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ABSTRACT 
Flood hazards are a member of the world's catastrophic events with a hydrological climate origin. They are referred to as a situation 
in which the river flows and water level increases suddenly and causes human and financial losses. This research aims to determine 
flood-prone zones and evaluate the efficacy of RS and GIS-based evidence-based belief function (EBF) and hierarchical analysis 
(AHP) models in flood-prone area mapping. Using the Rezan River basin in the Mergasor area of Erbil governorate, Iraq, as an 
example, 11 factors such as slope, slope direction, land use, distance to the stream, distance to the road, elevation, soil, rainfall, 
geology, NDVI, and drainage density were utilized for flood moderation. The prediction rates of the EBF and AHP models were 
also analyzed to be 0.869% and 0.836%, respectively, indicating that these two models are better predictors. The findings of the 
study area revealed that 32% of the study area is under very high to high flooding hazard zones for the EBF method and 22% for 
the AHP method. This research’s conclusions are crucial for flood-prone region management, decision-making, and local 
administrative planning. 
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1. INTRODUCTION 

Floods are one of nature's damaging natural catastrophes 
(Tehrany & Kumar, 2018). Accurately analyzing their 
hazards is challenging owing to a lack of data and knowledge 
of flood damage of various magnitudes (Grahn & Nyberg, 
2017). Natural catastrophes inflict substantial economic and 
human losses in human communities. They are caused 
by“natural disasters that provide a severe risk including 
flooding, drought, earthquake, landslide, cyclones, and 
volcanos. These incidents do not become natural disasters in 
regions without straight contact with persons or impact 
mortal welfare (Fernández & Lutz, 2010). 
A brief description of flood events is that it is the rise of the 
level of water than the necessary level generated by increased 
surface water in a stream succeeding severe rains, covering 
the floodplain and surrounding grounds, damaging 
agricultural and metropolitan areas, and resulting in fatalities 
(Chapi et al., 2017; Huang et al., 2008).  Maps indicating the 
potential for floods are a valuable tool for determining the 
future course of urban expansion and are often used to 
pinpoint these locations (Büchele et al., 2006). Maps of the 
flood zone and the hazard evaluations for diverse regions 
comprise numerous criteria items that must be spatially 
related (Booij, 2005). Floods are frequently caused by a 
combination of severe meteorological, hydrological, and 
physical conditions (Chowdhuri et al., 2020). One current 
and specific case of a flash flood tragedy happened in Erbil, 
Iraq's Kurdistan region, destroying the city financially and 
causing human casualties. Erbil city had a massive floods in 
November and December 2021 as a consequence of severe 
monsoons in a short time, unmethodical sewerage, 
and deluge rains, killing 12 people, destroying over 1200 
automobiles, and sinking more than 200 dwellings. Thus, 
flood vulnerability mapping is a critical step in flood relief 
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because it recognizes areas numerously vulnerable to floods and 
provides enough time to prepare so that people can adapt to 
flooding predictably rather than retroactively (Zhao et al., 2018) . 
Several authors investigated some approaches to appreciate the 
possibilities of these solutions in light of the necessity for an 
accurate and trustworthy technique to determine floodable places 
(Rahmati et al., 2016). 
Due to its ability to handle enormous amounts of geographical 
data, the GIS has been proved as an effective instrument for 
spatial analysis and information handling (Oh & Pradhan, 2011). 
Many investigators have extensively used a mix of based on 
analytical models in conjunction with Geographic Information 
systems and remote sensing (Tehrany & Kumar, 2018). A range 
of arithmetical and probabilistic methods have been experienced 
recently for creating flood vulnerability maps (Lee et al., 2012; 
Levy et al., 2007). The evidential belief function (EBF) 
technique, for instance, has been used to estimate potential 
groundwater zones (Althuwaynee et al., 2014) and analyze the 
vulnerability of landslides (Tien Bui et al., 2018), among other 
natural catastrophes. It is now infrequently utilized for flood 
studies (Nampak et al., 2014). In order to estimate flood risk, 
Chen and Yeh (Chen et al., 2011) employed the AHP and GIS, 
producing valuable, all-inclusive data for flood risk management 
in Taiwan. Additionally, other researchers have studied and put 
into practice a variety of maps of flood susceptibility strategies 
over the years. Tehrany and Kumar (2018) examined the potent 
EBF approach in the background map of flood susceptibility. 
Additionally, when used with logistic regression techniques, Tien 
Bui and Khosravi  showed that the EBF model had the most 
fantastic accuracy in forecasting flood vulnerability. On the other 
hand, (Das, 2020) used the AHP approach to create maps of flood 
susceptibility, sensitivity, and risk for the whole Western Ghat 
coastline area in India by combining a sizable number of 
environmental flood conditioning components from various 
sources.  
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As a result, different locations need different aspects for 
flood mapping and risk assessments (Poussin et al., 2014). As 
a result, multi-criteria decision analysis (MCDA) methods 
have been successfully used in several research and are now 
commonly regarded as a helpful tool for evaluating complex 
choice situations (Cinelli et al., 2014; Hongoh et al., 2011). 
Additionally, MCDA considers various factors, such as 
technical, environmental, and socioeconomic factors, to 
reach a flawless conclusion (Mühlbacher & Kaczynski, 
2016). Furthermore, a GIS-based MCDA was utilized to map 
flood regions (Dash & Sar, 2020), owing to the simplicity 
with which GIS methods facilitate spatial data handling and 
analysis and the convenience with which the MCDA result 
may be seen, interpreted, and evaluated (Hammami et al., 
2019). 
Validation is crucial when making maps of vulnerability to 
natural disasters for use in planning (Khosravi et al., 2016). 
In reality, a study of flood vulnerability and verification of 
the resulting map for accessibility and implementation 
mistakes has to be conducted. Furthermore, confirming the 
prediction outcome is essential due to the significant 
interpretation that researchers obtain from the prediction 
outcome (Shariat et al., 2010). 
The primary goals of the study were to (1) assess the efficacy 
of EBF, and AHP approaches to generate a map of flood 
susceptibility and (2) pinpoint the region's most vulnerable to 
river flooding, a phenomenon that frequently causes 

significant property and infrastructure damage, injuries, and 
fatalities in mountainous regions. In order to do this, a number of 
GIS-based patterns are used and assessed in the Mergasor 
district's Rezan river drainage area. 

