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        ABSTRACT 

Graph databases have recently gained a lot of attention in areas where the relationships between data and the data 

itself are equally important, like the semantic web, social networks, and biological networks. A graph database is 

simply a database designed to store, query, and modify graphs. Recently, several graph database models have been 

developed. The goal of this research is to evaluate the performance of the two most popular graph databases, Neo4j 

and TigerGraph, for network centrality metrics including degree centrality, betweenness centrality, closeness 

centrality, eigenvector centrality, and PageRank. We applied those metrics to a set of real-world networks in both 

graph databases to see their performance. Experimental results show Neo4j outperforms TigerGraph for computing 

the centrality metrics used in this study, but TigerGraph performs better during the data loading phase. 
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1. INTRODUCTION 

Nowadays, the development, consumption, and, most 

importantly, the analysis of highly correlated data have 

become pervasive. On a daily basis, the volume of data 

continues to expand rapidly on social networks such as 

Facebook, Twitter, etc., which store and analyse huge 

amounts of data, approaching petabytes of storage. When the 

quantity and relevance of data links increase concurrently, 

graph models seem like a smart notion [1]. Since most real-

world data can be simply represented on graphs, there has 

been a growing interest in graph representation in recent years 

[2]. At the same time, a graphical representation of data is an 

appealing method of displaying numerical data that aids in 

quantitative data analysis and visual representation. 

Graphs are a good way to show both structured and 

unstructured data, and they can be thought of as a unified way 

to show data. Multiple domains, including the Semantic Web 

[3], images, social networks [4], bioinformatics, etc., can be 

naturally modelled as graphs. So, recent research on databases 

shows that there is a growing interest in building graph 

models and languages to help these applications manage 

information [5]. In fact, a graph database facilitates more 

natural modelling and provides flexible support for dynamic 

data. 

Graph database is optimal for addressing complex, semi-

structured, and heavily interconnected data. It provides a 

response in milliseconds, and queries are processed incredibly 

quickly [6]. Graph databases are very useful at enterprise 

levels, such as in communication, healthcare, retail, finance, 

social networking, online business solutions, online media, 

and so on. Moreover, a graph database, also known as a 

"semantic database," is a software application that stores, 

queries, and modifies network graphs. The components of a 

network graph are nodes and edges. Each node indicates an 

entity (like a person), whereas each edge indicates a 

relationship between two nodes [7]. There are many graphical 

database tools, each with its own set of capabilities and 

performance. 

As for the relation of the Graph Database (GD), known as the 

NoSQL database, to the traditional database management 

systems (DBMS), it is completely different as it depends on 

relationships rather than foreign keys as its foundation. It 

enables dealing with more expressive data, such as 

phylogenetic tree topologies, and explicitly supports querying 

on a data network. These databases are very flexible with real-

world data that is continually changing. The capacity of graph 

databases to execute reasonably consistent large-scale join-

query operations as the dataset expands is another important 

benefit they have over relational databases [8]. 

GD models are utilised in domains where understanding the 

topology or interconnection of the data is as crucial as the data 

itself. The data and its connections in these applications are 

often on the same level [9]. In this study, we focused on both 

Neo4j and TigerGraph, the two most widely used databases in 

the field of graphs, and the following are the study's 

contributions: 

1. Demonstrates the capabilities of the Neo4j and TigerGraph 

databases. 

2. Compares the response time of Neo4j with TigerGraph based 

on the used metrics. 

3. Shows the response time of the data loading phase for both 

Neo4j and TigerGraph. 

The remaining sections of the paper are structured as follows: 

Related Works are introduced in section 2; Graph Databases 

are illustrated in details in section 3; Graph Databases tools 

are explained in section 4; Network centrality and used 

metrics have been clarified in section 5; Dataset Description is 

described in section 6; Experimental Results are discussed in 

section 7. Finally, we conclude the paper and discuss future 

research directions in section 8. 
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2. RELATED WORKS 

In this section, various recent studies on graph databases are 

reviewed. 

Lu et al. [10] analysed film data using Neo4j and Cypher 

Language. The essential method for analysing film data is 

database traversal and querying. Neo4j prioritises 

performance in standard Relational Database Management 

System (RDBMS) operations with many connections. Then, 

the Neo4j is used to examine relationships between key items 

in the film data, such as directors, actors, and so on. The 

experimental results show that Neo4j is capable of handling 

complicated data that has many connections. 

Almabdy [11] provided a comparative investigation of Neo4j 

and the Relational Database Management System using a 

Twitter dataset, comparing their overall performance and 

capability. The research group specifically proposed an 

experiment to evaluate the performance, operating scope, and 

overall usefulness of the two graph databases. While the 

RDBMS searches through all the data to satisfy this 

requirement that matches the search criteria. By contrast, the 

Neo4j search returns only records that are inextricably linked 

to other data. As a result, the relational database took longer 

to create. Neo4j was shown to be quicker and more flexible 

than RDBMS. 

Lysenko et al. [12] explained how GD prepares a strong 

foundation for storing, retrieving, and visualising biological 

data. Where human protein-protein interactions, pathways, 

sequence similarity, disease-gene, gene-tissue, and protein-

drug connections were all used in the investigations. The 

system built and queried a prototype illness map for a 

complicated ailment like asthma using the well-known Neo4j 

graph database. The results revealed that GDs are appropriate 

for storing biological data, which is often densely linked, 

semi-structured, and unpredictable. 

Šestak et al. [13] proposed a new idea for k-vertex cardinality 

constraints, which allows for specifying the minimum and a 

maximum number of edges between a vertex and a subgraph. 

The study suggests an approach that involves encoding 

cardinality restrictions to overcome the challenge of 

expressing cardinality constraints in GDs. The approach uses 

a property graph data model and demonstrates its execution in 

Neo4j Graph Database Management Systems through a series 

of stored procedures (GDBMSs). The suggested technique is 

then tested on synthetic and real datasets to determine how 

verifying cardinality restrictions affect Query Execution 

Times (QETs) when adding new edges. A comparison of 

synthetic datasets with different outgoing vertex degrees was 

carried out. The findings show that the outgoing vertex degree 

of the datasets and the order of the underlying k-vertex 

cardinality restrictions affect the model. 

