

journals.uoz.edu.krd

Available online at sjuoz.uoz.edu.krd

Vol. 11, No. 2, pp. 190 –201, April-June, 2023

p-ISSN: 2410-7549

e-ISSN: 2414­6943

* Corresponding author

This is an open access under a CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

190

AN EMPIRICAL COMPARISON OF NEO4J AND TIGERGRAPH DATABASES FOR

NETWORK CENTRALITY

Bahzad Taha Chicho a*, Abdulhakeem Othman Mohammed b

a Duhok Polytechnic University, Technical College of Informatics, Information Technology Department,

 Kurdistan Region, Iraq - bahzad.taha@dpu.edu.krd

b Duhok Polytechnic University, Kurdistan Region, Iraq - abdulhakeem.mohammed@dpu.edu.krd

Received: 19 Nov., 2023 / Accepted: 30 Apr., 2023 / Published: 30 Apr., 2023 https://doi.org/10.25271/sjuoz.2023.11.2.1068

 ABSTRACT

Graph databases have recently gained a lot of attention in areas where the relationships between data and the data

itself are equally important, like the semantic web, social networks, and biological networks. A graph database is

simply a database designed to store, query, and modify graphs. Recently, several graph database models have been

developed. The goal of this research is to evaluate the performance of the two most popular graph databases, Neo4j

and TigerGraph, for network centrality metrics including degree centrality, betweenness centrality, closeness

centrality, eigenvector centrality, and PageRank. We applied those metrics to a set of real-world networks in both

graph databases to see their performance. Experimental results show Neo4j outperforms TigerGraph for computing

the centrality metrics used in this study, but TigerGraph performs better during the data loading phase.

KEYWORDS: Graph Database, Relational Database, Database Model, Neo4j, TigerGraph.

1. INTRODUCTION

Nowadays, the development, consumption, and, most

importantly, the analysis of highly correlated data have

become pervasive. On a daily basis, the volume of data

continues to expand rapidly on social networks such as

Facebook, Twitter, etc., which store and analyse huge

amounts of data, approaching petabytes of storage. When the

quantity and relevance of data links increase concurrently,

graph models seem like a smart notion [1]. Since most real-

world data can be simply represented on graphs, there has

been a growing interest in graph representation in recent years

[2]. At the same time, a graphical representation of data is an

appealing method of displaying numerical data that aids in

quantitative data analysis and visual representation.

Graphs are a good way to show both structured and

unstructured data, and they can be thought of as a unified way

to show data. Multiple domains, including the Semantic Web

[3], images, social networks [4], bioinformatics, etc., can be

naturally modelled as graphs. So, recent research on databases

shows that there is a growing interest in building graph

models and languages to help these applications manage

information [5]. In fact, a graph database facilitates more

natural modelling and provides flexible support for dynamic

data.

Graph database is optimal for addressing complex, semi-

structured, and heavily interconnected data. It provides a

response in milliseconds, and queries are processed incredibly

quickly [6]. Graph databases are very useful at enterprise

levels, such as in communication, healthcare, retail, finance,

social networking, online business solutions, online media,

and so on. Moreover, a graph database, also known as a

"semantic database," is a software application that stores,

queries, and modifies network graphs. The components of a

network graph are nodes and edges. Each node indicates an

entity (like a person), whereas each edge indicates a

relationship between two nodes [7]. There are many graphical

database tools, each with its own set of capabilities and

performance.

As for the relation of the Graph Database (GD), known as the

NoSQL database, to the traditional database management

systems (DBMS), it is completely different as it depends on

relationships rather than foreign keys as its foundation. It

enables dealing with more expressive data, such as

phylogenetic tree topologies, and explicitly supports querying

on a data network. These databases are very flexible with real-

world data that is continually changing. The capacity of graph

databases to execute reasonably consistent large-scale join-

query operations as the dataset expands is another important

benefit they have over relational databases [8].

GD models are utilised in domains where understanding the

topology or interconnection of the data is as crucial as the data

itself. The data and its connections in these applications are

often on the same level [9]. In this study, we focused on both

Neo4j and TigerGraph, the two most widely used databases in

the field of graphs, and the following are the study's

contributions:

1. Demonstrates the capabilities of the Neo4j and TigerGraph

databases.

2. Compares the response time of Neo4j with TigerGraph based

on the used metrics.

3. Shows the response time of the data loading phase for both

Neo4j and TigerGraph.