2. STUDY AREA 

The research region is about 175 kilometres northeast of Erbil, 
Iraq, between 36°41'6.53 “and 37° 2'7.13 N latitudes, 
44°18'53.20 and 43°38'36.59 E longitudes. The drainage region 
covers the Baze, Barzan, Rezan, Bele, and Mergasor districts 
bordered by Turkey. The “elevation” spans from 402 to 2292 
meters higher than the Sea-level, and the climate is described as 
having the Mediterranean climate with an average annual 
precipitation of 1042 mm. The wettest months are November 
through April, extending approximately from 250 to 400 mm. 
The rainy season, with its heavy rainfall combined with 
topographical conditions, can cause flooding. The moderate 
annual temperature in the basin varies from 22° to 26°, with the 
lowest and highest temperatures meandering from 5° to 12° and 
35° to 40°, separately. The research area is 55 kilometres lengthy 
and 25 kilometres vast, with a whole area of 1173 km2, and it has 
both flat and hilly topography (Figure 1). 
 

Figure 1. The investigation region location map. 
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3. MATERIALS AND METHODS 

3.1 Data Set 

Many distinct flood variables have been noticed and 
employed by researchers. For this research, numerous 
geographical characteristics that impact floods were 
evaluated, like the elevation, geology, soil type, land use, 
aspect, distance to the road, distance to the river, NDVI, 
slope, precipitation, and drainage density. Using data from 
the Advanced Land Observing Satellite-PALSAR, a DEM 
kindled with the 12.5m resolution was employed to obtain 
relevant parameters like slope, streams, aspect, and hillside 
objects. The geological map of the investigation region was 
obtained from the Iraqi Geological Survey. Furthermore, we 
identified the best geochronological after applying geological 
and climatic data in combination with modeling approaches 
and expert opinion. Finally, the SWAT tool lets users prepare 
canals and basins within a watershed to prioritize protecting 
multiple water quality objectives. This GIS tool helps 
researchers see what is causing local water quality problems. 
The data utilized in the study are all shown in Table 1. 

3.2 Evidential Belief Function (EBF) 

Shafer first presented the Dempster–Shafer evidence theory, 
which represents a mathematical model consisting of logical 
and belief-relevance heuristics, which is perceived as spatial 
integration (Shafer, 1976). It is a reasonable or helpful 
concept or method used to extract knowledge from data. The 
“Dempster-Schafer” method’s stability is handling data that 
aren’t complete. There have shown that the conclusion of 
“belief, disbelief, uncertainty,” and “plausibility” should be as 
precisely specified as possible; in this way, a favourable 
outcome may be achieved (Carranza, 2009). The EBF 
approach is the best modern flood vulnerability assessment 
and mapping method (Tehrany & Kumar, 2018). Depending 
on the data source, an EBF approach can be computed using 
the data-based or knowledge-based approach (Mondal & 
Mandal, 2020). 
 
The data-driven EBF model will be used in the flood 
vulnerability study and will be viewed as a multivariate 
statistical investigation since it considers the geographical 
relationship between each causative element and flood 
classes (Carranza et al., 2005). Because of its great accuracy 
and flexibility, researchers are increasingly turning to the 
data-driven Dempster-Shafer EBF method to generate a flood 
vulnerability map. The first step to using this method is to 
convert it to data layers and then combine those layers, 
which, after this method is completed, create a flood 

vulnerability map that can be used to predict flooding (Park, 
2011). The EBF method contains four fundamental purposes with 
values ranging from 0 to 1: “Bel (belief function)”, “Dis 
(disbelief function)”, Unci (uncertainty function)”, and “Pls 
(possibility function) (Chowdhuri et al., 2020)”. The pictorial 
representation of these combinations is depicted in Figure 2. 

 
Figure 2: Illustrates the links between the evidential belief functions. 

 
The value of the Bel method represents a “pessimistic” estimate, 
while the value of the Pls method is represented an “optimistic” 

assessment of the spatial association during the flood. However, 
it also discusses the factors that affect these results to illustrate a 
complete understanding of this analysis (Awasthi & Chauhan, 
2011; Pradhan & Althuwaynee). Consequently, the Bel value is 
either a lower or the same amount compared to Pls. The 
distinction between the value of Pls and Bel methods is the Unci 
value, which shows that the theory is founded on ignorance or 
unawareness of evidence. In contrast, the Dis value refers to the 
idea that a theory is incorrect as a consequence of evidence 
(Awasthi & Chauhan, 2011; Azadi et al., 2020; Tien Bui et al., 
2019). Before employing the model, collect flood conditioning 
variables and flood inventory data (training dataset) to get the 
essential quantitative information. This investigation used 33 
validation data points, 77 training data points, and eleven 
influencing factors. The following instructions provide a data-
driven estimate of "Bel, Dis, Unci, and Pls": (Althuwaynee et al., 
2012; Carranza & Hale, 2003). 

𝛽 = 1 −% 
!

"#$

(Bel"#% Dis" −Dis"#% 𝐵𝑒𝑙")																									(1) 

Belief	(𝐵𝑒𝑙) =
𝐵𝑒𝑙% +𝐵𝑒𝑙$ +⋯…+𝐵𝑒𝑙!

𝛽 																				(2) 

Disbelief ( Dis ) =
 Dis $ +  Dis $ +⋯ ,+ Dis !