Macak et al. [14] contrasted the OrientDB multi-model 

database with the Neo4j GD and MongoDB document 

database. Several queries were used to determine the 

performance of the used databases. These queries are 

separated into two distinct groups: the first one is associated 

with the graph data, while the second one is associated with 

the document data. Neo4j was used to compare with 

OrientDB to determine the shortest path traversal between 

nodes with different depths for a graph query. In terms of 

document queries, they compared OrientDB to MongoDB to 

highlight the distinction between querying on an indexed and 

non-indexed field. The findings indicated that Neo4j was the 

best option for traversing different nodes up to three depths 

through graph queries. Aside from that, OrientDB was the 

best option. For document queries, MongoDB outperforms 

OrientDB in document data management. 

Mitali Desai et al. [15] presented an extensive empirical 

analysis of Neo4j, ArangoDB, and OrientDB graph databases. 

In order to identify influential entities from Twitter data, 

query response time is used to evaluate the efficiency and 

effectiveness of primitive indexing approaches. The results 

demonstrate that Neo4j executes loading, relationship, and 

property queries more efficiently and reliably than the other 

two databases. While primitive indexing could be employed 

to increase OrientDB's efficiency. 

Beis et al. [16] presented a benchmark to evaluate Titan, 

OrientDB, and Neo4j GDs. In the study, real and synthetic 

networks were both employed, and the execution time was 

used to compare the two. In which the study concentrates on 

the issue of community detection and employs the Louvain 

method. The findings indicate that OrientDB is the quickest 

option for the Louvain method, whereas Neo4j is the fastest 

for query workloads. Also, Neo4j and Titan are better at 

handling large numbers of insertions and single insertions, 

respectively. 

R. Wang et al. [17] provided a thorough analysis and 

empirical study of the property GD systems, including Neo4j, 

AgensGraph, TigerGraph, and LightGraph. The research was 

done in a single-machine setting using the Linked Data 

Benchmark Council Social Network Benchmark (LDBC 

SNB). The LDBC SNB consists of three different large-scale 

datasets (DG1, DG10, and DG100) as well as a set of queries 

to evaluate performance. Based on the queries used, they 

systematically evaluated all the used graph databases in terms 

of data loading and query performance according to the used 

datasets. The results show that AgensGraph performs well for 

SQL-based workloads and simple update queries, and 

TigerGraph works well for complex business intelligence 

queries. While the Neo4j is easy to use and works well for 

small queries, the LightGraph is a more versatile product for 

many queries. 

C. Liu and H. Duan [18] presented a high-performance graph 

database storage engine for provenance graphs called 

Temporal Dimension-Graph Database (T-GDB). The system 

connects the graph's topology to each vertex and reconstructs 

the graph in real-time. The T-GDB may also access the 

provenance of the given graph via the index tree and evaluate 

how a graph evolves over time. To confirm the viability and 

effectiveness of the approach, TigerGraph, Neo4j, and 

JanusGraph were used to compare with T-GDB on the 

Graph500 and com-Orkut datasets. The results of the 

evaluation showed that the T-GDB storage engine does graph 

analysis better than other methods. 

T. Chen et al. [19] suggested a unique graph computing 

framework-based simulation platform on TigerGraph to ease 

the energy market clearing procedure. The platform was 

implemented using graph parallelised power flow for Security 

Constrained Unit Commitment (SCUC) and Security 

Constrained Economic Dispatch (SCED) issues. TigerGraph's 

GSE/GPE blocks provide several adaptable interfaces for 

storing and managing market or network data. In addition, a 

sophisticated visualization platform based on GraphStudio is 

utilised to illustrate the outcomes of the electrical market 

clearing and the transmission congestion impact. The results 

show that the system as a whole can be used to educate and 

train energy market operators. 

F. Rusu and Z. Huang [20] the two native GD tools, Neo4j 

and TigerGraph, were used to evaluate the bulk loading time 

and store size, and the outcomes of an application guideline 

for the LDBC SNB were reported. In addition, it evaluates the 

performance of all queries used in the benchmark on four 

different sizes of scale factors that were utilised as datasets 

on-premises and in the cloud. TigerGraph routinely 

outperforms Neo4j on the great majority of queries, exceeding 

95% of the workload, according to the data. In a fair amount 

of time, Neo4j completes just 12 of the 25 business 

intelligence queries. Still, the difference between the two 

systems widens as the quantity of data rises, as only 
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TigerGraph can expand to SF-1000. But Neo4j is faster at 

loading large amounts of graph data (not counting the time it 

takes to build the index) and has a more concise declarative 

query language. 

A. Deutsch et al. [21] revealed how Graph Structured Query 

Language (GSQL), the graph query language of TigerGraph, 

facilitates the definition of aggregation in graph analytics. The 

used datasets correspond to the LDBC SNB standard, with 

graph sizes ranging from 1GB to 1TB and scale factors 

ranging from 1 to 100 on an Amazon EC2 instance of type 

r4.8xlarge. Whereas the GSQL has a number of distinctive 

design considerations regarding the expressive capacity and 

evaluation difficulty of the defined aggregate. The results 

show that TigerGraph's GSQL supports aggregate 

requirements in graph analytics and is easy to convert to 

upcoming graph query language standards and pattern-based 

declarative query languages. 

 

3. GRAPH DATABASES 

In today's world, technology is advancing at a breakneck pace, 

and we are enabling the advantages of linked data. A GD is 

the best way to deal with data that is well-organised, semi-

structured, and heavily linked. It gives responses in 

milliseconds and executes queries very quickly [22]. At the 

corporate level, GDs are very valuable in fields such as 

communication, healthcare, retail, financial, social 

networking, online business solutions, online media, etc. A 

GD system implements the CRUD (Create, Read, Update, and 

Delete) operations found in a graph data model, as well as 

index-free adjacency, as shown in Figure 1. 

Adjacency without indexes is critical for high-performance 

traversal. If a graph database makes use of this, each node 

keeps a direct reference to its neighbours. It is referred to as a 

"micro index" for other nodes and is far less expensive than 

global indexes. This implies that query time is independent of 

the graph's overall size and is purely relevant to the duration 

of the graph search. This implies that the database's linked 

nodes constantly point to one another. It is very quick in terms 

of query response time and also has the capacity to hold 

massive volumes of data. 

GDs do not use tables to store data. It has a single data 

structure – the graph – and there is no join procedure, which 

means that each vertex or edge is directly linked to another 

vertex. A graph organises data into nodes that are connected 

by a few relationships. Graph databases are organised 

according to the property graph model and also developed for 

use in transnational Online Transaction Processing (OLTP) 

systems. These are intended to ensure the integrity of 

transactions and operational availability. At the moment, 

known graph databases are classified as NoSQL databases. A 

performant graph database paradigm is required for improved 

graph management. 

