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ABSTRACT: 

One of the most well-known methods for unconstrained problems is the quasi-Newton approach, iterative solutions. The 

great precision and quick convergence of the quasi-Newton methods are well recognized. In this work, the new algorithm 

for the symmetric rank one SR1 method is driven. 

The strong Wolfe line search criteria define the step length selection. We also proved the new quasi-Newton equation and 

positive definite matrix theorem. Preliminary computer testing on the set of fourteen unrestricted optimization test 

functions leads to the conclusion that this new method is more effective and durable than the implementation of classical 

SR1 method in terms of iterations count and functions. 

KEYWORDS: Quasi-Newton, Symmetric Rank One, Positive Definite Matrix, Unconstrained Optimization, Nonlinear 

Optimization.

INTRODUCTION 

There are several initiatives to improve the Hessian matrix's 

approximation. Zhang J. and Xu Ch. proposed the modified 

Quasi-Newton condition (Zhang  and Xu Ch.,2001).  They used 

both gradient and function-meaning knowledge to achieve a 

higher-order accuracy in approximating the second curvature of 

the objective function. 

Based on the extended quasi-Newton condition that was 

modified by authors in (Issam, Basim and Aadil ,2022), the 

symmetric rank one update ensures that the approach preserves 

its symmetric and positive definite properties. It also guarantees 

global and superliner convergence. The following unrestricted 

optimization issue is taken into consideration: 

 

Min. 𝑓 (𝑥), 𝑥 ∈ 𝑅𝑛                                                 (*) 

 

where  𝑓 ∶  𝑅𝑛  →  𝑅 , 𝑛 is the number of variables and, is a 

continuously differentiable function. There are several iterative 

approaches available to solve the issue (*) One of the most 

often-used approaches is the quasi-Newton (QN) method 

(Farzin , Malik  and Wah ,2009). 

 

The classic quasi-Newton equation is satisfied by some well-

known updates of H, but very few of them have been able to 

compete numerically with the well-known Cullum and Brayton 

(SR1) formula (Cullum and Brayton,1979) (Issam, Basim and  

Aadil A.,2022). 

 

𝐻𝑘+1 = 𝐻𝑘 + 
( 𝑣𝑘 − 𝐻𝑘𝑦𝑘)(  𝑣𝑘 − 𝐻𝑘𝑦𝑘)𝑇

𝑦𝑘
𝑇 (  𝑣𝑘 − 𝐻𝑘𝑦𝑘)

             

To get more updates on the values  of 𝐻𝑘+1, see (Basheer,hl, 

2016),(Dennis & Schnabel,1982), (Fletcher,1980),( Gill, P, 

Murray&Wright,1981),( Mahmood & Farqad ,2017)( 

Philipp,2013), (Saad & Jaafer ,2022) and ( Wah & Malik A. 

,2009) iteratively determining a new solution approximation 

using quasi-Newton techniques. 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 ,  𝑘 = 0,1,2, …                   

                                                              

where 𝑥𝑘 is currently the iterative point., 𝛼𝑘 > 0 is a step length 

and 𝑑𝑘 is the search direction. This direction is calculated by 

          𝑑𝑘 = − 𝐻𝑘𝑔𝑘                                                                                                                     

Every time an iteration occurs, the matrix 𝐻𝑘 is changed to a 

new Hessian inverse approximation, 𝐻𝑘+1, for which the usual 

QN equation applies.: 

  𝐻𝑘+1𝑦𝑘 = 𝑣𝑘  

where      𝑣𝑘 =   𝛼𝑘 𝑑𝑘 = 𝑥𝑘+1 − 𝑥𝑘,   𝑦𝑘    =  𝑔𝑘+1 - 𝑔𝑘 

The strong Wolfe terms (SWT), which is the line search method 

is defined as follows: 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝑐1𝛼𝑘𝑔𝑘
𝑇𝑑𝑘                                                                                  

|𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇𝑑𝑘|  ≤ −𝑐2𝑔𝑘
𝑇𝑑𝑘                                                                                       

where 0 < 𝑐1 < 𝑐2 < 1 

THE NEW METHOD'S DERIVATION AND 

ITS ALGORITHM 

Derivation of New Algorithm 

       To identify a minimum of many dimensions’ nonlinear 

functions, the method's basic concept is to apply a modified 

quasi-Newton condition approximation. The modified quasi-

Newton condition is as follows. 

