ON N-DIMENSIONAL ACHR-ALGEBRAS

Amir Abdulillah Mohammed And Abdulhakeem Luqman Hasan Department of Mathematics. College of Education. University of Mosul. Mosul. Iraq (Accepted for publication: June 9, 2013)

ABSTRACT.

We prove that a homomorphism φ from complete normed algebra A into an n-dimensional normed algebra B is automatically continuous. As a consequence, B is ACHR-algebra.

KEYWORD: Automatic continuity, Finite-dimension, Homomorphism, Normed algebra.

INTRODUCTION.

A classical topic in the theory of automatic continuity is that of determining those normed algebras B which satisfy Property ACHR-algebra which is defined as follows:

If for each homomorphism $\varphi : A \to B$ from a complete normed algebra $(A, \|.\|_A)$ into a normed algebra $(B, \|.\|_B)$ is continuous, then $(B, \|.\|_B)$ is called (Automatic Continuity of Homomorphisms into the Right side of the arrow) algebra, in short ACHR-algebra.

is(i) Usually, property ACHR-algebra considered in an associative context, so that the normed algebra B is assumed to be associative, and property ACHR-algebra for B means that, for every associative complete normed algebra A each homomorphism $\varphi : A \rightarrow B$ is continuous. For an approach to results in this direction, the reader is referred to the survey paper of [Dales 1978]. In this paper we are interested in the natural non-associative meaning of property ACHR-algebra. Then the normed algebra B need not be associative, and, even if B is associative, property ACHR-algebra for B has the stronger sense that, for every possibly non- associative complete normed algebra Α, each homomorphism $\varphi : A \rightarrow B$ is continuous. In this new setting, we know that real or complex absolute-valued algebras, as well as complete normed complex algebras with no non-zero two-sided topological divisors of zero, have property ACHR-algebra (see[Rodriguez 2000]). It is known that a real or complex complete normed quadratic algebras have property ACHR-algebra if and only if has no isotropic element (see[Cedilnik 2013]).

As a main result, we show that an n-dimensional algebras with multiplication table (see Table 3) equipped with suitable norm have property ACHR if and only if

$$\alpha \delta \chi_1 + \delta \chi_1 \sum_{i=1}^{n-1} \beta_i \chi_i \neq 0$$

1.-TYPES OF ACHR-ALGEBRAS.

Algebras arising throughout this paper are not assumed to be associative . We present some facts about ACHR-algebras.

If $(\mathbf{B}, \|.\|_B)$ is an ACHR-algebra and $C \subset B$ a subalgebra with a norm $\|.\|_C$ for which

$$\exists \omega > 0 \quad \forall x \in C : \|x\|_{C} \le \omega \|x\|_{B},$$

then(C, $\|.\|_{C}$) is also ACHR-algebra.

If a normed algebra $(\mathbf{B}, \|\cdot\|)$ has isotropic element x (i.e: $x \neq 0, x^2 = 0$), then it is not an ACHR-algebra.

- (iii) Let a normed algebra (B, ...) be algebraic of the first order (any element generates a subalgebra of dimension ≤ 1), then (B, ...) is an ACHR-algebra if and only if B={0} or B ≅ F.
- (iv) Any complex commutative associative semisimple Banach algebra is ACHR-algebra .

Let $(B, \|.\|)$ be a normed algebra, $e \notin B$, $D := Fe \oplus B$. We make D unital algebra in the following way :

$$(\alpha e + x)(\beta e + y) := \alpha \beta e + (\alpha y + \beta x + xy)$$

and equip it with a suitable norm $\|\cdot\|_D$. From (i) it follows that if

$$\exists \omega > 0 \ \forall x \in B : \left\| x \right\|_{B} \le \omega \left\| x \right\|_{D}$$

and if $(D, \|.\|_D)$ is ACHR-algebra, then so is $(B, \|.\|_B)$. This statement has the opposite direction proposition(v).

(v) If (assuming previous definitions of $(B, \|.\|_{B})$ and $(D, \|.\|_{D})$) $(B, \|.\|_{B})$ is ACHR-algebra, if $\exists \omega > 0 \ \forall x \in B : \|x\|_{D} \le \omega \|x\|_{B}$

and if the direct sum $Fe \oplus B$ is topological, then $(D, \|.\|_{D})$ is also ACHR-algebra.

Suppose that a normed algebra $(B, \|.\|)$ is a direct sum of two-sided ideals: $B = \bigoplus_{i \in I} B_i$. By(i), if $(B, \|.\|)$ is ACHR-algebra , so is each of $(B_i, \|.\|)$. This statement has the following reverse.