 The property graph paradigm presents an alternative 

approach to data model representation in graph theory. This 

paradigm has introduced a standard for visualising property 

graph-based data models, known as Graph Data Modelling. 

Property graphs are defined as graph data structures that 

comprise nodes and relationships, with attributes that may 

exist in either the nodes or relationships. This feature offers 

greater flexibility in attribute placement, enabling more 

nuanced graph-based data modeling. Therefore, the property 

graph approach facilitates a paradigm shift in graph theory 

and enhances the visualisation of graph-based data models. 

Such models are more directly tied to the user's issues in 

graph databases. These approaches are straightforward but 

costlier than relational databases and other NoSQL databases. 

Due to their capacity to handle graph-like structures in 

modern applications, graph databases have regained 

prominence in the modern period, earning them the moniker 

"the future of database management systems. 

 
Figure 1: Units of Graph Database [23]. 

 

3.1 Query Language 

In general, a query accepts a graph as input (referred to as the 

target graph), matches graph patterns, and generates a table of 

results. Three sample query languages were combined to 

create the language's syntax (i.e., SQL, SPARQL, and 

Cypher). A non-recursive, safe datalog with negation 

transformation is used to specify the language's semantics 

[24]. 

 

Syntax 

The query language's syntax is organized around four 

fundamental clauses: SELECT, FROM, MATCH, and 

WHERE. These clauses enable you to write queries, including 

simple pattern matching. Furthermore, the query language has 

the UNMATCH and UNION phrases to facilitate the negation 

and union of graph structures, respectively. 

The language's primary characteristic is pattern matching, 

which allows you to define graph patterns that are matched 

against the target graph. The input graph is described in the 

FROM clause, a graph pattern is specified in the MATCH 

clause, and conditions are applied to the input graph in the 

WHERE clause. The SELECT clause specifies the query's 

output (in this case, a table of data). An example of a pattern 

matching query is shown below. The result of the search is a 

list of authors who have written articles together. The results 

of the query are the authors' names who have written articles 

together. 

1- SELECT n2.fname AS Author1, n3.fname AS Author2, 

n1.title AS EntryTitle. 

2- FROM  "biblio". 

3- MATCH (n1:Entry) - [e1:has - author] → (n2:Author), (n1) - 

[e2:has - author] → (n3). 

4- WHERE n2 != n3 AND e1.order < e2.order. 

3.2 Advantages and Disadvantages of Graph Database 

Graph databases have become increasingly popular in recent 

years due to their ability to handle complex and 

interconnected data efficiently. However, like any other 

technology, they have their advantages and limitations that 

must be considered before implementation. 

Advantages: Graph databases (GDBs) offer several 

advantages, including object-oriented thinking, improved 

problem-solving capabilities, a flexible online schema 

environment, robust AI infrastructure, efficient indexing, and 

scalability. GDBs allow for explicit and clear semantics for 

each query, making it easier to understand and manipulate 

data. They are capable of solving both practical and 

theoretical problems, including those posed by iterative and 

ML algorithms. The dynamic online schema environment 

provides the ability to add or remove additional vertex or edge 

types and characteristics, making it easy to expand or 

constrict the data model. The indexing of GDBs is logical and 

based on relationships, which enables faster access than 

relational databases. Additionally, GDBs are scalable and can 

handle large datasets and enhance both reading and writing 
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performance. Therefore, GDBs are a powerful tool for data 

scientists and other professionals who work with complex 

data sets. 

Neo4j, a popular graph database management system, has 

implemented two levels of caching to address the issue of 

scalability when handling highly concurrent workloads. 

Vertical scaling is an option to increase the size of the writing, 

but it may face challenges when dealing with very dense 

writing masses. In such cases, it becomes necessary to 

distribute the data across multiple computers to achieve 

scalability, which poses significant challenges. 

Disadvantages: Like any other database, GDs face issues 

because of the wide availability of large amounts of data. In 

other words, fast-growing, fast-paced, and poorly organised 

volumes of data require high-performance IT solutions to 

effectively analyse and use them. GDB does not combine 

strong competitiveness with serviceability. Enhancements to 

associations are not generated by graph databases; they just 

serve as a quick repository for linked information. While 

promoted search strategies are many, they would not be 

considered in the case of connections since they would not 

effectively detain anyone in the first place. Given the 

properties of data storage, GDs are not ideal for large-quantity 

analytic queries. GDs are less useful for operational use cases 

because they perform poorly when managing large numbers 

of transactions and do not perform better when performing 

queries that comprise the entire database [25].  

3.3 Why a Graph Database Model? 

GD models are used when the topology or connection of the 

data is equally or more relevant than the data itself. In GDB 

operations, the relationships between the data and the data 

themselves are often at the same level. In fact, adding graphs 

as a way to model the graph database has a number of benefits 

[26]. 

1. It results in more realistic modelling. Graph topologies 

prepare a natural way to manage application data that is 

available to users (e.g., hypertext or geographic databases). 

Using connected arcs to represent related information, graphs 

offer the advantage of keeping all information about a single 

object at a single node. Paths and neighbourhoods are 

instances of graph objects that may have First-Order 

Citizenship. A user can explicitly declare a database section 

as a graph structure, allowing for context specification and 

encapsulation. 

2. Queries can make direct references to a database model's 

graph structure. The query language algebra has a number of 

graph-specific operations, such as shortest paths and 

identifying certain subgraphs. Users are able to build complex 

searches using declarative graphs and graph operations. In 

contrast, graph manipulation in logical databases often 

requires the creation of rather complex rule programs. It is 

unnecessary to need a complete understanding of the structure 

in order to formulate valid inquiries. Lastly, it may be useful 

for browsing purposes to ignore the schema. 

3. There are efficient graph algorithms that can be used to do 

certain tasks, and graph databases may have special ways to 

store graphs. 

3.4 Graph Database Models: Motivations and 

Applications 

The DBG models are inspired by real-world applications 

where knowledge of the connections between their plots is a 

distinguishing attribute. The fields of application are split into 

complex networks and classical networks based on [22]. 

Classical applications are the operations that prompted the 

development of multiple GDs, including: 

• Classical DB-model generalizations: some criticisms of 

classical models include their loss of semantics, the flat 

structure of the data they permit, the user's problems "seeing" 

the relationship between the data, and the difficulty of 

modelling complex objects. 