 𝐻𝑘+1�̅�𝑘 = 𝑣𝑘 

where �̅�𝑘 = �̅�𝑘+1 − 𝑔𝑘 and  �̅�𝑘+1 = 𝑔𝑘 − 𝜓
𝑔𝑘

𝑇𝑣𝑘

𝑣𝑘
𝑇𝑦𝑘

𝑦𝑘 such that 

𝜓 > 0 and 𝑣𝑘
𝑇𝑦𝑘 ≠ 0 

The correction term in rank one is  𝛼𝑘𝑧𝑘𝑧𝑘
𝑇 where 𝛼𝑘 ∈ 𝑅 and 

𝑧𝑘 ∈ 𝑅𝑛 . Therefore, the updated equation is  

𝐻𝑘+1=𝐻𝑘+𝛼𝑘𝑧𝑘𝑧𝑘
𝑇                                                            (1)                                                            

Observe that if  𝐻𝑘 is symmetric, then so is   𝐻𝑘+1 . Our goal 

now is to determine 𝛼𝑘  𝑎𝑛𝑑 𝑧𝑘. 

given   𝐻𝑘 , �̅�𝑘 and 𝑣𝑘 so that the required relationship  

𝐻𝑘+1�̅�𝑘 = 𝑣𝑘                                                                      (2)                                                                

is satisfied. In other words, given 𝐻𝑘 , �̅�𝑘 and 𝑣𝑘 we wish to 

find 𝛼𝑘  𝑎𝑛𝑑 𝑧𝑘 , to ensure that  

𝐻𝑘+1�̅�𝑘 = (𝐻𝑘 + 𝛼𝑘𝑧𝑘𝑧𝑘
𝑇)�̅�𝑘 = 𝑣𝑘 

first, note that  𝑧𝑘
𝑇�̅�𝑘is a scalar. Thus  

𝑣𝑘-𝐻𝑘�̅�𝑘 = (𝛼𝑘𝑧𝑘
𝑇�̅�𝑘)𝑧𝑘                                                     (3) 

and hence   𝑧𝑘 = 
  𝑣𝑘 − 𝐻𝑘�̅�𝑘 

𝛼𝑘(𝑧𝑘
𝑇�̅�𝑘)

           

We can now determine  𝛼𝑘𝑧𝑘𝑧𝑘
𝑇 = 

  (𝑣𝑘 − 𝐻𝑘�̅�𝑘)(𝑣𝑘 − 𝐻𝑘�̅�𝑘)T 

𝛼𝑘(𝑧𝑘
𝑇�̅�𝑘)2    

Hence,                                                           

𝐻𝑘+1=𝐻𝑘+
(  𝑣𝑘 − 𝐻𝑘�̅�𝑘)( 𝑣𝑘 − 𝐻𝑘�̅�𝑘)𝑇

𝛼𝑘(𝑧𝑘
𝑇�̅�𝑘)2                                        (4)    
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Now multiply (3) by �̅�𝑘
𝑇  to obtain  

�̅�𝑘
𝑇𝑣𝑘 - �̅�𝑘

𝑇𝐻𝑘�̅�𝑘 = �̅�𝑘
𝑇(𝛼𝑘𝑧𝑘

𝑇�̅�𝑘)𝑧𝑘          

Since 𝛼𝑘 is scalar and �̅�𝑘
𝑇  𝑧𝑘 =  𝑧𝑘

𝑇�̅�𝑘, then the above equation 

becomes  

�̅�𝑘
𝑇𝑣𝑘-�̅�𝑘

𝑇𝐻𝑘�̅�𝑘 = 𝛼𝑘(𝑧𝑘
𝑇�̅�𝑘)2                                              (5) 

By putting equation (5) in equation (4) we have, 

𝐻𝑘+1=𝐻𝑘+
( 𝑣𝑘 − 𝐻𝑘�̅�𝑘)(  𝑣𝑘 − 𝐻𝑘�̅�𝑘)𝑇

�̅�𝑘
𝑇 (  𝑣𝑘 − 𝐻𝑘�̅�𝑘)