𝛽 											(3) 

 

Table 1. Displays the multiple data sets that were applied to produce flood vulnerability mapping 

Data Description Data used Data Source Resolution Data Types 

LULC and NDVI 
Sentinel 2A Multispectral 
Instrument (MSI) images 

(Accusation date: 16 July 2021 

European Space Agency 
(ESA) earth online 10 m Grid / Polygon 

NDVI= 	!"#$#%&
!"#'#%&

 
Sentinel 2A Multispectral 
Instrument (MSI) images 

(Accusation date: 16 July 2021 

European Space Agency 
(ESA) earth online 10 m Grid / Polygon 

Basin boundary, 
DEM, Hill-shade, 
Drainage Density, 
Slope, Lineament 

Density distance to 
river and road 

Advanced Land Observing Satellite 
(ALOS) - Phased Array type L-band 
Synthetic Aperture Radar (PALSAR) 

ALOS｜ALOS@EORC 
(jaxa.jp) 

12.5 m Grid / Polygon /point 

Geological map 26 geological units Geological survey (Baghdad) 1:1000000 Grid / Polygon 

Soil types Soil map Exploratory Soil Map of Iraq, 
Scale 1:1,000,00 1:1000000 Grid / Polygon 

Rainfall Annual rainfall data from 2000 to 2020 Erbil and Duhok 
Meteorological Office 12.5 m Grid / Polygon /point 

 



A. Q. Mikail and R. Hamad / Science Journal of the University of Zakho, 11(1), 1 –10, January-March 2023 
 

 4 

 Uncertainty(Unc) 

= ∑  !
"#$ ()!*"%&)!*"+,-."%&)!*"+,-.")!*"%&+/"0"%&)!*"+/"0")!*"%&)

2
     

                                                                                           (4) 

Plausibility (Pls) = Bel + Unc																																														(5) 

where β, which ensures that Bel + Dis + Unci = 1, because 
this value must always be equal to 1. 

3.3 Analytic Hierarchy Process (AHP) 

The Analysis Hierarchy Method (AHP)” technique is a 
powerful and flexible multi-criteria decision-making method 
that can solve complex problems at different levels. For this 
reason, it is called a hierarchy model because it is entered in 
the form of a tree model and levels (Saaty, 1977). The AHP 
method combines both objective and subjective evaluations 
in an integrated structure based on scales with paired 
comparisons. It helps analysts to organize the essential 
aspects of a problem in a hierarchical format (Thomas & 
Doherty, 1980). Using the AHP approach, users and planners 
may quantify their preferred scale generated from various 
possibilities (Ayalew & Yamagishi, 2005). In this work, the 
weights of all input items for flood risk mapping were 
determined using AHP. In terms of weight importance, the 
pairwise comparison matrix was created initially with the 
help of local experts. In order to create the "normalized 
matrix", each "pairwise comparison matrix element was 
divided by the total of each column. The moderate weight of 
each row was used to generate the absolute weight value of 
the corresponding parameter. The consistency ratio (CR) was 
determined to gauge the level of consistency between the 
weight values of different factors in order to evaluate the 
validity and applicability of the importance value calculation 
procedure, Equation (6). The “pairwise comparison matrix” 
is appropriate if “Consistency Index (CI)” values are 
comparable to (equal or smaller than) (0.1). However, the 
matrix should be re-evaluated when the “Consistency Index 
(CI)” is greater than (0.1). Equation 7 is employed to obtain 
the “Consistency Index (CI). 
 

𝐶𝑅 =
𝐶𝐼
𝑅𝐼 																																																		(6) 

𝐶𝐼 =
𝜆345 − 𝑛
𝑛 − 1 																																							(7) 

Where  𝐶𝑅:	Consistency ratio 
  𝐶𝐼:	Consistency Index 
  𝜆:	Eigenvalue 
 𝑛:	the order of the matrix 
 𝑅𝐼:	 Random Consistency Index. 
 
The final 𝐶𝑅		value” must be less than (0.10) for the criterion 
weights to be valid. Conversely, a high (>0.10) value 
indicates contradictory judgments that require re-estimating 
the consequences. 

3.4 Validation  

Since the ROC curve is a thorough, acceptable, and 
graphically displayed validation approach, it will be 
employed to accurately evaluate the flood vulnerability map 
in this research. Many authors have employed the "ROC 
curve" for precision inspection and validation. The area 
beneath the curve is excellent when the AUC value ranges 
between 0.9 and 1.0. Also, perfect when the value is between 
0.8 and 0.9. The AUC value will be good when it is between 
0.7 and 0.8 (Chowdhuri et al., 2020). Moreover, no globally 
acknowledged approach exists for separating “inventory data 
into training and validation data  (Yariyan et al., 2020). As 

the methods for organizing inventory data are inconsistent, there 
is no universally accepted approach in natural hazard evaluations 
for describing the ratio of inventory data used for training and 
validation. However, the general split ratio for classifying 
inventory data in the literature concerning natural hazard 
assessments is 70/30 (Li & Chen, 2019). The 70/30 ratio will be 
implemented for splitting datasets in this investigation. 

4. RESULTS AND DISCUSSION 

4.1 Evidential Belief Function (EBF) 

Since most floods are brought on by flooding the primary river 
trough, distance from the river is one of the essential elements in 
the flood sensitivity analysis. According to (Appendix, Table A1), 
the 0-50 m class in the present investigation had the greatest Bel 
of 0.495 and the lowest Dis of 0.099. Nevertheless, the flood 
danger Bel values were 0.184, 0.196, 0.126, and 0.000 for the 
other four classes. Additionally, it shows that lower elevations, 
with a range of 402 to 800 meters, had bigger Bel values, with 
the greatest Bel of 0.402 and the lowest Dis of 0.129, showing 
the highest flooding vulnerability when water flows into and 
meets lower locations. The EBF data has verified that most floods 
happen at lower elevations, which makes flooding at higher 
altitudes very unlikely. Bel is highest, and dis is lowest, 0.343 
and 0.150, indicating that the risk of flooding is greatest for 
slopes from 0° to 15°, followed by the range from 45° to 60°, and 
then the content from 30° to 45°. Nevertheless, the southwest in 
the aspect situation has the highest Bel value of 0.244 and the 
smallest Dis value of 0.107, implying that this category has 
positive spatial associations with floods. In contrast, the other Bel 
values are significantly small, indicating a low likelihood of 
floods. This indicates that floods are likely to occur since the 
earth rapidly gets saturated due to heavy rain. Likewise, water 
and barren terrain are represented by negative values and 0, 
grassland by 0.2-0.4 NDVI values, and forest by values greater 
than 0.5 (Chowdhuri et al., 2020). The first rainfall class with 
900–1000 mm had the highest Bel and the lowest Dis values. As 
a result, vegetation catches more precipitation. Less water is 
available to flow over the surface of the ground. 
Regarding geological factors, the river terraces had the greatest 
Bel and Dis values of 0.219 and 0.052, correspondingly. As for 
soil factors, the chestnut type includes the highest Bel value of 
0.448 and Dis value of 0.192, observed by the Lithosols-Chromic 
cambisols and Calcaric Regosols”. At the same time, the Bel 
amount for the “Rough class was 0. Contrarily, land use is vital 
in averting flooding that endanger human lives, homes, property, 
and ways of making a living. So, depending on how land is used, 
the danger of flooding may go down or up. The consequences of 
the present analysis showed that accounting for 0.415 of the 
overall land use, the areas used for water sites in the region had 
the highest Bel values. Similar to how they harm roadways, 
floods can worsen dangerous flood situations. The most excellent 
Bel value 0.333, and the lower Dis valued 0.124, were produced 
by separating the roadways, ranging from 0 to 25 m. The 
consequence was a greater chance of flooding in the regions 
nearest to the highways. More extensive basins usually get more 
precipitation than smaller basins, which causes higher runoff. In 
areas with a larger drainage density (number of streams), rainfall 
accumulation occurs more quickly, shortening the lag time. The 
highest Bel value was 0.323, and the lowest Dis value was 0.1450 
for the drainage density category. Figure 3 illustrates flood 
hazard maps for the research area for the EBF method.  
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4.2 Analytic Hierarchy Process (AHP) 