The remaining sections of the paper are structured as follows:

Related Works are introduced in section 2; Graph Databases

are illustrated in details in section 3; Graph Databases tools

are explained in section 4; Network centrality and used

metrics have been clarified in section 5; Dataset Description is

described in section 6; Experimental Results are discussed in

section 7. Finally, we conclude the paper and discuss future

research directions in section 8.

http://journals.uoz.edu.krd/
http://sjuoz.uoz.edu.krd/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:bahzad.taha@dpu.edu.krd
mailto:abdulhakeem.mohammed@dpu.edu.krd
https://doi.org/10.25271/sjuoz.2023.11.2.1068

B. T. Chicho et al. / Science Journal of University of Zakho 11(2), 190 –201, April-June, 2023

191

2. RELATED WORKS

In this section, various recent studies on graph databases are

reviewed.

Lu et al. [10] analysed film data using Neo4j and Cypher

Language. The essential method for analysing film data is

database traversal and querying. Neo4j prioritises

performance in standard Relational Database Management

System (RDBMS) operations with many connections. Then,

the Neo4j is used to examine relationships between key items

in the film data, such as directors, actors, and so on. The

experimental results show that Neo4j is capable of handling

complicated data that has many connections.

Almabdy [11] provided a comparative investigation of Neo4j

and the Relational Database Management System using a

Twitter dataset, comparing their overall performance and

capability. The research group specifically proposed an

experiment to evaluate the performance, operating scope, and

overall usefulness of the two graph databases. While the

RDBMS searches through all the data to satisfy this

requirement that matches the search criteria. By contrast, the

Neo4j search returns only records that are inextricably linked

to other data. As a result, the relational database took longer

to create. Neo4j was shown to be quicker and more flexible

than RDBMS.

Lysenko et al. [12] explained how GD prepares a strong

foundation for storing, retrieving, and visualising biological

data. Where human protein-protein interactions, pathways,

sequence similarity, disease-gene, gene-tissue, and protein-

drug connections were all used in the investigations. The

system built and queried a prototype illness map for a

complicated ailment like asthma using the well-known Neo4j

graph database. The results revealed that GDs are appropriate

for storing biological data, which is often densely linked,

semi-structured, and unpredictable.

Šestak et al. [13] proposed a new idea for k-vertex cardinality

constraints, which allows for specifying the minimum and a

maximum number of edges between a vertex and a subgraph.

The study suggests an approach that involves encoding

cardinality restrictions to overcome the challenge of

expressing cardinality constraints in GDs. The approach uses

a property graph data model and demonstrates its execution in

Neo4j Graph Database Management Systems through a series

of stored procedures (GDBMSs). The suggested technique is

then tested on synthetic and real datasets to determine how

verifying cardinality restrictions affect Query Execution

Times (QETs) when adding new edges. A comparison of

synthetic datasets with different outgoing vertex degrees was

carried out. The findings show that the outgoing vertex degree

of the datasets and the order of the underlying k-vertex

cardinality restrictions affect the model.

Macak et al. [14] contrasted the OrientDB multi-model

database with the Neo4j GD and MongoDB document

database. Several queries were used to determine the

performance of the used databases. These queries are

separated into two distinct groups: the first one is associated

with the graph data, while the second one is associated with

the document data. Neo4j was used to compare with

OrientDB to determine the shortest path traversal between

nodes with different depths for a graph query. In terms of

document queries, they compared OrientDB to MongoDB to

highlight the distinction between querying on an indexed and

non-indexed field. The findings indicated that Neo4j was the

best option for traversing different nodes up to three depths

through graph queries. Aside from that, OrientDB was the

best option. For document queries, MongoDB outperforms

OrientDB in document data management.

Mitali Desai et al. [15] presented an extensive empirical

analysis of Neo4j, ArangoDB, and OrientDB graph databases.

In order to identify influential entities from Twitter data,

query response time is used to evaluate the efficiency and

effectiveness of primitive indexing approaches. The results

demonstrate that Neo4j executes loading, relationship, and

property queries more efficiently and reliably than the other

two databases. While primitive indexing could be employed

to increase OrientDB's efficiency.

Beis et al. [16] presented a benchmark to evaluate Titan,

OrientDB, and Neo4j GDs. In the study, real and synthetic

networks were both employed, and the execution time was

used to compare the two. In which the study concentrates on

the issue of community detection and employs the Louvain

method. The findings indicate that OrientDB is the quickest

option for the Louvain method, whereas Neo4j is the fastest

for query workloads. Also, Neo4j and Titan are better at

handling large numbers of insertions and single insertions,

respectively.

