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ABSTRACT.

We prove that a homomorphism ¢ from complete normed algebra A into an n-dimensional normed
algebra B is automatically continuous. As a consequence, B is ACHR-algebra.
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INTRODUCTION.
A classical topic in the theory of
automatic  continuity is that of
determining those normed algebras B which
satisfy Property ACHR-algebra which is defined
as follows:
If for each homomorphismgp:A —B from a

complete normed algebra (A, |||,) into a normed

algebra (B,|[,) is continuous, then (B,|,) is

called (Automatic Continuity of
Homomorphisms into the Right side of the arrow)
algebra, in short ACHR-algebra.

Usually,  property ~ ACHR-algebra  is(i)
considered in an associative context, so that the
normed algebra B is assumed to be associative,
and property ACHR-algebra for B means that,
for every associative complete normed algebra A
each homomorphismg: A —B is continuous.

For an approach to results in this direction, the
reader is referred to the survey paper of [Dales
1978]. In this paper we are interested in the
natural non-associative meaning of property
ACHR-algebra. Then the normed algebra B need
not be associative, and, even if B is associative,
property ACHR-algebra for B has the stronger
sense that, for every possibly non- associative
complete normed algebra A, each
homomorphism¢ : A —B is continuous. In this

new setting, we know that real or complex
absolute-valued algebras, as well as complete
normed complex algebras with no non-zero
two-sided topological divisors of zero, have
property ACHR-algebra (see[Rodriguez 2000]).
It is known that a real or complex complete
normed quadratic algebras have property
ACHR-algebra if and only if has no isotropic
element (see[Cedilnik 2013]).

As a main result, we show that an
n-dimensional algebras with multiplication table
(see Table 3) equipped with suitable norm have
property  ACHR if and only if

n-1
agy, +§ZlZﬁiZi #0

i1
1.-TYPES OF ACHR-ALGEBRAS.

Algebras arising throughout this paper are not
assumed to be associative . We present some
facts about ACHR-algebras.

If (B,/|,) is an ACHR-algebraand C — Ba
subalgebra with a norm ||| for which
o >0 VxeC:|X|. <a|X|, .
then(C, || ) is also ACHR-algebra.
If a normed algebra (B,|[|) has isotropic

element X (i.e:x #0,x* =0), then it is not an
ACHR-algebra.
(iii) Let a normed algebra (B, [|[) be algebraic of

the first order (any element generates a
subalgebra of dimension < 1), then

(B.||)is an ACHR-algebra if and only if

B={0} orB=F.
(iv) Any complex commutative associative
semisimple Banach algebra is

ACHR-algebra .
Let (B,|[) be a normed algebra, e¢ B,

D:=Fe®B. We make D unital algebra in the
following
way

(ce+X)(e+y) =afke+(ay+ X+XY)
and equip it with a suitable norm | . From (i)
it follows that if

Jw>0 VxeB : x|, <X,

and if (D,||,)is ACHR-algebra, then so is

(B.||,)- This statement has the opposite
direction proposition(v).
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definitions of

Biflls) s

(v) If (assuming previous
(B.},) and (D[],
ACHR-algebra, if
dw>0 VxeB : X, <afx]|,
and if the direct sum Fe @ B is topological,

then (D, ||, ) is also ACHR-algebra.

Suppose that a normed algebra (B, [)is a
direct sum of two-sided ideals: B = GLDI B, . By(i),

if (B,|[) is ACHR-algebra , so is each of
(B,,|{) . This statement has the following
reverse.

(vi) Let a normed algebra (B,[[) be a finite

direct sum of two-sided ideals: B = _(J_alBi If

all (B;, ) are ACHR-algebra, then (B, |)is
too.

(vii) Suppose that a normed algebra (B,]|[) is
ACHR-algebra and that there exists another

norm ||| on B, such that (B[l is
complete normed algebra. Then the
topology of the norm || is weaker than

the one of H||“
Jo>0 VxeB : x| <afx|.
If (B,|[|) is also complete, the topologies are

homomorphic and (BHHH) is ACHR-algebra as

well.
(viii) Let (B,|||,) be areal normed algebra and

C=B®( its complexification with a
norm ||[.. If (C.||.) is ACHR-algebra,
thenalsois (B,]),)-

(ix) Let (B.||[) be a complex normed algebra
and Bgthe same algebra, viewed as a real
algebra. If (Bg,[[) is ACHR-algebra, then
alsois (B,[).