• The concept of providing a model in which both data handling 

and data representations are graph-based was prompted by the 

fact that graphs have been a key component of the database 

design process in semantic and object-oriented DB-models. 

• For complex applications, the limitations of how languages 

can be used to express ideas often lead to the creation of 

models that are closer to these systems.  

• Graphical and visual interfaces in addition to geographic, 

pictorial, and multimedia systems [27]. 

On the other hand, there are a number of fields known as 

"complex networks" that have seen the birth of massive data 

networks sharing certain mathematical features. Recently, the 

need for database management for certain types of complex 

networks has been emphasised. Although it is still unclear 

whether databases can be seen as a single entity, complex 

networks are divided into four categories: 

• Social networks: Nodes in social networks are individuals 

and organizations, whereas connections indicate relationships 

or flows between nodes. Friendship, commercial partnerships, 

sexual contact patterns, research networks (collaboration, co-

authorship), communication records (mail, phone calls, 

email), and computer network national security are some 

examples. In the fields of social network analysis [28], 

visualizations, and data management in these networks, the 

amount of work is growing. 

• Information networks: It describe relationships that show 

how information flows, like citations among academic 

articles, the WWW (hyperlinked, hypermedia), peer-to-peer 

networks [29], and relationships between word classes in a 

thesaurus. 

• Technological networks: The structure of technological 

networks is mostly determined by space and geography. The 

Internet (as a network of computers), electric power grids, 

airline routes, telephone networks, and delivery networks are 

examples of networks (post office). Today, Geographic 

Information Systems (GIS) cover a large part of this field, 

which includes roads, railroads, pedestrian traffic, and rivers. 

• Biological networks: The automation of the data collection 

process has made it difficult to handle the amount of 

biological information that biological networks represent. 

Networks in gene regulation, metabolic pathways, chemical 

structure, map order, and cross-species homology 

relationships, for example, exist in the field of genomics. 

Other biological networks include food webs, neural 

networks, etc. 

3.5 Comparing Graph Database with the Relational 

Database 

A Graph Database is a single-purpose, specialised platform 

for constructing and managing graphs. Graphs are made up of 

nodes, edges, and attributes, which are all utilised to represent 

and store data in a manner that relational databases cannot. On 

the other hand, a relational database requires a predetermined 

and carefully designed collection of tables. It is definitely 

beneficial for storing tabular data that corresponds to a 

predefined structure, but the interconnections within the data 

set are weakly accommodated. Thus, forcing a densely 

connected data set into a relational database causes significant 

query return time performance problems. Furthermore, the 

following are some more facts concerning the two databases: 

3.5.1 Relational Database  

Introduced in the 1970s by E. F. Codd, a database is a 

software program that enables you to quickly store and 

retrieve data. Data objects are organised into formal tables in 

a relational database that can be retrieved and put together in 

many different ways, like when you want to look up a 
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person's name. The relational model is shown in Figure 2, 

along with a few of its terms. 

 
Figure 2: The Relational Model. 

 

A relational database is composed of a series of tables, each 

with its own unique name. In a table, a row (or tuple) 

indicates connections between sets of values; the table itself is 

a collection of these relationships. Since the table strongly 

matches the mathematical concept of "relation," the term 

"relational model" was created. Figure 2 displays column 

headings A1, A2, ...An, which reflect table properties. The 

conceptual design of the database is defined by the database 

schema, while a database example is a representation of the 

data in the database at a specific point. A tuple's 

characteristics must be distinguishable from those of other 

tuples, i.e., each tuple must be uniquely recognised. This is 

accomplished through the use of keys. Extra relationship 

restrictions can be created using foreign keys. Additionally, 

more integrity requirements may be provided. Likewise, a 

query language is necessary for users to query a database [30]. 

MySQL and Oracle are two of the most widely used relational 

database tools. With websites, MySQL is becoming 

increasingly popular. While Oracle is a lightweight system 

that is incredibly quick, it is mostly utilised for massive 

database needs in industries such as banking, insurance, 

Enterprise Resource Planning (ERP), and financial services. 

Besides this, Oracle is used to handle complicated issues and 

to support large OLTP settings. There are some differences 

between them, although both of the tools work in basically the 

same way [31]. Several advantages of a database designed 

using the relational model include the following [32]: 

• Managing redundancy. 

• It is simple to add, update, or delete data. 

• Assembling a permanent storage mechanism for software 

objects. 

• Providing a variety of graphical user interfaces. 

• It provides data summarizing, retrieval, and reporting 

capabilities. 

• Preventing unauthorized access and enforcing integrity 

checks. 

• Representing intricate relationships between data. 

3.5.2 Graph Database (GD) 

In mathematical terminology, a graph is made up of two parts: 

a node (also known as a vertex) and an edge. Each edge 

symbolises a connection or relationship between two nodes, 

and each node represents a data object (such as a person, 

place, item, class, or another piece of information). 

Relationships are treated as first-class citizens in the graph 

model. An index-less storage system is one in which 

comparable items are connected without the need for an 

index. The physical pointer may also be used to obtain the 

object's neighbours. In this case, it is a database with CRUD 

operations that displays a data model built up of graphs like 

property graphs, superlative graphs, and RDF triads. 

The construction of a property graph model is shown in 

Figure 3, and an example is illustrated in Figure 4. In the 

graph, the most often used model is the property graph model. 

In addition, the property graph can run on Neo4j, TigerGraph, 

AllegroGraph, OrientDB, MongoDB, infiniteGraph, and 

many other popular graph databases. 

 
Figure 3: Building blocks for property graph model. 

 
Figure 4: An example of graph model. 

4. GRAPH DATABASE TOOLS 

4.1 Neo4j (Neo Technology) 

Neo4j is a graph database built for network-oriented data, 

whether in the form of a tree or a general graph, and was 

initially released in 2007. Neo4j stores data using a network 

model, where it stores nodes, relationships, and attributes 

instead of a relational data structure [33], and Figure 5 

illustrates an example of Neo4j. 

Recently, Neo4j has become one of the top graph databases. 

A property graph model with nodes, relations, and both 

having attributes and value pairs are supported by Neo4j. 

When indexing was first introduced in Neo4j, each index 

action had to be done directly and manually. Neo4j developed 

auto indexing, which automatically includes any changes 

made to data into the index using the global property key, to 

reduce user participation and enhance the indexing module. 