- (vi) Let a normed algebra $(B, \|\cdot\|)$ be a finite direct sum of two-sided ideals: $B = \bigoplus_{i=1}^{n} B_i$. If all $(B_i, \|\cdot\|)$ are ACHR-algebra, then $(B, \|\cdot\|)$ is too.
- (vii) Suppose that a normed algebra $(B, \|.\|)$ is ACHR-algebra and that there exists another norm $\|.\|$ on B, such that $(B, \|.\|)$ is complete normed algebra. Then the topology of the norm $\|.\|$ is weaker than the one of $\|.\|$: $\exists \omega > 0 \ \forall x \in B : \|x\| \le \omega \|x\|$.

If $(B, \|.\|)$ is also complete, the topologies are homomorphic and $(B, \|.\|)$ is ACHR-algebra as well.

- (viii) Let $(B, \|\cdot\|_B)$ be a real normed algebra and $C := B \otimes \mathbb{C}$ its complexification with a norm $\|\cdot\|_C$. If $(C, \|\cdot\|_C)$ is ACHR-algebra, then also is $(B, \|\cdot\|_B)$.
- (ix) Let $(B, \|\cdot\|)$ be a complex normed algebra and B_R the same algebra, viewed as a real algebra. If $(B_R, \|\cdot\|)$ is ACHR-algebra, then also is $(B, \|\cdot\|)$.
- (x) Let $(B, \|.\|)$ be a real or complex complete normed quadratic algebra. Then the following statements are equivalent:
 - (a) B is ACHR-algebra;
 - (b) B has no isotropic elements;

(c) $B \cong \mathbb{C}$ or $B \cong \mathbb{C} \oplus \mathbb{C}$ (=the direct sum of two one-dimensional ideals).

(xi) A two-dimensional algebra with the multiplication table

 Table 1. Multiplication table

•		Е	X
	е	Е	x
	x	x	$\alpha + \beta x$

equipped with a suitable norm is ACHR-algebra if and only if $\beta^2 + 4\alpha \neq 0$.

(xii) Any smooth algebra is ACHR-algebra.

2.- The MAIN RESULT.

Note that in facts (1-xi) a two-dimensional algebra is ACHR-algebra and we will show that a three-dimensional algebra is also ACHR-algebra. Finally, we generalize this result to an n-dimensional algebra to be ACHR-algebra.

Recall that from [Palmer 1994], a Point derivation of unital algebra A at γ (γ be a point of Gelfand space) is a linear functional δ : $A \rightarrow C$ satisfying: $\delta(ab) = \delta(a)\gamma(b) + \gamma(a)\gamma(b)$.

Proposition2.1. Let A be a unital normed algebra with a discontinuous point derivation δ at $\gamma \in \Gamma_A$ (*i.e* : $\Gamma_A =$ {all non-zero algebra homomorphisms of A into C}). Let B be a unital normed algebra (such as the matrix algebra M₂) with some non-zero nilpotent element. Then there is a discontinuous unital homomorphism of A into B.

Proof. (see,[Palmer 1994]). □

Recall also that, the strong radical of an algebra A is the intersection of all maximal modular two-sided ideals of A and denoted by S-Rad(A). If $S-Rad(A)=\{0\}$, then A is said to be strongly semi-simple.

Example2.1. Let A be any infinite-dimensional Banach space construct a Banach algebra by defining all products to be zero, let ω be a discontinuous linear functional on A. Then the map $\varphi: A \to M_2$ defined by

$$\varphi(a) = \begin{pmatrix} 0 & \omega(a) \\ 0 & 0 \end{pmatrix}$$

 $\forall a \in A$

Is a discontinuous homomorphism into the

finite-dimensional strongly semi-simple algebra M_2 . Note that this construction depends on nothing except the fact that the matrix unit $e_{1,2}$ satisfies $(e_{1,2})^2=0$. Hence there is a discontinuous into any algebra with a non-zero nilpotent element (*i.e* ;a $\neq 0$,aⁿ=o). A non -zero element *x* of an algebra A is said to be isotropic (nilpotent) if $x^2=0$.

Corollary 2.1. Let φ be a homomorphism from a complete normed algebra A into a normed algebra B with isotropic element then φ is discontinuous.