                                        (6) 

Which is the new algorithm of symmetric rank one 

2.2 Algorithm of New Method 

Step (1): Given 𝑥0 ∈ 𝑅𝑛 an initial vector, 𝐻0 ∈ 𝑅𝑛×𝑛 a 

symmetric and positive definite matrix,𝜓 > 0, 𝜖 > 0 a 

termination scalar. 𝑘 = 0 and compute 𝑓(𝑥0), 𝑔0 

Step (2): Compute 𝑔𝑘 = 𝛻𝑓(𝑥𝑘) 

Step (3): Compute 𝑑𝑘 = −𝐻𝑘𝑔𝑘. 

Step (4): Find  𝛼𝑘 > 0 satisfying the strong Wolfe condition. 

Step (5): Calculate 𝑣𝑘 = 𝛼𝑘𝑑𝑘      ,    𝑥𝑘+1 = 𝑥𝑘 + 𝑣𝑘 , 𝑔𝑘+1 =
∇𝑓(𝑥𝑘+1)  ,   𝑦𝑘    =  𝑔𝑘+1 - 𝑔𝑘 

 Step (6):  Compute �̅�𝑘 = �̅�𝑘+1 − 𝑔𝑘     , 

   �̅�𝑘+1 = 𝑔𝑘 − 𝜓
𝑔𝑘

𝑇𝑣𝑘

𝑣𝑘
𝑇𝑦𝑘

𝑦𝑘  ,   If ‖𝑔𝑘+1‖ ≤ 𝜖 stop. 

Step (7): 𝐻𝑘+1 = 𝐻𝑘 + 
( 𝑣𝑘 − 𝐻𝑘�̅�𝑘)(  𝑣𝑘 − 𝐻𝑘�̅�𝑘)𝑇

�̅�𝑘
𝑇 (  𝑣𝑘 − 𝐻𝑘�̅�𝑘)

 

Step (9): If |𝑔𝑘+1
𝑇𝑔𝑘| ≥ 0.2‖𝑔𝑘+1‖2 go to step (3) 

Step (10):  Set k=k+1, and go to step (4). 

Theorem I: For the new algorithm applied to the quadratic 

functions with Hessian matrix  𝑄 = 𝑄𝑇, we have 

 𝐻𝑘+1�̅�𝑘 = 𝑣𝑘  , 𝑘 ≥ 0. 
Proof: Multiplying both sides of (6) by �̅�𝑘 from the left, we find 

𝐻𝑘+1�̅�𝑘 = 𝐻𝑘�̅�𝑘 + 
( 𝑣𝑘 − 𝐻𝑘�̅�𝑘)(  𝑣𝑘 − 𝐻𝑘�̅�𝑘)𝑇

�̅�𝑘
𝑇 (  𝑣𝑘 − 𝐻𝑘�̅�𝑘)

�̅�𝑘 

Since �̅�𝑘
𝑇 (  𝑣𝑘  −  𝐻𝑘�̅�𝑘) and  (  𝑣𝑘  −  𝐻𝑘�̅�𝑘)𝑇�̅�𝑘 are scalars, 

then 

𝐻𝑘+1�̅�𝑘 = 𝐻𝑘�̅�𝑘 +𝑣𝑘  −  𝐻𝑘�̅�𝑘 . So, we have   𝐻𝑘+1�̅�𝑘  = 𝑣𝑘 

Theorem II: The matrix 𝐻𝑘+1 produced by the new monotonic 

approach is positively definite if 𝐻𝑘  is positive definite. 