After creating a pairwise comparison matrix, the AHP was 
utilized to determine the comparative relevance of the 
relevant components. Weights were assigned to each 
parameter once rated in order of importance. The 
comparative importance rating hierarchy varies from 1 to 9, 
with lower scores meaning lower priority and more elevated 
scores indicating higher priority. Table 2 displays the 
pairwise comparison matrix as an 11 x 11 matrix with 
diagonal components equal to 1. The comparative relevance 
of each row is calculated by comparing it to each column. For 
instance, the slope obtains a 3 grade since it is much more 
critical from the aspect. The  row hast the reverse value off 
then pairwise comparisons (e.g., 1/3 ford aspect) since it 
represents the importance of each element. 
The final column [weight%] of (Appendix, Table A2), shows 
the percentage contribution of each class to risky regions. 
The ratio per category was derived by dividing the total 

weight of the factors by the total weight of the elements. For 
instance, the first and second rows highlight how significant the 
sloped angle is a comparison to the different classes of slope 
angle. The flood probability column gives a ratio of 38% to the 
sloped angles class ranges from 00 and 150, which is significantly 
additional crucial than the other slope categories. Nevertheless, 
the different categories of slope angles in the brow are fewer 
significant for the likelihood of flooding. The AHP method's 
normalized weights are shown in Table 3. The consistency ratio 
was used to assess the consistency of the element class 
importance, and the results for all parameter importance ratings 
are shown in (Appendix, Table A2), The deviations among all 
factors are approved when the CR value for all element categories 
is smaller than 0.1. The pairwise comparative trend results show 
that increases in “slope angle, elevation, and NDVI reduce the 
likelihood of flooding. According to the results concerning 
different characters, the probability of flooding decreases when 
the space between the road and the riverbed widens. Other 
factors, such as drainage density, rainfall, and the various 
geological formations, increase the probability of flooding. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Flood hazard map of the investigation region employing the (a) Bel (degree of belief); (b) Dis (degree of disbelief); (c) Unci (degree of 
uncertainty); “and (d) Pls (degree of plausibility). 

 

Table 2. Pairwise comparison matrix by AHP 

Factors Slope Aspect Elevation Rainfall D.Density D.River Land 
use INDVI D.Road Geology Soil 

Slope 1 3 2 1/2 1/2 1/2 1/3 1/3 3 1/3 1/4 
Aspect 1/3 1 1/2 1/3 1/3 1/2 1/3 1/3 1/3 1/5 1/5 

Elevation 1/2 2 1 1/3 1/2 1/3 1/2 1/2 2 1/5 1/4 
Rainfall 2 3 3 1 3 2 1/2 1/3 3 1/2 1/2 

D.Density 2 3 2 1/3 1 1/2 1/2 1/2 2 1/3 1/3 
D.River 2 2 3 1/2 2 1 3 2 3 1 1/2 
Land use 3 3 2 2 2 1/3 1 1/2 2 1/3 1/4 

NDVI 3 3 2 3 2 1/2 2 1 4 2 1/2 
D.Roadi 1/3 3 1/2 1/3 1/2 1/3 1/2 1/4 1 1/4 1/5 
Geology 3 5 5 2 3 1 3 1/2 4 1 3 

Soil 4 5 4 2 3 2 4 2 5 1/3 1 
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Flooding likelihood and effect are also affected by the 
hydrological action of the soil. Flooding is less likely when 
the soil has a high-water permeability. It is determined by the 
grain size of the clay and the diameter of the pores in that 
clay. Thus, clay has poor permeability and a high-water 
retention capacity. 
 
The “AHP flood” hazard map indicates that places cover 
22.18% of the investigation region with a high or very high 
risk of flooding. The ArcGIS 10.4 software's reclassification 
function was used to pre-process all of the requirements as 
raster datasets while outlining each need in detail. After 
grade, established the authorities' belief in soil 
administration, Geological composition, risk administration, 
and local presidency and experts, their weights were judged 
utilizing IAHP. Through multi-tests reasoning, the 
weightages undeviating consolidation technique of AHP 
created a last flood vulnerability map, Figures4, by 
calculating all raster’s maps cautiously promoting the raster 
computer in the geographical reasoning. 
TheiWGS84/UTM/Zonei38 Norths coordinates systems was 
employed in the ArcGIS 10.4 software’s environments to 
study all the significant sub criteria affecting flooding in the 
study area. A final flood risk area map was created 
and classified into five classes of flood risk (very low, 
low, medium, high, and very high). 

4.3 Flood Causative Factors 

The study region's location and features were considered 
while selecting the flood conditioning parameters. Flood 
vulnerability mapping was created using EBF and AHP 
methods, which integrated the eleven causative factors: 
elevation, soils type, drainages density, distanced tor the 
driver, distanced tor the broad, NDVI, rainfall, aspect, land 
use, slope, and geology. Weights were determined for each 
category of flood conditioning factor. It was discovered that 
areas with highest Bel values and lowest Dis values were the 
most susceptible to flooding by the EBF approach and, at the 
same time, generated a map of flood vulnerability map with 
the AHP approach to determine the high-risk zone of flood in 
the investigation region. 