R. Wang et al. [17] provided a thorough analysis and

empirical study of the property GD systems, including Neo4j,

AgensGraph, TigerGraph, and LightGraph. The research was

done in a single-machine setting using the Linked Data

Benchmark Council Social Network Benchmark (LDBC

SNB). The LDBC SNB consists of three different large-scale

datasets (DG1, DG10, and DG100) as well as a set of queries

to evaluate performance. Based on the queries used, they

systematically evaluated all the used graph databases in terms

of data loading and query performance according to the used

datasets. The results show that AgensGraph performs well for

SQL-based workloads and simple update queries, and

TigerGraph works well for complex business intelligence

queries. While the Neo4j is easy to use and works well for

small queries, the LightGraph is a more versatile product for

many queries.

C. Liu and H. Duan [18] presented a high-performance graph

database storage engine for provenance graphs called

Temporal Dimension-Graph Database (T-GDB). The system

connects the graph's topology to each vertex and reconstructs

the graph in real-time. The T-GDB may also access the

provenance of the given graph via the index tree and evaluate

how a graph evolves over time. To confirm the viability and

effectiveness of the approach, TigerGraph, Neo4j, and

JanusGraph were used to compare with T-GDB on the

Graph500 and com-Orkut datasets. The results of the

evaluation showed that the T-GDB storage engine does graph

analysis better than other methods.

T. Chen et al. [19] suggested a unique graph computing

framework-based simulation platform on TigerGraph to ease

the energy market clearing procedure. The platform was

implemented using graph parallelised power flow for Security

Constrained Unit Commitment (SCUC) and Security

Constrained Economic Dispatch (SCED) issues. TigerGraph's

GSE/GPE blocks provide several adaptable interfaces for

storing and managing market or network data. In addition, a

sophisticated visualization platform based on GraphStudio is

utilised to illustrate the outcomes of the electrical market

clearing and the transmission congestion impact. The results

show that the system as a whole can be used to educate and

train energy market operators.

F. Rusu and Z. Huang [20] the two native GD tools, Neo4j

and TigerGraph, were used to evaluate the bulk loading time

and store size, and the outcomes of an application guideline

for the LDBC SNB were reported. In addition, it evaluates the

performance of all queries used in the benchmark on four

different sizes of scale factors that were utilised as datasets

on-premises and in the cloud. TigerGraph routinely

outperforms Neo4j on the great majority of queries, exceeding

95% of the workload, according to the data. In a fair amount

of time, Neo4j completes just 12 of the 25 business

intelligence queries. Still, the difference between the two

systems widens as the quantity of data rises, as only

B. T. Chicho et al. / Science Journal of University of Zakho 11(2), 190 –201, April-June, 2023

192

TigerGraph can expand to SF-1000. But Neo4j is faster at

loading large amounts of graph data (not counting the time it

takes to build the index) and has a more concise declarative

query language.

A. Deutsch et al. [21] revealed how Graph Structured Query

Language (GSQL), the graph query language of TigerGraph,

facilitates the definition of aggregation in graph analytics. The

used datasets correspond to the LDBC SNB standard, with

graph sizes ranging from 1GB to 1TB and scale factors

ranging from 1 to 100 on an Amazon EC2 instance of type

r4.8xlarge. Whereas the GSQL has a number of distinctive

design considerations regarding the expressive capacity and

evaluation difficulty of the defined aggregate. The results

show that TigerGraph's GSQL supports aggregate

requirements in graph analytics and is easy to convert to

upcoming graph query language standards and pattern-based

declarative query languages.

3. GRAPH DATABASES

In today's world, technology is advancing at a breakneck pace,

and we are enabling the advantages of linked data. A GD is

the best way to deal with data that is well-organised, semi-

structured, and heavily linked. It gives responses in

milliseconds and executes queries very quickly [22]. At the

corporate level, GDs are very valuable in fields such as

communication, healthcare, retail, financial, social

networking, online business solutions, online media, etc. A

GD system implements the CRUD (Create, Read, Update, and

Delete) operations found in a graph data model, as well as

index-free adjacency, as shown in Figure 1.

Adjacency without indexes is critical for high-performance

traversal. If a graph database makes use of this, each node

keeps a direct reference to its neighbours. It is referred to as a

"micro index" for other nodes and is far less expensive than

global indexes. This implies that query time is independent of

the graph's overall size and is purely relevant to the duration

of the graph search. This implies that the database's linked

nodes constantly point to one another. It is very quick in terms

of query response time and also has the capacity to hold

massive volumes of data.