(x) Let (B,|]) be a real or complex complete

normed quadratic algebra. Then the
following statements are equivalent:

(@) B is ACHR-algebra;

(b) B has no isotropic elements;
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(c) B=C or B=C ®C (=the direct sum
of two one-dimensional ideals).
(xi) A two-dimensional algebra with the
multiplication table

Table 1. Multiplication table

E X
e E X
X X ae+ B X

equipped with a suitable norm is ACHR-algebra
ifand only if S +4a #0.
(xii) Any smooth algebra is ACHR-algebra.

2.- The MAIN RESULT.

Note that in facts (1-xi) a two-dimensional
algebra is ACHR-algebra and we will show that
a  three-dimensional algebra is  also
ACHR-algebra. Finally, we generalize this result
to an n-dimensional algebra to be
ACHR-algebra.

Recall that from [Palmer 1994], a Point
derivation of unital algebra A aty (y be a point

of Gelfand space) is a linear
functional o : A—>C satisfying:
&(ab) =5(a)y(b) + y(a)y(b).
Proposition2.1. Let A be a unital normed
algebra with a discontinuous point derivation
oatyel, (ie:T,={all non-zero algebra
homomorphisms of Ainto C}). Let B be a unital
normed algebra (such as the matrix algebra M,)
with some non-zero nilpotent element. Then
there is a discontinuous unital homomorphism of
Ainto B.
Proof. (see,[Palmer 1994]). o

Recall also that, the strong radical of an
algebra A is the intersection of all maximal
modular two-sided ideals of A and denoted by
S-Rad(A). If S-Rad(A)={0}, then A is said to be
strongly semi-simple.
Example2.1. Let A be any infinite-dimensional
Banach space construct a Banach algebra by
defining all products to be zero, let w be a
discontinuous linear functional on A. Then the

map ¢:A—> M, defined by

o(a) = (g “’éa)j

Yae A

Is a discontinuous homomorphism into the



Journal of University of Zakho (JUOZ), Vol.1, (A) No.1, Pp. 333-337, 2013

finite-dimensional strongly semi-simple algebra
M,. Note that this construction depends on
nothing except the fact that the matrix unit e;,
satisfies (e;2)°=0. Hence there is a discontinuous
into any algebra with a non-zero nilpotent
element ( i.e ;a #0 ,a"=0). A non -zero
element X of an algebra A is said to be isotropic
(nilpotent) if x2=0.

Corollary 2.1. Let ¢ be a homomorphism from a
complete normed algebra A into a normed
algebra B with isotropic element then ¢ is

discontinuous .
Proof.(see, Example 2.1). o

Recall that from [Rodriguez 1983], for a
vector space X we denote by L(X) the
associative algebra of all linear mappings from
X into X. For an element a in a nonassociative

algebra A we denote by L, (resp.: R,) the
element in L(A) defined by
L,(x) =ax (resp.: R, (X) =xa) for all x in A

and we denote by L, and R, the

sets L, ={L,:ae A}, R,={R,:acA}. A
subalgebra A of an associative algebra B is
called a full subalgebra of B if A contains the
quasiinverses of its elements that are

quasiregular in B. Let A be a nonassociative
algebra. The full subalgebra of L(A) generated

by L, UR, will be called the full multiplication

algebra of A and will be denoted by FM(A).
Finally. If A is a nonassociative algebra and if C
is any subalgebra of L(A) such that LAURAc
C < FM(A). Considered as the largest
C-invariant subspace of A consisting of elements
a such that L, and R, lie in the Jacobson radical
of C. This subspace will be called the C-radical
of A and denoted by C-Rad(A).The ultra-weak
radical of A (uw-Rad(A)) is defined as the sum
of all the C-radicals of A when C runs through
the set of all subalgebras of L(A) satisfying
LalURac Cc= FM(A). Since the weak radical of
A'is a C-radical (take C = FM(A)) it follows that
w-Rad(A) c uw-Rad(A).