4.4 Validation 

The present work employed 77 flood and non-flood datasets 
for training and 33 for validation to analyze the model's 
presentation and validate the flood vulnerability map. The 
EBF model had the highest sensitivity value of the AUC 
(0.869) in the training dataset, showing a high degree of 
classification flood pixel performance, followed by AHP 
(0.836). As a result, the (AUC) values indicate the accuracy 
of the two methodologies in flood vulnerability maps, as 
shown in Figure 5. 
 

Figure 4. Flood vulnerability map employing AHP. 

 
Figure 5: Receiver operating characteristic (ROC) curve for EBF and 

AHP methods. 

4.5 Further Discussion 

4.5.1  Evidential belief function (EBF) 
 

Flood vulnerability mapping was generated using EBF by 
incorporating elevation, geology, soil type, slope, rainfall, 
distance to the river, distance to the road, NDVI, land use, 
drainage density, and aspect. By assigning relative importance to 
each category of flood conditioning factors, we found that areas 
with high values for the belief function (Bel) and low values for 
the disbelief function (Dis) were particularly at risk of flooding. 
Furthermore, the EBF model's performance was evaluated using 
the AUC criterion, which indicated that booths training and 
validating points could map flood vulnerability with an AUCI of 
0.763i for achievement band i0.869 for forecast Frates separately.  
Our investigation revealed that distanced from the driver was a 
significant factor in determining vulnerability to flooding. 

Table 3. Normalized Pairwise comparison matrix by AHP for eleven factors weight 

Factors Slope Aspect Elevations Rainfalls D. 
Density 

D. 
River 

Land 
use NDVI D. 

Road Geology Soil 

Slope 1.00 3.00 2.00 0.50 0.50 0.50 0.33 0.33 3.00 0.33 0.25 
Aspect 0.33 1.00 0.50 0.33 0.33 0.50 0.33 0.33 0.33 0.20 0.20 

Elevation 0.50 2.00 1.00 0.33 0.50 0.33 0.50 0.50 2.00 0.20 0.25 
Rainfall 2.00 3.00 3.00 1.00 3.00 2.00 0.50 0.33 3.00 0.50 0.50 

D. 
Density 2.00 3.00 2.00 0.33 1.00 0.50 0.50 0.50 2.00 0.33 0.33 

D.River 2.00 2.00 3.00 0.50 2.00 1.00 3.00 2.00 3.00 1.00 0.50 
Land use 3.00 3.00 2.00 2.00 2.00 0.33 1.00 0.50 2.00 0.33 0.25 

NDVI 3.00 3.00 2.00 3.00 2.00 0.50 2.00 1.00 4.00 2.00 0.50 
D.Road 0.33 3.00 0.50 0.33 0.50 0.33 0.50 0.25 1.00 0.25 0.20 
Geology 3.00 5.00 5.00 2.00 3.00 1.00 3.00 0.50 4.00 1.00 3.00 

Soil 4.00 5.00 4.00 2.00 3.00 2.00 4.00 2.00 5.00 0.33 1.00 
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Because of its proximity to the main channel and rapid flood 
response, the area between 0 and 50 meters in altitude is 
particularly vulnerable to flooding on the Rezan River. 
Flooding is more common in riverside communities because 
of the river's closeness and the fast reaction to flooding, as 
confirmed by (Chapi et al., 2017; Pham et al., 2020). 
Bel values were high (0.448) for both soil type and distance 
from the river. Several soil properties can affect the volume 
of runoff in a catchment area (Tehrany et al., 2019). So, the 
amount of water drains from the ground and causes floods 
depends on the soil's texture (Fontanine & Costache, 2013). 
Based on the results of the present investigation, the 
"Chestnut" soil class was found (Fontanine & Costache, 
2013) to be particularly vulnerable to floods. With a Bel 
value of 0.297, this soil type suggests it limits precipitation 
infiltration, leading to more runoff than Lithosols, Rendzinas, 
and Chromic Cambisols. 
For the NDVI, the highest Bel value of 0.426 was found 
between and (-0.5 to -0.07). According to the results, the 
likelihood of flooding was the highest in areas with the 
fewest number of plants. Given their more excellent Bel 
value and more robust association with floods, these areas 
were more at risk of flooding than other classes, which is in 
line with findings from (Chowdhuri et al., 2020). 
With a Bel value of 0.415 for the land use component (one of 
the human disturbance variables), waters bodies showed the 
uppermost chance of flood occurrence. with such an order, 
Bel values of 0.228, 0.158, 0.143, and 0.057 were recorded 
for farmland, cities, barren land, and forests. Studies have 
shown time and time again that changes in land use and land 
cover have direct or indirect effects on hydrologically 
functions like penetrability (Ossola et al., 2015), 
evapotranspiration’s (Wiles & Sharp Jr, 2008), and runoffs 
(Arabameri et al., 2019). 
Following the distance of the river, soil type, land use, NDVI, 
and elevation was the most crucial factor in determining the 
likelihood of flooding. The category 402 to 800 m elevation 
range already had the highest value of Bel (0.402) and the 
smallest value of Dis (0.129) of all the classes, suggesting a 
greater than average flood risk. In contrast, locations above 
2000 m had the smallest Bel value (0.0).  Theses outcomes 
are in accord with an investigation by (Chowdhuri et al., 
2020) in the catchment of eastern India, (Arabameri et al., 
2019) they mapped the vulnerability to water risks for 
northern Iran, and the (Al-Hinai & Abdalla, 2021) 
investigation in Muscat Governorates, Oman, which 
determined that only locations at a lower elevation were 
affected by floods. 
Regarding geology, the stream terraces layer had the highest 
Bel value, 0.219. This was preceded by the “Bai Hassan 
(Upper Bakhtiari)” section, which produced i0.171, and the 
sloped sediments formations, which had 0.127. On the other 
hand, the scores for the different classes show that flooding 
is not likely to occur because they are lower in Bel and higher 
in Dis. Slope deposition layers and the river terrace of the Bai 
Hassan are primarily composed of clastic sedimentary rocks, 
including conglomerates, sandstone, and claystone, and rock 
pieces with fine clastic. Generally, the area's geology plays a 
crucial role in flood inundation mapping due to the 
involvement of multiple geological formations in 
hydrological processes. According to (Regmi & Poudel, 
2016), they can significantly alter the conductivity and 
penetrability of water flow. 
The soil rapidly gets saturated when rain falls in large 
amounts, leading to flooding. The rain maps gained weight 
from EBF verified this. The heaviest rainfall category (900-
1000 mm) was assigned: the uppermost Bel value (0.283) and 
the lowermost Dis value (0.181), indicating that this category 
experienced the most favourable conditions. So, the more 