GDs do not use tables to store data. It has a single data

structure – the graph – and there is no join procedure, which

means that each vertex or edge is directly linked to another

vertex. A graph organises data into nodes that are connected

by a few relationships. Graph databases are organised

according to the property graph model and also developed for

use in transnational Online Transaction Processing (OLTP)

systems. These are intended to ensure the integrity of

transactions and operational availability. At the moment,

known graph databases are classified as NoSQL databases. A

performant graph database paradigm is required for improved

graph management.

 The property graph paradigm presents an alternative

approach to data model representation in graph theory. This

paradigm has introduced a standard for visualising property

graph-based data models, known as Graph Data Modelling.

Property graphs are defined as graph data structures that

comprise nodes and relationships, with attributes that may

exist in either the nodes or relationships. This feature offers

greater flexibility in attribute placement, enabling more

nuanced graph-based data modeling. Therefore, the property

graph approach facilitates a paradigm shift in graph theory

and enhances the visualisation of graph-based data models.

Such models are more directly tied to the user's issues in

graph databases. These approaches are straightforward but

costlier than relational databases and other NoSQL databases.

Due to their capacity to handle graph-like structures in

modern applications, graph databases have regained

prominence in the modern period, earning them the moniker

"the future of database management systems.

Figure 1: Units of Graph Database [23].

3.1 Query Language

In general, a query accepts a graph as input (referred to as the

target graph), matches graph patterns, and generates a table of

results. Three sample query languages were combined to

create the language's syntax (i.e., SQL, SPARQL, and

Cypher). A non-recursive, safe datalog with negation

transformation is used to specify the language's semantics

[24].

Syntax

The query language's syntax is organized around four

fundamental clauses: SELECT, FROM, MATCH, and

WHERE. These clauses enable you to write queries, including

simple pattern matching. Furthermore, the query language has

the UNMATCH and UNION phrases to facilitate the negation

and union of graph structures, respectively.

The language's primary characteristic is pattern matching,

which allows you to define graph patterns that are matched

against the target graph. The input graph is described in the

FROM clause, a graph pattern is specified in the MATCH

clause, and conditions are applied to the input graph in the

WHERE clause. The SELECT clause specifies the query's

output (in this case, a table of data). An example of a pattern

matching query is shown below. The result of the search is a

list of authors who have written articles together. The results

of the query are the authors' names who have written articles

together.

1- SELECT n2.fname AS Author1, n3.fname AS Author2,

n1.title AS EntryTitle.

2- FROM "biblio".

3- MATCH (n1:Entry) - [e1:has - author] → (n2:Author), (n1) -

[e2:has - author] → (n3).

4- WHERE n2 != n3 AND e1.order < e2.order.

3.2 Advantages and Disadvantages of Graph Database

Graph databases have become increasingly popular in recent

years due to their ability to handle complex and

interconnected data efficiently. However, like any other

technology, they have their advantages and limitations that

must be considered before implementation.

Advantages: Graph databases (GDBs) offer several

advantages, including object-oriented thinking, improved

problem-solving capabilities, a flexible online schema

environment, robust AI infrastructure, efficient indexing, and

scalability. GDBs allow for explicit and clear semantics for

each query, making it easier to understand and manipulate

data. They are capable of solving both practical and

theoretical problems, including those posed by iterative and

ML algorithms. The dynamic online schema environment

provides the ability to add or remove additional vertex or edge

types and characteristics, making it easy to expand or

constrict the data model. The indexing of GDBs is logical and

based on relationships, which enables faster access than

relational databases. Additionally, GDBs are scalable and can

handle large datasets and enhance both reading and writing

B. T. Chicho et al. / Science Journal of University of Zakho 11(2), 190 –201, April-June, 2023

193

performance. Therefore, GDBs are a powerful tool for data

scientists and other professionals who work with complex

data sets.

Neo4j, a popular graph database management system, has

implemented two levels of caching to address the issue of

scalability when handling highly concurrent workloads.

Vertical scaling is an option to increase the size of the writing,

but it may face challenges when dealing with very dense

writing masses. In such cases, it becomes necessary to

distribute the data across multiple computers to achieve

scalability, which poses significant challenges.

Disadvantages: Like any other database, GDs face issues

because of the wide availability of large amounts of data. In

other words, fast-growing, fast-paced, and poorly organised

volumes of data require high-performance IT solutions to

effectively analyse and use them. GDB does not combine

strong competitiveness with serviceability. Enhancements to

associations are not generated by graph databases; they just

serve as a quick repository for linked information. While

promoted search strategies are many, they would not be

considered in the case of connections since they would not

effectively detain anyone in the first place. Given the

properties of data storage, GDs are not ideal for large-quantity

analytic queries. GDs are less useful for operational use cases

because they perform poorly when managing large numbers

of transactions and do not perform better when performing

queries that comprise the entire database [25].