The global property key, which has no semantic connection 

and extracts the same property from several nodes, reduces 

the accuracy of query responses [15]. 

Neo4j supports a querying language named Cypher, operating 

at the highest conceptual database level. Cypher was first 

developed by Neo Technology for its Neo4j graph database. 

Neo4j provides complex traversal operations for graphs. The 

Cypher query language makes querying data from a database 

quite straightforward. A cipher contains many clauses. 

MATCH and WHERE are among the most frequently used. 

These functions vary significantly from those used in SQL. 

MATCH is used to describe the structure of the pattern being 

searched for, based mostly on relationships. WHERE is used 

to apply more constraints to patterns. In addition to clauses for 

writing, updating, and deleting data, the cipher provides 

clauses for writing, updating, and erasing data. "Create" and 

"DELETE" are used to create and delete nodes and 

relationships [10]. 
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Figure 5: An Example of a Neo4j Graph Database 

 

Furthermore, Neo4j is a graph database that is designed to 

deal with graphs rather than tables. In comparison to other 

graph databases, it is a particular kind of graph database. 

Today, Neo4j is the most popular graph database [6], [34]. 

Also, Neo4J provides a number of competitive benefits, 

making it one of the most widely used databases. These are 

the main features of Neo4j: 

• It has its own language, Cypher, which was developed by the 

corporation specifically for its query techniques. This 

language is used to manage all of the data in the graph 

databases. 

• Scalability and dependability are two important factors to 

consider. 

• Schema that is adaptable. 

• Cypher is a query language developed by Cypher, which is a 

widely-used and easy-to-read language. 

• Its integrity is guaranteed by ACID (Atomicity, Consistency, 

Isolation, and Durability). 

• It offers a user-friendly web interface and APIs, as well as 

support for a large number of third-party applications. 

• Support for Java, Spring, Scala, and JavaScript drivers. 

• Backups stored in the cloud; 

• Query data may be exported to JSON and XLS formats. 

• The world's most active graph community; 

• Graph storage and processing are natively supported, resulting 

in high performance. 

Neo4J does not support sharding, and since it is a free version, 

the community version has problems with the number of 

nodes, relationships, and attributes. Neo4j utilises the linked 

list storage format natively and independently to store 

vertices, edges, and properties. This design often leads to high 

memory usage and poor performance even when indexes are 

created. 

Real-time graph analysis is required for transactions and 

operational decisions because it provides a local view of the 

links between individual data items and allows for action. To 

learn about the general nature of networks and to simulate the 

behavior of complex systems, you need graph algorithms that 

give a fuller overview of patterns and structures across all 

data and interactions. The Table 1 might assist you in 

determining the optimal method for your use case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Determine the optimal algorithm 

 

Algorithm   

Type 
Graph Problem Examples 

Path 

Finding 

Determine the 

most efficient 

route or evaluate 

the route's 

availability and 

quality 

▪ Determine the shortest 

path between A and B. 

▪ Routing of telephone 

calls. 

Centrality 

Determine the 

significance of 

various nodes in a 

network 

▪ Customer segmentation. 

▪ Identify possible 

members of a fraud 

ring. 

Communit

y   

Detection 

Evaluating the 

clustering or 

partitioning of a 

group 

▪ Identify social media 

influencers. 

▪ Identify potential 

assault targets inside 

communication and 

transportation networks. 

 

4.2 TigerGraph 

In recent years, TigerGraph has become one of the most 

prominent distributed graph databases. Its fundamental system 

is built from the ground up using C++. TigerGraph has great 

scalability and speed, especially when it comes to hard 

queries, because it combines native graph storage with 

MapReduce, highly parallel processing, and fast data 

compression and decompression. In addition, TigerGraph can 

be efficiently implemented on a wide number of clusters, and 

queries may be processed in a distributed manner, enabling it 

to answer queries on enormously massive graphs that would 

fail on a single system. Figure 6 shows the main blocks of 

TigerGraph. It also creates its own sophisticated procedures, 

such as query language, GSQL. As a proprietary, non-open-

source component, TigerGraph is not openly accessible [35]. 

Geospatial analysis and time series analysis are two of the 

specific use cases described by TigerGraph. Utilizing the 

GSQL querying language, TigerGraph is queried. 

GraphStudio is a web interface that works along with 

TigerGraph and offers an interface for writing, installing, and 

visualizing queries; designing and exporting a graph schema; 

and monitoring database performance [36] 

 
Figure 6: TigerGraph with its main blocks [19]. 

 

GSQL is the query language for TigerGraph. GSQL is a 

straightforward extension of SQL to graph databases, as its 

name indicates. Before querying, a rigorous schema 

declaration is enforced. The design employs the labelled 

property graph data model. It is composed of four parts: the 
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vertex, the edge, the graph, and the label. The vertex kind is 

equivalent to a SQL table. It has a name and distinct 

characteristics. The number of vertices determines the edge 

type. It may or may not be directed. The number of vertices 

determines the edge type. It may or may not be directed. In 

the case of a directed edge, it is possible to declare an optional 

reverse edge kind. The graph kind specifies the kinds of 

vertices and edges that compose the graph. The label type 

only exists to provide compliance with the labeled graph data 

model. TigerGraph can use the appropriate storage structure 

and query execution method since everything is determined 

from the start. GSQL queries are stored procedures that have 

several SELECT clauses and instructions like branching and 

looping. GSQL queries resemble SQL stored procedures. This 

method is prompted by the growing difficulty of some graph 

computations. Similarly to the MATCH statement in Cypher, 

the SELECT statement in GSQL matches a route in the graph 

that begins at a vertex and continues along edges. The FROM 

clause specifies the route. GSQL adds the "accumulator" 

(ACCUM) notion associated with a route. On the basis of 

certain grouping criteria, a path's data may be gathered and 

combined into accumulators. This is done in parallel, with one 

process per FROM clause match [20]. So that multi-pass and 

iterative calculations can be done more easily, the results can 

be spread out among the vertices. Table 2 shows the basic 

information about both Neo4j and TigerGraph. 

Table 2: Basic information about Neo4j and TigerGraph. 