Proof: Multiply equation (6) by  �̅�𝑘 from the right and by  �̅�𝑘
𝑇  

from the left, we get 

�̅�𝑘
𝑇𝐻𝑘+1�̅�𝑘 = �̅�𝑘

𝑇𝐻𝑘�̅�𝑘 + �̅�𝑘
𝑇 ( 𝑣𝑘 − 𝐻𝑘�̅�𝑘)(  𝑣𝑘 − 𝐻𝑘�̅�𝑘)𝑇

�̅�𝑘
𝑇 (  𝑣𝑘 − 𝐻𝑘�̅�𝑘)

�̅�𝑘      

              �̅�𝑘
𝑇 (  𝑣𝑘  −  𝐻𝑘�̅�𝑘) and  (  𝑣𝑘  −  𝐻𝑘�̅�𝑘)𝑇�̅�𝑘 are scalars, 

so 

�̅�𝑘
𝑇  (  𝑣𝑘  −  𝐻𝑘�̅�𝑘) = (  𝑣𝑘  −  𝐻𝑘�̅�𝑘)𝑇�̅�𝑘 So, we have  

�̅�𝑘
𝑇𝐻𝑘+1�̅�𝑘 = �̅�𝑘

𝑇𝐻𝑘�̅�𝑘 +  �̅�𝑘
𝑇(𝑣𝑘  – 𝐻𝑘�̅�𝑘) = �̅�𝑘

𝑇𝐻𝑘�̅�𝑘 +
 �̅�𝑘

𝑇𝑣𝑘  – �̅�𝑘
𝑇𝐻𝑘�̅�𝑘 

⇒ �̅�𝑘
𝑇𝐻𝑘+1�̅�𝑘 = 𝑣𝑘

𝑇�̅�𝑘  

𝑣𝑘
𝑇�̅�𝑘 = 𝑣𝑘

𝑇(�̅�𝑘+1 − 𝑔𝑘) = 𝑣𝑘
𝑇 ( 𝑔𝑘 − 𝜓

𝑔𝑘
𝑇𝑣𝑘

𝑣𝑘
𝑇𝑦𝑘

𝑦𝑘 − 𝑔𝑘) 

⇒   𝑣𝑘
𝑇�̅�𝑘 =  𝑣𝑘

𝑇 𝑔𝑘 − 𝜓
𝑔𝑘

𝑇𝑣𝑘

𝑣𝑘
𝑇𝑦𝑘

𝑣𝑘
𝑇𝑦𝑘 − 𝑣𝑘

𝑇𝑔𝑘   

Since 𝑣𝑘 =  𝛼𝑘𝑑𝑘 and  𝑑𝑘 = −𝐻𝑘𝑔𝑘, we have  

𝑣𝑘
𝑇�̅�𝑘 = −𝜓𝑔𝑘

𝑇𝑣𝑘 = −𝜓𝑔𝑘
𝑇𝛼𝑘𝑑𝑘 = −𝜓𝛼𝑘𝑔𝑘

𝑇(−𝐻𝑘𝑔𝑘)  ⇒
  𝑣𝑘

𝑇𝑦𝑘 = 𝜓𝛼𝑘𝑔𝑘
𝑇𝐻𝑘𝑔𝑘 

Since 𝐻𝑘 , 𝜓 and 𝛼𝑘  are positive then 𝐻𝑘+1 is also positive 

which makes the proof complete. 

ILLUSTRATIONS AND TABLES 

          This part focused on testing the implementation of the 

new method. The recent upgrade of SR1 and standard SR1 are 

evaluated in this study . Well-known nonlinear problems 

(classical test function) with various functions are used in the 

comparison testing for 5 ≤ 𝑁 ≤ 2000. All programs are created 

in FORTRAN 95, and the terminating condition is present in 

every case  ‖𝑔𝑘+1‖ ≤ 10−5 

and restart using Powell's condition |𝑔𝑘
𝑇𝑔𝑘+1| ≥

0.2‖𝑔𝑘+1‖2.The line search routine was a cubic interpolation 

that uses function and gradient values. 

The numbers of iterations, ISN Sand, and FSN are particularly 

mentioned in the findings in Tables (3. I) and (3. II). These 

tables of experimental findings demonstrate that the new 

algorithm outperforms the traditional approach of SR1 in terms 

of the number of iterations ISN and the number of functions 

FSN. 

