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ABSTRACT. 

We prove that a homomorphism from complete normed algebra A into an n-dimensional normed 

algebra B is automatically continuous. As a consequence, B is ACHR-algebra. 
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INTRODUCTION. 

 classical topic in the theory of 

automatic continuity is that of 

determining those normed algebras B which 

satisfy Property ACHR-algebra which is defined 

as follows: 

If for each homomorphism :A B from a 

complete normed algebra (A,
A

. ) into a normed 

algebra (B,
B

. ) is continuous, then (B,
B

. ) is 

called (Automatic Continuity of 

Homomorphisms into the Right side of the arrow) 

algebra, in short ACHR-algebra. 

Usually, property ACHR-algebra is 

considered in an associative context, so that the 

normed algebra B is assumed to be associative, 

and property ACHR-algebra for B means that, 

for every associative complete normed algebra A 

each homomorphism : A B is continuous. 

For an approach to results in this direction, the 

reader is referred to the survey paper of [Dales 

1978]. In this paper we are interested in the 

natural non-associative meaning of property 

ACHR-algebra. Then the normed algebra B need 

not be associative, and, even if B is associative, 

property ACHR-algebra for B has the stronger 

sense that, for every possibly non- associative 

complete normed algebra A, each 

homomorphism : A B is continuous. In this 

new setting, we know that real or complex 

absolute-valued algebras, as well as complete 

normed complex algebras with no non-zero 

two-sided topological divisors of zero, have 

property ACHR-algebra (see[Rodriguez 2000]). 

It is known that a real or complex complete 

normed quadratic algebras have property 

ACHR-algebra if and only if has no isotropic 

element (see[Cedilnik 2013]). 

As a main result, we show that an 

n-dimensional algebras with multiplication table 

(see Table 3) equipped with suitable norm have 

property ACHR if and only if 







1

1

11

n

i

ii  0 

1.-TYPES OF ACHR-ALGEBRAS.  

Algebras arising throughout this paper are not 

assumed to be associative . We present some 

facts about ACHR-algebras. 

If (B,
B

. ) is an ACHR-algebra and BC  a 

subalgebra with a norm 
C

. for which  

             <0 
BC

xxCx  : , 

then(C,
C

. ) is also ACHR-algebra.  

(i) If a normed algebra (B, . ) has isotropic 

element x (i.e: )0,0 2  xx , then it is not an                                                                        

ACHR-algebra. 

(iii) Let a normed algebra ).,(B be algebraic of 

the first order (any element generates a 

subalgebra of dimension  1), then 

).,(B is an ACHR-algebra if and only if 

B={0} or B F.   

(iv) Any complex commutative associative 

semisimple Banach algebra is 

ACHR-algebra . 

   Let ).,(B  be a normed algebra, Be , 

BFeD : . We make D unital algebra in the 

following 

way :

)(:))(( xyxyeyexe    

and equip it with a suitable norm 
D

. . From (i) 

it follows that if  

                   

DB
xxBx   :0  

and if ).,(
D

D is ACHR-algebra, then so is 

)..,(
B

B This statement has the opposite 

direction proposition(v). 

 

A 
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(v) If (assuming previous definitions of 

)).,().,(
DB

DandB ).,(
B

B is 

ACHR-algebra, if  

   
BD

xxBx   :0  

and if the direct sum BFe  is topological, 

then ).,(
D

D is also ACHR-algebra. 

Suppose that a normed algebra ).,(B is a 

direct sum of two-sided ideals: i
Ii
BB


 . By(i), 

if ).,(B  is ACHR-algebra , so is each of 

).,( iB . This statement has the following 

reverse. 

(vi) Let a normed algebra ).,(B  be a finite 

direct sum of two-sided ideals: i

n

i
BB

1
 . If 

all ).,( iB are ACHR-algebra, then ).,(B is 

too. 

(vii) Suppose that a normed algebra ).,(B  is 

ACHR-algebra and that there exists another 

norm .  on B, such that ).,(B  is 

complete normed algebra. Then the 

topology of the norm .  is weaker than 

the one of . : 

xxBx   :0 . 

If ).,(B  is also complete, the topologies are 

homomorphic and ).,(B is ACHR-algebra as 

well. 

(viii) Let ).,(
B

B  be a real normed algebra and 

 BC : ₵  its complexification with a 

norm 
C

. . If (C,
C

. ) is ACHR-algebra, 

then also is ).,(
B

B . 

(ix) Let ).,(B  be a complex normed algebra 

and 
RB the same algebra, viewed as a real 

algebra. If ).,( RB  is ACHR-algebra, then 

also is ).,(B .   

