limbs 
tend to increase the number of EMG sensors to increase the 
accuracy and degrees of freedom (DoFs). However, by doing so 
they intend to increase the cost and power consumption of the 
system. In this study we used a trick namely, that is called a 
binary trick to decrease the number of EMG sensors and yet be 
able to control more servos than the actual number of EMG 
sensors. In a binary system, when you have two digits,  four 
possible values can be generated; and for three digits eight 
values can be generated, based on this concept we build up our 
system, by manipulating three signal values read by an EMG 
sensor at once and then decide which actuator should fire, the 
study knew that  this will decrease the accuracy of the system, 
and it gets even more complex for the system when a user 
decides to move multiple fingers at once, to solve this issue even 
partially some machine learning techniques have been tested 
and used to improve the result as much as possible.  However, 
the main goal was to make a system with fewer EMG sensors 
than usual and get acceptable results to open a door for further 
study to improve the accuracy issue. 
 

TABLE II.  EMG BASED BIONIC SYSTEM COMPARISON 

Author Method Time 
(ms) Classes Accuracy 

% 

(Zhou et al., 
2010) 

Linear 
discriminant 

analysis 
(LDA) 

Not 
available 11 81 

(Oskoei & 
Hu, 2008) 

Support 
vector 

machine 
(SVM) 

200 6 95 

(Karlik et al., 
2003) 

Fuzzy K-
nearest 

neighbor 
(FKNN) 

80 6 98 

(Tenore et al., 
2008) 

Multilayer 
perceptron 

(MLP) 
200 12 >90 

Proposed 
system 

K-nearest 
neighbor 
(KNN) 

120 6 83 
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Figure 5. Single EMG electrodes 

5. CONCLUSION 

Technology-driven bionic limbs are gaining popularity 
because they perform functions similar to human limbs. 
However, one of the major problems with such technologies 
is their high cost. As shown in Table 1, since the majority of 
people who need such technology is from poor or war zone 
countries, it is nearly impossible for them to afford such 
technology for its price tag, the goal behind this study was an 
attempt to decrease the cost of bionic limbs by decreasing the 
number of EMG sensors and maintaining accuracy at an 
acceptable rate. For that purpose, the study introduced a new 
idea called the binary trick method. By applying this trick, 
the system was able to control up to six actuators (servo 
motors) by using only three EMG sensors alongside some 
classification methods such as k-nearest neighbor (KNN). 
However, the classification step is suffering to decide which 
finger should move once the user attempts to move more than 
one finger simultaneously. Furthermore, the system achieved 
less accuracy compared to previous research as shown in 
table 2. The bright side of the study was successfully 
approving that it is possible to control a number of actuators 
(servos) by using a fewer number of EMG sensors than all 
other previous research. With the help of the KNN algorithm 
for classification purposes, the study also believes that the 
accuracy issue can be solved by applying more experiments 
on machine learning based algorithms, filtration methods, 
and improving the EMG sample collection methods. 
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