Proof.(see, Example 2.1). □

Recall that from [Rodriguez 1983], for a vector space X we denote by L(X) the associative algebra of all linear mappings from X into X. For an element a in a nonassociative algebra A we denote by L_a (resp.: R_a) the defined element in L(A) by $L_a(x) = ax$ (resp.: $R_a(x) = xa$) for all x in A and we denote by L_a and R_a the sets $L_A = \{L_a : a \in A\}$, $R_A = \{R_a : a \in A\}$. A subalgebra A of an associative algebra B is called a full subalgebra of B if A contains the quasiinverses of its elements that are quasiregular in B. Let A be a nonassociative algebra. The full subalgebra of L(A) generated by $L_A \bigcup R_A$ will be called the full multiplication algebra of A and will be denoted by FM(A). Finally. If A is a nonassociative algebra and if C is any subalgebra of L(A) such that $L_A UR_A \subset$ $C \subset FM(A)$. Considered as the largest C-invariant subspace of A consisting of elements a such that L_a and R_a lie in the Jacobson radical of C. This subspace will be called the C-radical of A and denoted by C-Rad(A). The ultra-weak radical of A (uw-Rad(A)) is defined as the sum of all the C-radicals of A when C runs through the set of all subalgebras of L(A) satisfying $L_A \mid R_A \subset C \subset FM(A)$. Since the weak radical of A is a C-radical (take C = FM(A)) it follows that w-Rad(A) \subset uw-Rad(A).

Proposition2.2. Let B be a complete normed algebra over F whose ultraweakradical is zero. Then all homomorphisms from complete normed

(because $(ab)^2 = a^2b^2 = \delta a(\alpha e + \beta a + \gamma b) = \alpha \delta a + \beta \delta^2 a + \gamma \delta a b = 0$).

Therefore, B has isotropic element. And by Corollary2.1, we get φ is not continuous, which is a contradiction.

algebras over F onto B are automatically continuous.

Proof.(see,[Rodriguez 1983]). □

Lemma2.1. Let B be a finite-dimensional algebra over F without isotropic elements. Then the ultra-weak radical of B is equal to zero.

Proof.(see,[Cedilnik and Rodriguez 2003]). □

Proposition2.3. Let ϕ be a homomorphism from a complete normed algebra A into a finite-dimension algebra B, then ϕ is continuous if and only if B has no isotropic element.

Proof. Let ϕ is continuous. If B has isotropic element by Corollary 2.1, we have contradiction.

Conversely, let B has no isotropic element and ϕ be a homomorphism from a complete normed algebra A into B. Since both the finite dimensionality and the absence of isotropic elements are inherited by all subalgebras of *B*, there is no loss of generality in assuming that ϕ is surjective. Then, since B has zero ultra-weak radical (by Lemma 2.1), the continuity of ϕ follows from Proposition 2.2. \Box

Proposition2.4. Let φ be a homomorphism from a complete normed algebra A into 3-dimension algebra B with multiplication table equipped in Table 2 with suitable norm. Then, φ is continuous if and only if $\alpha \delta a + \beta \delta^2 a + \gamma \delta a b \neq 0$.

 Table 2. Multiplication table

	е	а	b
е	е	а	b
а	а	ба	ab
b	b	ba	$\alpha e + \beta a + \gamma b$

Proof .(i) Suppose that φ is continuous we will prove that $\alpha \delta a + \beta \delta^2 a + \gamma \delta a b \neq 0$. If $\alpha \delta a + \beta \delta^2 a + \gamma \delta a b = 0$, we have $(ab)^2 = 0$

Therefore, $\alpha \delta a + \beta \delta^2 a + \gamma \delta a b \neq 0$. Let $\alpha \delta a + \beta \delta^2 a + \gamma \delta a b \neq 0$, we will prove that

φ is continuous:

from (i) note that B has no isotropic element and its finite-dimension and by Proposition 2.3, we have φ is continuous. \Box

complete normed algebra A into an n-dimensional algebra B with multiplication table equipped in Table 3 with suitable norm and vectors x(n-1) defined by:

Theorem 2.1. Let φ	be a homomorphism from a
Table 3 . Multiplica	ation table

	е	\mathcal{X}_{1}	$\chi_{_2}$	 χ_{n-1}
е	е	$\mathcal{X}_{_{1}}$	$\chi_{_2}$	 χ_{n-1}
$\chi_{_1}$	$\chi_{_1}$	$\delta \chi_1$	$\chi_1 \chi_2$	 $\chi_1 \chi_{n-1}$
$\chi_{_2}$	$\chi_{_2}$	$\chi_{2}\chi_{1}$	$\chi(2)$	 $\chi_{2}\chi_{n-1}$
:	:	:	:	 :
$\chi_{_{n-1}}$	χ_{n-1}	$\chi_{n-1}\chi_1$	$\chi_{n-1}\chi_{2}$	 $\chi(n-1)$
	1			

$$x(n-1) = \alpha e + \sum_{i=1}^{n-1} \beta_i x_i \quad \text{for } n \ge 3,$$

Then φ is continuous if and only if $\alpha \delta \chi_1 + \delta \chi_1 \sum_{i=1}^{n-1} \beta_i \chi_i \neq 0.$