(x) Let ).,(B  be a real or complex complete 

normed quadratic algebra. Then the 

following statements are equivalent: 

(a) B  is ACHR-algebra; 

(b) B  has no isotropic elements; 

(c) B  ₵  or B  ₵  ₵  (=the direct sum 

of two one-dimensional ideals). 

(xi) A two-dimensional algebra with the 

multiplication table 

 
Table 1. Multiplication table 

 

 

 

 

 

 

equipped with a suitable norm is ACHR-algebra 

if and only if 042   . 

(xii) Any smooth algebra is ACHR-algebra. 

 

2.- The MAIN RESULT. 

Note that in facts (1-xi) a two-dimensional 

algebra is ACHR-algebra and we will show that 

a three-dimensional algebra is also 

ACHR-algebra. Finally, we generalize this result 

to an n-dimensional algebra to be 

ACHR-algebra. 

   Recall that from [Palmer 1994], a Point 

derivation of unital algebra A at (  be a point 

of Gelfand space) is a linear 

functional  : CA  satisfying:

)()()()()( babaab   . 

Proposition2.1. Let  A be a unital normed 

algebra with a discontinuous point derivation 

 at A ( ei. :
A ={all non-zero algebra 

homomorphisms of A into C}). Let B be a unital 

normed algebra (such as the matrix algebra M2) 

with some non-zero nilpotent element. Then 

there is a discontinuous unital homomorphism of 

A into B. 

Proof. (see,[Palmer 1994]). □ 

Recall also that, the strong radical of an 

algebra A is the intersection of all maximal 

modular two-sided ideals of A and denoted by 

S-Rad(A). If S-Rad(A)={0}, then A is said to be 

strongly semi-simple. 

Example2.1. Let A be any infinite-dimensional 

Banach space construct a Banach algebra by 

defining all products to be zero, let  be a 

discontinuous linear functional on A. Then the 

map 2: MA   defined by  

        









00

)(0
)(

a
a


          

Aa  

 

Is a discontinuous homomorphism into the 

. E x  

e E x  

x  x   e+ x  
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finite-dimensional strongly semi-simple algebra 

M2. Note that this construction depends on 

nothing except the fact that the matrix unit e1,2 

satisfies (e1,2)
2
=0. Hence there is a discontinuous 

into any algebra with a non-zero nilpotent 

element ( ei. ;a 0 ,a
n
=o). A non -zero 

element x of an algebra A is said to be isotropic 

(nilpotent) if 
2x =0. 

Corollary 2.1. Let be a homomorphism from a 

complete normed algebra A into a normed 

algebra B with isotropic element then  is 

discontinuous . 

Proof.(see, Example 2.1). □ 

Recall that from [Rodriguez 1983], for a 

vector space X we denote by L(X) the 

associative algebra of all linear mappings from 

X into X. For an element a in a nonassociative 

algebra A we denote by aL (resp.: aR ) the 

element in L(A) defined by 

axxLa )( (resp.: xaxRa )( ) for all x in A 

and we denote by aL  and aR the 

sets }:{ AaLL aA  , }:{ AaRR aA  . A 

subalgebra A of an associative algebra B is 

called a full subalgebra of B if A contains the 

quasiinverses of its elements that are 

quasiregular in B. Let A be a nonassociative 

algebra. The full subalgebra of L(A) generated 

by AA RL  will be called the full multiplication 

algebra of A and will be denoted by FM(A). 

Finally. If A is a nonassociative algebra and if C 

is any subalgebra of L(A) such that LAURA  

C  FM(A). Considered as the largest 

C-invariant subspace of A consisting of elements 

a such that La and Ra lie in the Jacobson radical 

of C. This subspace will be called the C-radical 

of A and denoted by C-Rad(A).The ultra-weak 

radical of A (uw-Rad(A)) is defined as the sum 

of all the C-radicals of A when C runs through 

the set of all subalgebras of L(A) satisfying 

LA RA C FM(A). Since the weak radical of 

A is a C-radical (take C = FM(A)) it follows that 

w-Rad(A) uw-Rad(A). 

Proposition2.2. Let B be a complete normed 

algebra over F whose ultraweakradical is zero. 

Then all homomorphisms from complete normed 

algebras over F onto B are automatically 

continuous. 

Proof.(see,[ Rodriguez 1983]). □ 

Lemma2.1. Let B be a finite-dimensional algebra 

over F without isotropic elements. Then the 

ultra-weak radical of B is equal to zero. 

Proof.(see,[Cedilnik and Rodriguez 2003]). □ 

Proposition2.3. Let be a homomorphism from 

a complete normed algebra A into a 

finite-dimension algebra B, then   is 

continuous if and only if B has no isotropic 

element. 

Proof. Let   is continuous. If  B has isotropic 

element by Corollary 2.1, we have contradiction.  