plants there are, the more rain is collected, while less water is left 
to run off. 
According to EBF's slope-flood study, the slope percentage class 
00-150 produced the uppermost Bel value (0.343) and the 
lowermost Dis value (0.150). Because of the inverse link between 
slope and Bel value, the locations with the smallest slope earned 
the greatest Bel value and the smallest Dis value. Devkota et al., 
(2013) have drawn connections between land usage, slope, and 
rainfall depending on their observations in the fields. They 
explained that land use significantly affected stability of the 
slope. Forested areas control the flow of water and allow water 
to seep into the soil at periodic intervals, while agricultural land 
might compromise stability of the slope owing to much saturated 
soil.  
When considering another human perturbation factor, distance to 
the road, it is expected that the Bel class has a bigger influence 
on flooding occurrences the closer the location is near the road. 
In addition, in regards of the map of distance from the road, the 
0-25 m class offered the uppermost Bel value of 0.333 and the 
lowermost Dis value of 0.124. Furthermore, the impermeable 
barriers that prevent runoff from percolating into the earth 
increase the frequency and severity of floods. As a result, 
roadways in the area under investigation may be harmed, and 
hazardous flood conditions may arise during a major storm.  
The 0.86-1.43 density group was related to the drainage density 
values, with the greatest Bel value 0.323 band them smallest 
value of Dis being i0.145. According to the results, this 
possibility has the best increase in the spring season. 
(Pourghasemi & Beheshtirad, 2015) confirmed this by noting that 
the incidence of springs increased with drainage intensity, hence 
establishing a direct relationship between drainage density and 
groundwater spring possibility maps. Since rainfall comes sooner 
in the basin with greater drainage density (number of tributary 
rivers), leading to a shorter lag time, larger basins receive more 
rain on the median, resulting in much more discharge. 
By contrast, the southeast had the lowest value of 0.107 for the 
aspect element, and the northwest obtained the greatest value of 
0.244. This factor, which also affects the frequency of floods, is 
vital for wet retention and plant densities. Despite being 
connected to physiographic elements that, according to (Rahmati 
et al., 2016), may affect hydrological conditions and soil moisture 
regimes, the aspect component in the present research had a 
minor effect on floods. In conclusion, the EBF method found that 
distance from the river is the essential primary variable 
contributing equally to flood incidence, then a layer of soil, 
NDVI, elevation, and land use. But rainfall, aspect, and geology 
have the most negligible impact on flood danger, followed by 
slope and distance from the road. 
 
4.5.2 Evidential belief function (EBF) 
 

The hierarchical analysis process (AHP) model has been used in 
this research to evaluate the determined criteria. By combining 
GIS facilities and various data, this model is considered a 
powerful tool in the micro zoning of environmental risks. It 
weights the criteria based on their importance and impact on 
creating flood risk by comparing pairs between the requirements. 
For this purpose, the determining criteria were prepared in pairs 
and hierarchically in the form of a questionnaire. Finally, after 
calculating the average of the questionnaires, the data was 
entered into the special software of the AHP model (Experts 
choices software), and the relative importance of each criterion 
was calculated.  



A. Q. Mikail and R. Hamad / Science Journal of the University of Zakho, 11(1), 1 –10, January-March 2023 
 

 8 

According to Tehrany and Kumar (2018), geology has the 
most weight among the selected layers due to its direct effect 
on water infiltration and runoff, causing floods. They can 
substantially impact the conduction and penetration of water 
flow. Among other factors, the aspect has the least weight 
due to its immediate impact on flooding compared to other 
factors. In the next rank are the factors of soil type, NDVI 
and istance from River, which are assigned more weight due 
to their influence on the concentration of runoff and its speed. 
Finally, flood vulnerability mapping was created using the 

EBF and AHP methods. The risk of flooding has been 
mapped, and the findings are broken into five categories. The 
ranges covered here are very low, low, moderate, high, and 
very thigh. Table 4 shows that the EBF approach covered a 
total area of i211.14 (18.00%), i332.89 (28.38%), 253.48 
(21.61%), i241.98 (20.63%), and 133.48 (11.38%) square 
kilometres, respectively, whereas the AHP approach covered 
a total of 98.88 (8.43%), 335.71 (28.62%), 478.11 
(40.76%),196.59 (16.76%), and 63.57 (5.42%) square 
kilometres, respectively. Accordingly, the research region 
faces a significant probability of flooding, with over 31% for 
the EBF model and over 21% for the AHP model. There were 
high flood susceptibility zones from the junction of the two 
rivers down to the Rezan River's mouth. The transition 
between the high and highly high zones constituted the 
moderate zone. On the other hand, most of the research area 
is located in areas with a low chance of flooding. 

5. CONCLUSIONS 

Maps of flood vulnerability might be valuable tools for 
decision-makers trying to lessen the impact of floods. Here's 
a rundown of the most important findings: 
1. The maps demonstrated that both flood vulnerability 

models were suitable for making flood hazard 
classifications. Nevertheless, the EBF model was more 
effective than the AHP one. Areas with a highest Bel 
and a lower Dis for flood events are particularly 
vulnerable, as shown by an examination of flood 
vulnerability maps. 

2. Flood risk may be predicted using slope direction, 
slope percentage, elevation, soil, proximity to rivers 
and roads, river density, geology, rainfall, NDVI, and 
land use. With much of the area under study situated on 
a mountain plain and steep mountain on all sides, the 
rapid formation of runoff results in floods in low-slope 
regions. 

This study divided the distance from the river into five 
categories; the first category (0-25 m) was more vulnerable 
to flooding, while the chance of flooding decreased with 
further distance from the river. Also, studies found that the 
first class, with the lowest elevation, is more likely to 
experience floods than the other two. Conversely, the first 
class of NDVI variables includes the increased chance of 
floods caused by vegetation's absence and vegetation 
degradation owing to uncontrolled livestock grazing in 
various portions of the study region. 
 