Proof We shall use the method of mathematical induction: (i) If n=3 we get, the multiplication table as in the following form

	е	$\chi_{_1}$	χ_{2}
е	е	χ_{1}	χ_{2}
\mathcal{X}_{1}	$\chi_{_1}$	$\delta \chi_{1}$	$\chi_1 \chi_2$
$\chi_{_2}$	$\chi_{_2}$	$\chi_{2}\chi_{1}$	χ(2)
	2		

where $x(2) = \alpha e + \sum_{i=1}^{2} \beta_i x_i = \alpha e + \beta_1 x_1 + \beta_2 x_2.$

Then φ is continuous if and only if $\alpha \delta \chi_1 + \beta_1 \delta^2 \chi_1 + \beta_2 \delta \chi_1 \chi_2 \neq 0$. This follows directly from proposition 2.4,

(ii) Suppose that the theorem is true when n=r

Then the multiplication table will be in the following form

	е	$\chi_{_1}$	$\chi_{_2}$		$\chi_{r_{-1}}$
е	е	$\mathcal{X}_{_{1}}$	$\chi_{_2}$		$\chi_{r_{-1}}$
$\mathcal{X}_{_{1}}$	${\mathcal X}_{_1}$	$\delta \chi_{1}$	$\chi_1 \chi_2$		$\chi_1 \chi_{r-1}$
$\chi_{_2}$	$\chi_{_2}$	$\chi_{2}\chi_{1}$	χ(2)		$\chi_{2}\chi_{r-1}$
:	:	:	:		:
$\chi_{r_{-1}}$	$\chi_{r_{-1}}$	$\chi_{r_{-1}}\chi_{1}$	$\chi_{r_{-1}}\chi_{2}$		$\chi(r-1)$
where $\chi(r-$	$1) = \alpha e + \sum_{r=1}^{r-1} d_r$	$\beta_i \chi_i$. Then φ	is continuous if	f and only if	$\alpha \delta x_1 + \delta x_1 \sum_{i=1}^{r-1} \beta_i x_i \neq$
NT 1	<i>i</i> =1		C .	1 0 1	$1 \qquad 1 \qquad$
Now, we sha	$\frac{1}{i=1}$	theorem is tr	ue for $n = r + \frac{\gamma}{\gamma}$	1. Consider	the following table:
Now, we sha	$\frac{\sum_{i=1}^{n}}{e}$	the theorem is true χ_1	$\frac{\text{ue for } n = r + \chi_2}{\chi_2}$	1. Consider	the following table: χ_r
Now, we sha	$\frac{11 \text{ prove that th}}{e}$	$\frac{\chi_1}{\chi_1}$	$\frac{\text{ue for } n = r + \chi_2}{\chi_2}$	1. Consider 	the following table: $\frac{\chi_{\rm r}}{\chi_{\rm r}}$
Now, we shat $\frac{1}{e}$	$\frac{e}{\chi_{1}}$	the theorem is true $\frac{\chi_1}{\chi_1}$	$\frac{\text{ue for } n = r + \chi_2}{\chi_2}$ $\frac{\chi_2}{\chi_1 \chi_2}$	1. Consider 	the following table: $\frac{\chi_{\rm r}}{\chi_{\rm r}}$ $\frac{\chi_{\rm r}}{\chi_{\rm 1}\chi_{\rm r}}$
Now, we shall $\frac{e}{\chi_1}$	$\frac{\frac{1}{e}}{\frac{e}{\chi_{1}}}$	the theorem is true $\frac{\chi_1}{\chi_1}$ $\frac{\chi_2}{\chi_2}$	$\frac{\text{ue for } n = r + \chi_2}{\chi_2}$ $\frac{\chi_2}{\chi_1 \chi_2}$ $\chi(2)$	1. Consider 	the following table: $\frac{\chi_{\rm r}}{\chi_{\rm r}}$ $\frac{\chi_{\rm r}}{\chi_{\rm 2}\chi_{\rm r}}$
Now, we shat e χ_1 χ_2 \vdots	$\frac{e}{e}$ $\frac{\chi_{1}}{\chi_{2}}$ $\frac{\chi_{2}}{\chi_{2}}$	the theorem is true χ_1 χ_1 χ_1 χ_2 χ_2 χ_1 χ_2 χ_1 χ_2 χ_1 χ_2 χ_1 χ_2 χ_1 χ_2 χ_1 χ_2 χ_1 χ_2 χ	$\frac{\text{ue for } n = r + \chi_2}{\chi_2}$ $\frac{\chi_2}{\chi_1 \chi_2}$ $\frac{\chi_2}{\chi(2)}$:	1. Consider 	the following table: $\frac{\chi_{\rm r}}{\chi_{\rm r}}$ $\frac{\chi_{\rm r}}{\chi_{\rm 2}\chi_{\rm r}}$:

where $\chi(r) = \alpha e + \sum_{i=1}^{r} \beta_i \chi_i$ for $r \ge 2$. Then, we shall prove that φ is continuous if and only if $\alpha \delta \chi_1 + \delta \chi_1 \sum_{i=1}^{r} \beta_i \chi_i \ne 0$. Let φ be continuous, we will prove that $\alpha \delta \chi_1 + \delta \chi_1 \sum_{i=1}^{r} \beta_i \chi_i \ne 0$. Now if $\alpha \delta \chi_1 + \delta \chi_1 \sum_{i=1}^{r} \beta_i \chi_i = 0$. Note that $(\chi_1 \chi_r)^2 = 0$ (because: $(\chi_1 \chi_r)^2 = \chi_1^2 \chi_r^2 = \delta \chi_1 (\alpha e + \sum_{i=1}^{r} \beta_i \chi_i) = \alpha \delta \chi_1 + \delta \chi_1 \sum_{i=1}^{r} \beta_i \chi_i = 0$). Therefore, B has isotropic element $(\chi_1 \chi_r \ne 0, (\chi_1 \chi_r)^2 = 0)$ and by Corollary 2.1, we have φ is not continuous. Thus a contradiction. That is $\alpha \delta \chi_1 + \delta \chi_1 \sum_{i=1}^{r} \beta_i \chi_i \ne 0$. Conversely, let $\alpha \delta \chi_1 + \delta \chi_1 \sum_{i=1}^{r} \beta_i \chi_i \ne 0$, we will prove that φ is continuous. Note that B has no isotropic element (because $(\chi_1 \chi_r)^2 = \alpha \delta \chi_1 + \delta \chi_1 \sum_{i=1}^{r} \beta_i \chi_i \ne 0$) and finite-dimension. By proposition 2.3, we get φ is continuous. Consequently, the theorem is true for any n. This complete the proof. \Box

REFRENCE.

- Bade, W.G., and Curtis Jr, P.C.(1978). Prime ideals and automatic continuity problems for Banach algebra. *J. Funct. Anal*, 29, 88-103.
- Cedilnik, A., and Rodriguez, A.(2001). Automatic continuity of homomorphisms into normed quadratic algebras. *Publ. Math. Debrecen*, 59 (1–2), 79–88.
- Cedilnik, A., and Rodriguez, A.(2003). Continuity of homomorphisms into complete normed algebraic algebras. J. Algebra, 264, 6–14.
- Cedilnik, A.. Automatic continuity of homomorphisms into smooth normed algebras. *Pre print 2013*.
- Dales, H. G.(1978) . Automatic continuity, a survey. Bull. London. Math. Soc, 10, 129-183.
- Palmer, T.W.(1994). Banach Algebras and the General Theory of * -Algebras. vol. I, Algebras and Banach Algebras, *Cambridge University Press*, Cambridge.
- Pfaffenberger, W. E., and Phillips, J.(1992).

Commutative Gelfand theory for real Banach algebras. Representations as sections of bundles, *Can. J. Math*, **44**, 342-356.

- Rodriguez, A.(1983). Nonassociative normed algebras spanned by hermitian elements. *Proc. London Math. Soc*,47, 258-274.
- Rodriguez, A.(1985). The uniqueness of the complete norm topology in complete normed nonassociative algebras. J. Funct. Anal, 60, 1-15.
- Rodriguez, A.(1994). Nonassociative normed algebra. Geometric aspects, Banach Center Publications, Vol. 30, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 299-311.
- Rodriguez, A.(2000). Continuity of homomorphisms into normed algebras without topological divisors of zero. *Rev. Real Acad. Cienc. Exact. Fis. Natur. Madrid*, **94**, 505–514.
- Sinclair, A.M. (1976). Automatic continuity of linear operators, *London Mathematical Society Lecture Note Series* 21, Cambridge University Press, Cambridge.

المخلص.

اثبتنا ان التشاكل φ من جبر معياري كامل A الى جبر معياري B ذا بُعد n يكون مستمر تلقائياً. كنتيجة B يكون جبر من النمط ACHR.