   Conversely, let B has no isotropic element and 

 be a homomorphism from a complete normed 

algebra A into B . Since both the finite 

dimensionality and the absence of isotropic 

elements are inherited by all subalgebras of B, 

there is no loss of generality in assuming that  is 

surjective . Then, since B has zero ultra-weak 

radical (by Lemma 2.1), the continuity of 

 follows from Proposition 2.2. □ 

Proposition2.4. Let   be a homomorphism 

from a complete normed algebra A into 

3-dimension algebra B with multiplication table 

equipped in Table 2 with suitable norm. Then, 

  is continuous if and only if 

02  abaa  . 

 
Table 2. Multiplication table 

. e  a  b  

e  e  a  b  

a  a  a  ab  

b  b  ba  
bae    

 

Proof .(i) Suppose that   is continuous we 

will prove that 02  abaa  . If 

02  abaa  , we have 0)( 2 ab   

  

(because 0)()( 2222  abaabaeabaab  ). 

 

 Therefore, B has isotropic element. And by 

Corollary2.1, we get  is not continuous, which 

is a contradiction.  

Therefore, 02  abaa  . 

Let 02  abaa  , we will prove that 
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  is continuous:  

from (i) note that B has no isotropic element and 

its finite-dimension and by Proposition 2.3, we 

have   is continuous. □                                                             

Theorem2.1. Let  be a homomorphism from a 

complete normed algebra A into an 

n-dimensional algebra B with multiplication 

table equipped in Table 3 with suitable norm and 

vectors )1( nx defined by:   

  Table 3 . Multiplication table                            

. e  


1 


2 . . . 
n - 1 

e  e  


1 


2 . . . 
n - 1 


1 


1  

1 


1


2 . . . 
1


n - 1 


2 


2 


2


1 )2(
 

. . . 
2


n - 1 

: : : : . . . : 


n - 1 


n – 1 


n - 1


1 


n - 1


2 . . . )1( n

 

i

1n

1i

i xe1)x(n 




    for 3n ,                                                                               

Then is continuous if and only if  





1

1

11

n

i

ii ≠0. 

Proof .We shall use the method of  mathematical induction: 

(i) If n=3 we get, the multiplication table as in the following form 

. e  


1 


2 

e  e  


1 


2 


1 


1  

1 


1


2 


2 


2 


2


1 )2(
 

where 



2

1

)2(
i

ii xex  2211 xxe   . 

Then    is continuous if and only if   2121

2

11   ≠0. This follows directly from 

proposition 2.4,  

(ii) Suppose that the theorem is true when n=r  

Then the multiplication table will be in the following form 

. e  


1 


2 . . . 
r - 1 

e  e  


1 


2 . . . 
r - 1 


1 


1  

1 


1


2 . . . 
1


r - 1 


2 


2 


2


1 )2(
 

. . . 
2


r - 1 

: : : : . . . : 


r - 1 


r – 1 


r - 1


1 


r - 1


2 . . . )1( r

 

where 





1

1

)1(
r

i

iier  . Then  is continuous if and only if 0
1

1

11  




i

r

i

i xxx  .                                                                                                                                   

Now, we shall prove that the theorem is true for 1 rn . Consider the following table:  

. e  


1 


2 . . . 
r 

e  e  


1 


2 . . . 
r 


1 


1  

1 


1


2 . . . 
1


r 


2 


2 


2


1 )2(
 

. . . 
2


r 

: : : : . . . : 


r 


r 


r


1 


r


2 . . . )(rx
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where 



r

i

iier
1

)(      for 2r . Then, we shall prove that  is continuous if and only if 





r

i

ii

1

11 0 . Let   be continuous, we will prove that 



r

i

ii

1

11 0 . Now 

if 



r

i

ii

1

11  =0. Note that ( 1
 r)

2
=0                                       

(because: ( r1 )
2 

=
22

1 r = 
1 ( 




r

i

iie
1

 )= 



r

i

ii

1

11  =0 ). Therefore, B has 

isotropic element ( )0)(,0 2

11  rr  and by Corollary 2.1, we have   is not continuous. Thus 

a contradiction. That is 



r

i

ii

1

11 0 . Conversely, let 



r

i

ii

1

11 0  , we will 

prove that   is continuous. Note that B has no isotropic element 

(because 



r

i

iir

1

11

2

1 0)(  ) and finite-dimension. By proposition 2.3, we get  is 

continuous. Consequently, the theorem is true for any n. This complete the proof.  □  
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n ACHR  
 .المخلص

. يكون مستمر تلقائياً nذا بُعد  Bالى جبر معياري  Aمن جبر معياري كامل  اثبتنا ان التشاكل 

 . ACHRيكون جبر من النمط  Bكنتيجة 
 