System Neo4j TigerGraph 

Type Native Native 

Storage 
Linked 

lists 

Native 

engine 

Open Source Yes No 

Supporting Distributed 

Processing 
No Yes 

Transactional Yes Yes 

Schema-Free Yes No 

Implementation 

Languages 
Java C++ 

Query Languages Cypher GSQL 

 

5. NETWORK CENTRALITY 

The concept of centrality was initially used to describe human 

communication by Bavelas [37], who was interested in the 

description of communication in small groups of people and 

assumed a relationship between structural centrality and 

influence in group processes. Since then, several centrality 

metrics have been put forward throughout time to measure an 

individual's significance in a social network [38]. As for 

graphs, centrality metrics are a vital tool for understanding 

networks. It aims to determine the significance of a network 

element based only on the network's structural pattern. The 

centrality values can be employed to find and evaluate 

subgoals in multiagent systems and are commonly used as a 

ranking or identification system [39]. Additionally, centrality 

metrics are among the most commonly used network-based 

indicators. The vertex centrality measures have been used in 

many fields, such as strategic network formation, game 

theory, social behaviour, transportation, influence and 

marketing, communication, scientific citation and 

collaboration, communities, and group problem-solving [40]. 

Centrality is a crucial feature of complex networks that has a 

significant impact on the behavior of dynamical processes. A 

complex network is a graph G with a highly structured 

organization consisting of an ordered pair of disjoint sets (V, 

E), where V denotes a set of vertices (or nodes) and E is a 

subset of ordered pairings of distinct elements of V, known as 

edges or arcs. If the network is undirected, meaning that a 

connection from vertex i to vertex j also implies a connection 

from j to i, the connections are referred to as edges. 

Otherwise, directed links are referred to as "arcs". Weights 

can also be assigned to the network edges, indicating the 

strength or intensity of the relationships between the nodes 

[41]. In this section, we will define several metrics that will be 

used to evaluate the performance of both Neo4j and 

TigerGraph. 

5.1 Degree Centrality 

Degree Centrality of a node is determined by the number of 

incident edges that are connected to it (i.e., the number of 

edges a node has). If the network is directed (edges have 

direction), then in-degree and out-degree centrality 

measurements are specified separately. In-degree is the 

number of edges directed to the node (head endpoints), 

whereas out-degree is the number of edges directed away 

from the node (tail endpoints). In these instances, the degree 

is equal to the sum of the in-degree and out-degree [42]. For 

normalization, degree centrality can be calculated by: 

𝐶𝐷(𝑢) =  
𝐾𝑢

𝑛−1
                         (1) 

Where n represents number of nodes, K is the degree of the 

node u, and CD(u) is the degree centrality of the node u. 

For an unweighted network, degree centrality has an O(m) 

time complexity, where m is the number of edges. The 

primary drawback of degree-based centrality is that it only 

provides local information about a network vertex. In other 

words, this metric does not account for global structural 

change. It is clear that this metric is easier and more helpful in 

a variety of applications [43]. The minimax criteria are 

commonly employed to determine the optimal locations for 

emergency facilities such as hospitals, police stations, and 

military bases, as well as other amenities including schools, 

gas stations, markets, restaurants, and hotels.  

5.2 Betweenness Centrality 

One early definition of centrality encapsulating the notion of 

betweenness was developed from the finding that some nodes, 

depending on their location in the network, had power over 

the communication between a pair of other nodes. Nodes that 

have the ability to communicate between a pair of other nodes 

have been discovered through laboratory experiments on 

human interactions. The ability of a node to regulate this 

communication gives it an important position as a mediator or 

facilitator. Locally, a node with a high degree has the ability 

to play this function, depending on the degree of clustering 

(links) between the node's neighbours, but only for its near 

neighbours. It does not capture the node's influence on the 

communication between two distant nodes [43]. The 

betweenness centrality of node v can be calculated by: 

𝐶𝑏𝑒𝑡(𝑣) =  ∑
𝜎 𝑢𝑤(𝑣)

𝜎 𝑢𝑤𝑢,𝑣,𝑤                    (2) 

Where 𝜎 𝑢𝑤 is the number of shortest paths between u and w 

and 𝜎 𝑢𝑤(𝑣)  is the number of shortest paths between u and w 

that include 𝑣. 

5.3 Closeness Centrality 

How quickly one may get from one node to every other node 

in the network is measured by a concept called "closeness 

centrality". It may be described as the average length of all the 

shortest routes in a network between a node and every other 

node. High closeness centrality nodes are significantly closer 

and can reach other nodes in the network much more rapidly 

[44]. The closeness centrality of node v is defined as: 

𝐶𝑙𝑣 =  
𝑛−1

∑   𝑑(𝑢,𝑣)𝑢∈𝑉 (𝐺)
                 (3) 

Where Clv denotes the closeness centrality of node v, n is the 

number of nodes, and d(u,v) is the distance between u and v. 
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5.4 Eigenvector Centrality 

In a network, a node's effect is quantified by eigenvector 

centrality. Degree centrality has been extended by eigenvector 

centrality. According to degree centrality, the total number of 

connected nodes affects a node's degree centrality. Whereas in 

eigenvector centrality, the number of adjacent nodes and the 

significance of the adjacent node are both considered, and all 

connections are not equal [45]. 

In general, connections with influential people confer greater 

influence than connections with less influential people. Not 

only the connections but also the score (eigenvector 

centrality) of the connected node are important in eigenvector 

centrality. Eigenvector centrality is determined by evaluating 

a node's degree of connectivity with the network's highly 

connected nodes. A matrix's dominant eigenvector, or 

eigenvector centrality, is known as an adjacency matrix. In 

other words, the foundation of Eigenvector Centrality 𝜎𝐸 is 

the idea that a connection to a more interconnected node helps 

one's own centrality more than a relationship to a less 

interconnected node does [46]. So, the 𝜎𝐸 is defined as 

follows for node x: 

𝜎𝐸(𝑥) = 𝑣𝑥 =  
1

λ𝑚𝑎𝑥(𝐴)
 .  ∑ 𝑎𝑗𝑥  .  𝑣𝑗

𝑛
𝑗=1               (4) 

With 𝑣 = (𝑣1,..., 𝑣n)T referring to an eigenvector for the 

maximum eigenvalue λ𝑚𝑎𝑥(𝐴) of the adjacency matrix A. 

When employing the Eigenvector centrality method, you 

should be aware of the following: 

▪ For nodes without any incoming relationships, centrality 

ratings will converge to 0. 

▪ High-degree nodes have a significant impact on the scores of 

their neighbours because degree normalization is missing. 