5.1 Limitation 

1. AHP: This model uses precise characteristics for 
judgements. i.e., in practical situations, human emotions are 
murky, and the leaders may not be able to connect the careful 
numerical attributes to the examination assessments. AHP is not 
significant in this case. For creating pairwise correlations, the 
AHP can only accept free criteria. Because nature is inherently 
contradictory and decision-making is based only on the situation 
at hand and the leader's intuition, the AHP cannot take 
uncertainties and threats into account while a chief is making a 
decision.  
When two criteria or options are examined pairwise, input data 
are obtained. In any case, the excessive repetition in the 
correlations is regarded as the reason the pairwise analysis is 
flawed. Due to the lack of information on the criteria and options 
and the lack of focus during pairing testing and speaking, AHP 
allows for irregularity. 
2. EBF: Lack of required resources specific to the EBF model 
in flood bora. Most of the studies that have used the model have 
been conducted on soil erosion.  
3. Difficulties in obtaining points in different parts of the study 
area with GPS due to the high altitudes and difficulties of much 
of the area to get the necessary data for the study. 
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Table A1. The regions, amount of flood locations, and variable value classes in the EBF approach

Layer Classes Area (%) Bel Dis Unc Pls 

Elevation 
(Appendix, Figure C1) 

402 - 800 39% 0.402 0.129 0.469 0.871 
800 - 1300 37% 0.148 0.251 0.601 0.749 

1300 - 1600 19% 0.171 0.217 0.613 0.783 
1600 - 2000 5% 0.279 0.200 0.520 0.800 

>2000 1% 0.000 0.203 0.797 0.797 

Slope 
(Appendix, Figure C2) 

0º – 15º 38% 0.343 0.150 0.507 0.850 
15º – 30º 38% 0.160 0.242 0.598 0.758 
30º – 45º 20% 0.198 0.209 0.593 0.791 
45º – 60º 4% 0.299 0.198 0.503 0.802 
60º – 80º 0% 0.000 0.201 0.799 0.799 

Aspect 
(Appendix, Figure C3) 

North 13% 0.052 0.136 0.812 0.864 
Northeast 12% 0.155 0.121 0.724 0.879 

East 10% 0.159 0.121 0.719 0.879 
Southeast 13% 0.244 0.107 0.648 0.893 

South 17% 0.132 0.123 0.744 0.877 
Southwest 15% 0.090 0.131 0.779 0.869 

West 10% 0.088 0.129 0.783 0.871 
Northwest 11% 0.080 0.131 0.790 0.869 

Rainfall 
(Appendix, Figure C4) 

700 - 800 23% 0.103 0.226 0.671 0.774 
800 - 900 32% 0.168 0.208 0.623 0.792 

900 - 1000 15% 0.283 0.181 0.536 0.819 
1000 – 1100 13% 0.229 0.192 0.579 0.808 
1100 - 1300 17% 0.216 0.193 0.591 0.807 

NDVI 
(Appendix, Figure C5) 

-0.5 to -0.07 22% 0.426 0.147 0.427 0.853 
-0.07 – 0.16 29% 0.226 0.198 0.576 0.802 
0.16 – 0.25 25% 0.142 0.224 0.634 0.776 
0.25 – 0.37 17% 0.094 0.223 0.683 0.777 
0.37 – 0.77 7% 0.112 0.208 0.680 0.792 

Geology 
(Appendix, Figure C6) 

Gercus Formation 3% 0.023 0.053 0.923 0.947 
Pilaspi Formation 4% 0.020 0.054 0.927 0.946 

Sehkaniyan and Sarki 
Formations 1% 0.000 0.053 0.947 0.947 

Chia Gara, Barsarin, 
Naokelekan and 

Sargelu Formation 
3% 0.028 0.053 0.919 0.947 

Balambo, Garagu and 
Sarmord Formation 5% 0.033 0.053 0.914 0.947 

Qamchuqa Formation 19% 0.052 0.050 0.898 0.950 
Tanjero Formation 1% 0.052 0.052 0.895 0.948 

Aqra-Bekhme 
Formation 34% 0.032 0.060 0.908 0.940 

Shiranish Formation 8% 0.092 0.048 0.860 0.952 
Fatha (Lower Fars) 

Formation 4% 0.000 0.055 0.945 0.945 

Mukdadiyah (Lower 
Bakhtiari) Formation 3% 0.000 0.054 0.946 0.946 

Injana (Upper Fars) 
Formation 4% 0.019 0.054 0.927 0.946 

Slope deposits 3% 0.127 0.049 0.824 0.951 
Kolosh Formation 1% 0.000 0.053 0.947 0.947 
Bal Hassan (Upper 

Bakhtiari) Formation 1% 0.171 0.051 0.778 0.949 

Alluvial fan deposits 4% 0.078 0.051 0.871 0.949 
Flood plain deposits 0% 0.000 0.053 0.947 0.947 

River terraces 0% 0.219 0.052 0.730 0.948 
River 1% 0.053 0.052 0.895 0.948 

Soil 
(Appendix, Figure C7) 

Chestnut 8% 0.448 0.192 0.360 0.808 
Lithosols, Rendzinas, 
Chromic cambisols 62% 0.297 0.135 0.569 0.865 

Lithosols, Rendzinas, 
Calcic Xerosols, 

Chromic cambisols 
25% 0.070 0.255 0.675 0.745 

Lithosols, Calcaric 
Regosols, Calcic 

Xerosols, Chernozems 
5% 0.186 0.209 0.605 0.791 

Rough 1% 0.000 0.209 0.791 0.791 

Land use 
(Appendix, Figure C8) 

Water Body 1% 0.415 0.196 0.390 0.804 
Forest 25% 0.057 0.240 0.703 0.760 

Built-up 3% 0.158 0.199 0.642 0.801 
Barren Land 59% 0.143 0.183 0.675 0.817 
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Cultivated Land 12% 0.228 0.182 0.590 0.818 

Distance from Road 
(Appendix, Figure C9) 