Proposition2.2. Let B be a complete normed
algebra over F whose ultraweakradical is zero.
Then all homomorphisms from complete normed

algebras over F onto B are automatically
continuous.
Proof.(see,[ Rodriguez 1983]). o
Lemmaz2.1. Let B be a finite-dimensional algebra
over F without isotropic elements. Then the
ultra-weak radical of B is equal to zero.
Proof.(see,[Cedilnik and Rodriguez 2003]). o
Proposition2.3. Let¢be a homomorphism from
a complete normed algebra A into a
finite-dimension algebra B, then ¢ s
continuous if and only if B has no isotropic
element.
Proof. Let ¢ is continuous. If B has isotropic
element by Corollary 2.1, we have contradiction.
Conversely, let B has no isotropic element and
@ be a homomorphism from a complete normed
algebra A into B . Since both the finite
dimensionality and the absence of isotropic
elements are inherited by all subalgebras of B,
there is no loss of generality in assuming that ¢ is
surjective . Then, since B has zero ultra-weak
radical (by Lemma 2.1), the continuity of
¢ follows from Proposition 2.2. o

Proposition2.4. Let ¢ be a homomorphism

from a complete normed algebra A into
3-dimension algebra B with multiplication table
equipped in Table 2 with suitable norm. Then,

@ is continuous if and only if
ad+ fo*a+ysab 0.
Table 2. Multiplication table
e a b
e e a b
a a A& ab
b b ba ce+patip

Proof .(i) Suppose that ¢ is continuous we
will prove that ada+ fBo’a+ydb=0 . If
ada+ fS5%a+ysab =0, we have (ab)>=0

(because (ab)® =a’bh* = A(ae + fa+ ) = ad+ B5*a+ ysab =0).

Therefore, B has isotropic element. And by
Corollary2.1, we get¢ is not continuous, which

is a contradiction.

Therefore, ada+ Bo°a+ydab=0.
Let ad+ foa+ ysab =0, we will prove that
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@ s continuous:

from (i) note that B has no isotropic element and
its finite-dimension and by Proposition 2.3, we

complete normed algebra A into an
n-dimensional algebra B with multiplication
table equipped in Table 3 with suitable norm and

have ¢ is continuous. o vectors X(n —1) defined by:

Theorem2.1. Lete be a homomorphism from a
Table 3. Multiplication table

e 2 Z, x .
€ € ;(1 Zz Zn-l
x, X, ox, XX, .. XX,
z, z, X, X, 7(2) X, X,
Zn»l Zn—l Zn-lzl Zn»IZZ Z(n_l)

n-1

x(n—1)=ce+> B for n>3,
i=1
n-1
Then g is continuous if and only if ey, + 8y, Y B x; #0.
i=1
Proof .We shall use the method of mathematical induction:
(i) If n=3 we get, the multiplication table as in the following form

: e X, x,
e e . Z,
X, X, ox, X Z,
x, X, X, X, x(2)

2
where X(2) =ae+ Y BX =ae+BX + B,X,.
i=1
Then ¢ is continuous if and only if  ady, + B,6° 1, + B0, %, 0. This follows directly from
proposition 2.4,
(ii) Suppose that the theorem is true when n=r
Then the multiplication table will be in the following form

: e X, x, X,
e e 9 Z, VAT
X, X, ox, XX, VAV AT
Z, z, XX, 7(2) X, X,
Zr_l Zr_l Zr-lll Zr-llZ Z(r_l)
r-1 r-1
where y(r —1) :ae+z,6’i;(i . Theng is continuous if and only if adk; +§Xlzﬂi X; #0.
i=1 i=1
Now, we shall prove that the theorem is true for n=r +1. Consider the following table:
: e X, Z, Xy
e e X, Z, Xy
X, X, ox, XX, X Xy
ZZ ZZ ZZZI Z(Z) ZZZF
Xy Xy YAV VAV x(r)
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where y(r) = ce+ Zﬂi;(i for r > 2. Then, we shall prove that¢ is continuous if and only if
i=1

ady, +8¢, . By #0. Let ¢ be continuous, we will prove that ady, + ;Y. B x; # 0. Now

i=1 i=1

if ady, +3r. Y Bix; =0. Note that (¥, £ 1)>=0

i=1

(because: ( iz, ) =xix?=0 X1 (ae+ Y Bixi)=ady, + 3. Y. Bix; =0 ). Therefore, B has

i=1 i=1

isotropic element (%, #0,(x.x,)? =0)and by Corollary 2.1, we have ¢ is not continuous. Thus

r r
a contradiction. That isady, + 5, Y, B,z #0. Conversely, let ady, +, > Bix; #0 , we will
i=1 i=1
continuous.  Note that B has no element

prove that ¢ s isotropic

(because (7,7, )* =a5;(1+5;(125i;(i #0) and finite-dimension. By proposition 2.3, we get¢g is

i=1

continuous. Consequently, the theorem is true for any n. This complete the proof. O
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