5.5 PageRank 

PageRank is Google's primary ranking algorithm for web 

page placement on search engine results pages. PageRank 

refers to both the system and algorithm that Google employs 

to rank web pages, as well as the numeric score that is 

assigned to every page. Using pages as network nodes and 

links as edges, it modelled human browsing behaviour to rank 

pages. According to the presumption that a node's significance 

is the predicted total of the significance of all linked nodes 

plus the direction of edges, PageRank represents the 

"importance" of nodes. The probable distributions of random 

accesses to nodes are represented by their values. PageRank 

iteratively calculates a normalised and propagated value for 

each node in a network [47], [48]. Let x and p be two nodes in 

a graph G; the undirected PageRank of x can be calculated as 

follows: 

𝑃𝑅(𝑥) = (1 − 𝑐 ) + 𝑐    .  ∑
𝑃𝑅(𝑝)

|𝑃𝑛𝑡𝑜𝑢𝑡(𝑝)|𝑝∈𝑃𝑛𝑡𝑖𝑛(𝑥)        (5) 

𝑃𝑛𝑡𝑖𝑛(𝑥) is the set of nodes pointing to 𝑥, 𝑃𝑛𝑡𝑜𝑢𝑡(𝑝) is the 

collection of nodes directed by 𝑝 and |𝑃𝑛𝑡𝑜𝑢𝑡(𝑝)| is the 

cardinality of 𝑃𝑛𝑡𝑜𝑢𝑡. c is a damping factor with a value in the 

range [0,1] (usually 0.85). The PageRank works in a directed 

network, and it keeps figuring out the value of a node based 

on the PageRanks of the nodes that point to it. 

6. DATASET DESCRIPTION 

The experiments were done using four datasets belonging to 

three separate parts, namely, social networks, location-based 

online social networks, and collaboration networks. These 

datasets are available as part of the Stanford Large Network 

Dataset Collection [49]. The following is an explanation of 

the datasets utilised, with numerical information presented in 

Table 3: 

1. Social Network 

• Ego-Facebook: This dataset includes undirected Facebook 

"circles" (sometimes known as "friend’s lists"). Using this 

Facebook app, poll respondents' Facebook information was 

gathered. The dataset consists of node characteristics 

(profiles), circles, and ego networks. Each user's Facebook 

internal id has been replaced with a new value, therefore 

anonymizing Facebook data [50]. 

• Musae-Github: The vast developer social network on GitHub 

was compiled in June 2019 using data from the open API. 

Edges are connections between developers who are mutual 

followers, and nodes are developers who have starred at least 

10 repositories. Based on the location, repositories starch, 

employer, and email address, the vertex characteristics are 

retrieved [51]. 

 

2. Location-Based Online Social Networks 

• Brightkite: This undirected network includes user–user 

friendship relationships from the previous location-based 

social network Brightkite, where members disclosed their 

locations. A node represents a user, and an edge denotes a 

friendship between the user represented by the node on the 

left and the user represented by the node on the right. 

 

3. Collaboration Networks 

• Ca-HepPh: The Arxiv HEP-PH (High Energy Physics-

Phenomenology) collaboration network is from the e-print 

arXiv and covers scientific collaborations between authors of 

papers submitted to the High Energy Physics-Phenomenology 

category [52]. 

 

Table 3: Description of datasets 

Network 

Type 
Dataset Nodes Edges Size 

Social 

Networks 

Ego-

Facebook 
4,039 88,234 

854.4 KB 

(854,381 

Bytes) 

Musae-

github 
37,700 289,003 

3.3 MB 

(3,306,148 

Bytes) 

Location-

Based Online 
Brightkite 58,228 214,078 

2.3 MB 

(2,277,939 

Bytes) 

Collaboration 

Networks 
Ca-HepPh 12,008 118,521 

2.8 MB 

(2,783,072 

Bytes) 

 

7.     EXPERIMENTAL RESULTS 

In this section, we present the results obtained by the Neo4j 

and TigerGraph databases. We used five important centrality 

metrics as described in Section 5 to show the capabilities of 

two graph databases that were applied to four different sizes 

of datasets. Additionally, both are implemented using Linux 

(Ubuntu 20.04.4 LTS, 64-bit) on a Core i7-5600U, 2.60 GHz 

x 4 CPU, with 16 GB of physical memory, and standard Solid 

State Drives (SSD). Then, in Neo4j, we use the Neo4j 

Browser (4.4.5) and Neo4j Desktop (1.4.15) to execute the 

used metrics, while in TigerGraph, we use GraphStudio. 

Besides, the results that are shown in Figure 1 are the findings 

that were obtained by running each query five times and then 

determining the average of those five runs in order to get the 

execution rate for each of the centrality metrics. The data 

loading experiments are executed once because they require a 

much longer time, especially in Neo4j. 

7.1 Loading the Dataset 

To import data, both Neo4j and TigerGraph need a CSV file, 

and TigerGraph's results are much better than those of Neo4j 

during the data loading phase, as shown in Figure 7. For all 

datasets, the data import time of TigerGraph is shorter than 

that of Neo4j. This means that TigerGraph has a faster loading 

time than Neo4j. In other words, TigerGraph has an advantage 
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over Neo4j in the loading phase. In contrast, Neo4j requires 

more time to load the data and for the data to become 

available for use. Neo4j is very user-friendly with importing 

data compared to TigerGraph. In Neo4j, you can specify the 

exact amount of data to be imported, whereas in TigerGraph, 

you can only provide a percentage of data. 

TigerGraph is very efficient, even when loading large 

datasets. As can be seen from Figure 7, Musae-Github is 

much bigger than Ego-Facebook; however, the loading time 

for Musae-Github is only two times that of Ego-Facebook. 

Regarding Neo4j, there is a big difference when loading a 

large dataset versus a small dataset, as can be seen again in 

Figure 7. 

 

 
Figure 7: Shows the loading time for Neo4j and 

TigerGraph(ms) 

 

7.2 Evaluation and results 

7.2.1 Neo4j and TigerGraph: In this part of the article, 

we conducted an evaluation of the two graph databases that 

were used. 

Neo4j: Figure 8 and Table 4 display the latency time of Neo4j 

for each centrality metric. As can be seen, Neo4j performs 

very efficiently in calculating centrality metrics. One of the 

most important features of Neo4j is that when importing data, 

it first stores the data in memory to improve performance and 

then indexes the data until it is ready for use, at which point 

queries can be applied to the data. Therefore, if we look at the 

results of implementing the metrics in Table 4 and Figure 8, 

we see that the degree, eigenvector, and PageRank did not 

take much time; only betweenness and closeness took more 

time. This is due to the complexity and type of algorithm 

implemented in Neo4j. This means that the worst among them 

is the betweenness, followed by the closeness, which takes 

longer than the others, but for the rest, there is a small 

difference between them.  