 

 

Table (3. I) Comparison of the Standard SR1 and the New Algorithm 

 

 

No. of Check Check Function N Standard Formula (SR1) New Formula 

ISN FSN ISN FSN 

 

1 

 

Wood 5 

100 

500 

2000 

40 

266 

815 

2223 

194 

918 

3067 

6937 

21 

24 

24 

24 

61 

68 

67 

68 

2 Cubic 5 

100 

500 

2000 

19 

49 

59 

72 

67 

144 

181 

224 

15 

16 

18 

18 

44 

46 

50 

50 

3 Rosen 5 

100 

500 

2000 

35 

328 

991 

1699 

112 

1246 

4196 

51420 

12 

12 

12 

12 

34 

34 

34 

34 

4 Powell 5 

100 

500 

2000 

19 

71 

52 

41 

64 

211 

168 

120 

15 

18 

19 

28 

41 

48 

49 

75 

5 Sum 5 

100 

500 

2000 

10 

439 

1329 

FF 

47 

1892 

5323 

FF 

9 

224 

541 

FF 

32 

897 

2198 

FF 
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6 Nondiagonal 5 

100 

500 

2000 

22 

42 

42 

50 

74 

175 

283 

236 

18 

12 

22 

31 

53 

57 

61 

94 

7 G-Helical 5 

100 

500 

2000 

20 

FF 

FF 

FF 

62 

FF 

FF 

FF 

19 

19 

19 

19 

47 

47 

47 

47 

8 G-Central 5 

100 

500 

2000 

21 

22 

23 

23 

254 

260 

266 

266 

16 

16 

17 

17 

71 

71 

78 

78 

9 Wolfe 5 

100 

500 

2000 

8 

72 

82 

182 

19 

157 

178 

772 

9 

43 

46 

60 

19 

88 

95 

138 

10 Beal 5 

100 

500 

2000 

9 

10 

10 

11 

27 

27 

27 

29 

7 

7 

7 

8 

21 

21 

21 

23 

11 Fred 5 

100 

500 

2000 

7 

8 

10 

10 

24 

28 

29 

29 

6 

7 

7 

7 

19 

21 

21 

21 

12 Resip 5 

100 

500 

2000 

6 

6 

6 

6 

19 

19 

19 

19 

6 

6 

7 

7 

14 

14 

16 

16 

13 Shallow 5 

100 

500 

2000 

8 

8 

8 

10 

28 

28 

28 

32 

7 

7 

7 

7 

19 

19 

19 

19 

14 Miele 5 

100 

500 

2000 

29 

35 

35 

46 

97 

142 

122 

150 

24 

25 

25 

35 

65 

69 

69 

112 

Totals   4661 63452 1468 5084 

 

 

Note, FF means failure and we mean that the function did not 

work in the standard algorithm and worked in the new algorithm 

and when calculating the rate of improvement, we took the 

multipler value the function that did not work in the standard 

algorithm. 

Table (3. II) A comparison of the new method's and the old algorithm's rates of improvement (SR1) 

 

Tools  SR1-Method New Method 

ISN 100% 31.4954% 

FSN 100% 8.0124% 
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Figures (3. I) Performing algorithms for the ISN and the FSN

Table (3. I), Table (3. II), and Fig. (3. I) compare the rate of 

improvement of the new algorithm to the traditional 

technologies. (SR1), The numerical results of the new algorithm 

are better than the standard algorithm since we observe that 

(ISN), and (FSN) of the standard algorithm (SR1) are about 

100%, This means the new algorithm has improved on the 

standard algorithm (SR1) prorate (68.5046%) in (ISN) and 

prorate (91.9876%) in (FSN). The new algorithm has generally 

improved prorate (80.2461%) compared to conventional 

algorithms (SR1). 

CONCLUSION 

In this study, we introduced a brand-new symmetric rank one 

(SR1) approach with a few unique characteristics, such as the 

quasi-Newtonian requirement and the positive definite property. 

According to numerical results, this new algorithm outperforms 

the conventional symmetric rank one. 
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 Future updates and adjustments to the DFP and BFGS 

nonlinear unconstrained optimization techniques can be 

proposed in the same manner. 

ABBREVIATIONS: QN Quasi Newton SR1 symmetric rank 

one, Min minimum,  𝑔𝑘=∇𝑓(𝑥𝑘) gradients, SWT strong Wolfe 

Terms, ISN iterations number, FSN functions number. 
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