0 –25 m 29% 0.333 0.124 0.543 0.876 
25 –50 m 24% 0.195 0.171 0.634 0.829 
50 –75 m 19% 0.153 0.178 0.669 0.822 

75 –100 m 14% 0.079 0.184 0.737 0.816 
100 –125 m 10% 0.146 0.173 0.681 0.827 

>125 m 4% 0.093 0.171 0.736 0.829 

Distance from River 
(Appendix, Figure C10) 

0 –50 m 33% 0.495 0.099 0.407 0.901 
50 –100 m 29% 0.184 0.190 0.626 0.810 

100 –150 m 20% 0.196 0.180 0.624 0.820 
150 –200 m 11% 0.126 0.180 0.694 0.820 
200 –250 m 5% 0.000 0.178 0.822 0.822 

>250 m 2% 0.000 0.173 0.827 0.827 

Drainage density 
(Appendix, Figure C11) 

0 - 0.56 60% 0.077 0.315 0.608 0.685 
0.56 - 0.86 12% 0.144 0.186 0.670 0.814 
0.86 - 1.43 15% 0.323 0.145 0.533 0.855 
1.43 - 1.72 8% 0.301 0.169 0.530 0.831 
1.72 - 2.0 5% 0.156 0.185 0.659 0.815 

 

Table A2. The final weight of the significant elements represents the flood's potential importance in the AHP technique. 

Factors Factor weights Class Class weights Pixels Weights (%) 

Slope 0.052 

0º – 15º 0.020 2847957 38% 
15º – 30º 0.020 2849154 38% 
30º – 45º 0.010 1480220 20% 
45º – 60º 0.002 327470 4% 
60º – 80º 0.000 36494 0% 

Aspect 0.027 

North 0.003 968570 13% 
Northeast 0.003 870225 12% 

East 0.003 738698 10% 
Southeast 0.003 963574 13% 

South 0.005 1270832 17% 
Southwest 0.004 1122706 15% 

West 0.003 761336 10% 
Northwest 0.003 845354 11% 

Elevation 0.035 

402 - 800 0.014 2911766 39% 
800 - 1300 0.013 2787192 37% 

1300 - 1600 0.007 1410943 19% 
1600 - 2000 0.002 369680 5% 

>2000 0.000 61714 1% 

Rainfall 0.098 

700 - 800 0.022 1713774 23% 
800 - 900 0.031 2395279 32% 

900 - 1000 0.015 1156930 15% 
1000 - 1100 0.013 991732 13% 
1100 - 1300 0.017 1283549 17% 

Drainage density 0.059 

0 - 0.56 0.035 4523909 60% 
0.56 - 0.86 0.007 937667 12% 
0.86 - 1.43 0.009 1133371 15% 
1.43 - 1.72 0.005 575488 8% 
1.72 - 2.0 0.003 370829 5% 

Distance from River 0.12 

0 –50 m 0.039 2475505 33% 
50 –100 m 0.034 2152474 29% 

100 –150 m 0.023 1471414 20% 
150 –200 m 0.014 859135 11% 
200 –250 m 0.006 403107 5% 

> 250 m 0.003 179629 2% 

Land use 0.082 

Water Body 0.001 87193 1% 
Forest 0.021 1916937 25% 

Built-up 0.002 228532 3% 
Barren Land 0.048 4435024 59% 

Cultivated Land 0.009 873492 12% 

NDVI 0.138 

-0.5 to -0.07 0.030 2601235 22% 
-0.07 – 0.16 0.041 3470022 29% 
0.16 – 0.25 0.034 2925801 25% 
0.25 – 0.37 0.023 1964136 17% 
0.37 – 0.77 0.010 822089 7% 

Distance from Road 0.038 

0 –50 m 0.011 2219874 29% 
50 –100 m 0.009 1819891 24% 

100 –150 m 0.007 1425567 19% 
150 –200 m 0.005 1033994 14% 
200 –250 m 0.004 748374 10% 

> 250 m 0.001 293564 4% 
Geology 0.176 Gercusi iformation 0.006 251405 3% 
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Pilaspii iformation 0.007 296001 4% 
Sehkaniyani andi Sarkii 

iformation 0.002 92034 1% 

Chiai Gara,i Barsarin,i 
Naokelekani andi 

Sargelui iformation 
0.005 211047 3% 

Balambo,i Garagui andi 
Sarmordi iformation 0.008 353511 5% 

Qamchuqai iformation 0.034 1450876 19% 
Tanjeroi iformation 0.003 111483 1% 

Aqra-Bekhmei 
iformation 0.059 2548840 34% 

Shiranishi iformation 0.013 569951 8% 
Fathai (Loweri Fars)i 

iformation 0.007 282264 4% 

Mukdadiyahi (Loweri 
Bakhtiari)i iformation 0.005 203665 3% 

Injanai (Upperi Fars)i 
iformation 0.007 307547 4% 

Slopei ideposits 0.005 229963 3% 
Koloshi iFormation 0.002 97375 1% 

Bali Hassani (Upperi 
iBakhtiari)i iformation 0.002 68402 1% 

Alluviali fani deposits 0.007 297859 4% 
Floodi plaini deposits 0.001 30479 0% 

Riveri iterraces 0.001 26734 0% 
iRiver 0.003 110493 1% 

Soil 0.175 

iChestnut 0.014 585913 8% 
Lithosols,i Rendzinas,i 
Chromici icambisols 0.108 4647205 62% 

Lithosols,i Rendzinas,i 
Calcici Xerosols,i 

Chromici cambisols 
0.044 1876501 25% 

Lithosols,i Calcarici 
Regosols,i Calcici 

Xerosols,i 
iChernozems 

0.008 353653 5% 

iRough 0.002 77992 1% 
 

 

 
Figure C1. Elevation map of the study area. 

 
Figure C3. Aspect map of the study area. 

 
Figure C2. Slope map of the study area. 

 
 

Figure C4. Rainfall map of the study area. 
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Figure C5. NDVI map of the study area 

 
Figure C9. Distance from the Road map of the study area. 

 

 
Figure C6. Geology map of the study area. 

 
Figure C10. Distance from main river map of the study area. 

 
Figure C7. soil map of the study area. 

 
Figure C11. Drainage density of the study area. 

 
Figure C8. Land use and land cover map of the study area. 

 

 