Table 4: Performance of Neo4j for centrality metrics. 

Metrics 

Latency (ms) 

Ego-

Facebook 

Musae-

github 
Brightkite 

Ca-

HepPh 

Degree 

Centrality 
54 238 322 112 

Betweenness 

Centrality 
7,020 629,833 756,921 56,718 

Closeness 

Centrality 
249 17,958 24,315 3,699 

Eigenvector 

Centrality 
163 733 701 487 

PageRank 168 609 626 447 

 

 
Figure 8: Shows the latency time of Neo4j for centrality 

metrics. 

TigerGraph: If we compare the results obtained by 

TigerGraph for each metric in Table 5 with those obtained by 

Neo4j in Table 4, we can see that they are completely 

different and larger than Neo4j. See Figure 9 and Table 5 for 

more details. The datasets that were used have quite a large 

variation when it comes to latency time. The degree centrality 

is the best metric applied to all datasets, while the 

betweenness centrality is the worst. This is indeed because of 

their complexity and the algorithm implemented in 

TigerGraph. Betweenness requires calculating all the shortest 

paths from the node that you find its betweenness with all the 

others and the number of those nodes that pass through the 

node that you find its betweenness, and then dividing them. 

As for closeness, it comes after the betweenness in the term of 

latency. This also takes time when centrality metrics are 

applied to it, but less than betweenness centrality. For 

instance, if we look at Table 5, the latency of the closeness of 

the Brightkite dataset is equal to 781,264 ms, while the 

betweenness is much bigger and is equal to 3,294,742 ms. 

In reality, dealing with a TigerGraph interface takes time 

because of the need to design schema, map data to graph, load 

graph, explore graph, and write queries sequentially so that a 

query can be executed. Each of these requires different phases 

of implementation. One other point is that when writing 

queries, you must first debug the errors if any, and then save 

the query. After that, the query must be installed to store the 

query inside the database, and then, it can be executed. All the 

points mentioned above require a lot of time to be ready for 

use, which means that dealing with the TigerGraph interface 

costs a lot of time until certain queries can be applied. 

Table 5: Performance of TigerGraph for centrality metrics. 

Metrics 

Latency (ms) 

Ego-

Faceboo

k 

Musae-

Github 

Brightkit

e 

Ca-

HepPh 

Degree 

Centrality 
59 305 252 168 

Betweennes

s Centrality 
183,007 

1,644,11

7 

3,294,74

2 

1,510,13

8 

Closeness 

Centrality 
15,001 526,565 781,264 89,314 

Eigenvector  

Centrality 
2,049 17,855 13,057 2,548 

PageRank 1,413 5,975 3,839 2,468 
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Figure 9: Shows the latency time of TigerGraph for centrality 

metrics. 

 

7.2.2 The Overall Evaluations:  In this section, we 

provide an overall evaluation to demonstrate the capabilities 

of Neo4j and TigerGraph based on the centrality metrics used 

in Section 5. This evaluation is based on the results of the data 

presented in Table 6. The findings can be summarised as 

follows: 

TigerGraph performs significantly better than Neo4j during 

the data loading phase, particularly with large datasets. There 

is very little difference in loading time when you are 

comparing the loading times of small and large datasets in 

TigerGraph. When looking at the results achieved by the 

Neo4j in the data loading stage, there is a big difference 

compared to the TigerGraph. The Neo4j database takes a lot 

of time, especially when the dataset is large. There is a very 

big difference in the loading time of the large datasets 

compared to the small datasets. TigerGraph achieved lower 

loading phase latency than Neo4j for each dataset, as shown 

in Figure 7. For instance, to load the Musae-Github dataset in 

Neo4j, it took 5,313,174 ms; however, for TigerGraph, it took 

only 2000 ms. 

In terms of centrality metrics, the performance of Neo4j 

outperforms TigerGraph. This is because Neo4j first stores the 

data in memory to improve performance before allowing 

queries to be applied to it. In contrast, the TigerGraph did not 

have such a feature, so when implementing metrics, it takes a 

lot of time, especially when the datasets are large. This is 

because TigerGraph employs a hybrid memory and disk 

storage model during query execution. Also, the results of this 

feature are quite clear in Table 6. If we look at Table 6, we 

can see that the results of the latency of each metric gained by 

Neo4j are much lower than those obtained by TigerGraph. In 

the degree centrality the difference between Neo4j and the 

TigerGraph is small; for example, if we look at the Ego-

Facebook dataset, the latency of Neo4j is equal to 54, whereas 

in the TigerGraph it is equal to 59. However, for the 

betweenness centrality, there is a significant difference in 

latency between the two commonly used graph databases. For 

instance, if we look at the same dataset, the latency of the 

betweenness centrality that was achieved by the TigerGraph is 

equal to 183,007 ms, but the result that was gained by the 

Neo4j is equal to 7,020 ms, which is much less than what was 

achieved by the TigerGraph. 

In fact, when we deal with the interfaces of the two graph 

databases, Neo4j is the easiest compared to TigerGraph. 

Because in TigerGraph, in order for the query to be ready for 

execution, TigerGraph requires many stages before starting to 

execute the query, and these operations are time-consuming, 

TigerGraph takes a long time for the query to be ready to be 

executed. With Neo4j, you don't need to go through any other 

steps before executing the query.

8. CONCLUSION 

Graph databases can manage complex and massive amounts 

of data without requiring a restructuring since only the 

relationships between the nodes need to be added. In addition, 

graph databases offer index-free adjacency results that only 

search for entries that are closely connected to other records, 

eliminating the need for an index and accelerating retrieval 

speeds. In this paper, we experimentally evaluate the 

performance of Neo4j and TigerGraph graph databases for 

centrality metrics including degree, betweenness, closeness, 

eigenvector, and PageRank centralities. Additionally, we also 

evaluated the performance of data loading for both graph 

databases. Experimental results showed that Neo4j achieved 

excellent performance over TigerGraph for computing those 

metrics. However, the performance of data loading in 

TigerGraph is promising compared to Neo4j. In the future, we 

aim to apply some other metrics and algorithms to the two 

graph databases utilised in this study in order to examine their 

capabilities in more depth and also compare them with some 

other graph databases. 
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