3.3 Why a Graph Database Model?

GD models are used when the topology or connection of the

data is equally or more relevant than the data itself. In GDB

operations, the relationships between the data and the data

themselves are often at the same level. In fact, adding graphs

as a way to model the graph database has a number of benefits

[26].

1. It results in more realistic modelling. Graph topologies

prepare a natural way to manage application data that is

available to users (e.g., hypertext or geographic databases).

Using connected arcs to represent related information, graphs

offer the advantage of keeping all information about a single

object at a single node. Paths and neighbourhoods are

instances of graph objects that may have First-Order

Citizenship. A user can explicitly declare a database section

as a graph structure, allowing for context specification and

encapsulation.

2. Queries can make direct references to a database model's

graph structure. The query language algebra has a number of

graph-specific operations, such as shortest paths and

identifying certain subgraphs. Users are able to build complex

searches using declarative graphs and graph operations. In

contrast, graph manipulation in logical databases often

requires the creation of rather complex rule programs. It is

unnecessary to need a complete understanding of the structure

in order to formulate valid inquiries. Lastly, it may be useful

for browsing purposes to ignore the schema.

3. There are efficient graph algorithms that can be used to do

certain tasks, and graph databases may have special ways to

store graphs.

3.4 Graph Database Models: Motivations and

Applications

The DBG models are inspired by real-world applications

where knowledge of the connections between their plots is a

distinguishing attribute. The fields of application are split into

complex networks and classical networks based on [22].

Classical applications are the operations that prompted the

development of multiple GDs, including:

• Classical DB-model generalizations: some criticisms of

classical models include their loss of semantics, the flat

structure of the data they permit, the user's problems "seeing"

the relationship between the data, and the difficulty of

modelling complex objects.

• The concept of providing a model in which both data handling

and data representations are graph-based was prompted by the

fact that graphs have been a key component of the database

design process in semantic and object-oriented DB-models.

• For complex applications, the limitations of how languages

can be used to express ideas often lead to the creation of

models that are closer to these systems.

• Graphical and visual interfaces in addition to geographic,

pictorial, and multimedia systems [27].

On the other hand, there are a number of fields known as

"complex networks" that have seen the birth of massive data

networks sharing certain mathematical features. Recently, the

need for database management for certain types of complex

networks has been emphasised. Although it is still unclear

whether databases can be seen as a single entity, complex

networks are divided into four categories:

• Social networks: Nodes in social networks are individuals

and organizations, whereas connections indicate relationships

or flows between nodes. Friendship, commercial partnerships,

sexual contact patterns, research networks (collaboration, co-

authorship), communication records (mail, phone calls,

email), and computer network national security are some

examples. In the fields of social network analysis [28],

visualizations, and data management in these networks, the

amount of work is growing.

• Information networks: It describe relationships that show

how information flows, like citations among academic

articles, the WWW (hyperlinked, hypermedia), peer-to-peer

networks [29], and relationships between word classes in a

thesaurus.

• Technological networks: The structure of technological

networks is mostly determined by space and geography. The

Internet (as a network of computers), electric power grids,

airline routes, telephone networks, and delivery networks are

examples of networks (post office). Today, Geographic

Information Systems (GIS) cover a large part of this field,

which includes roads, railroads, pedestrian traffic, and rivers.

• Biological networks: The automation of the data collection

process has made it difficult to handle the amount of

biological information that biological networks represent.

Networks in gene regulation, metabolic pathways, chemical

structure, map order, and cross-species homology

relationships, for example, exist in the field of genomics.

Other biological networks include food webs, neural

networks, etc.

3.5 Comparing Graph Database with the Relational

Database

A Graph Database is a single-purpose, specialised platform

for constructing and managing graphs. Graphs are made up of

nodes, edges, and attributes, which are all utilised to represent

and store data in a manner that relational databases cannot. On

the other hand, a relational database requires a predetermined

and carefully designed collection of tables. It is definitely

beneficial for storing tabular data that corresponds to a

predefined structure, but the interconnections within the data

set are weakly accommodated. Thus, forcing a densely

connected data set into a relational database causes significant

query return time performance problems. Furthermore, the

following are some more facts concerning the two databases:

3.5.1 Relational Database

Introduced in the 1970s by E. F. Codd, a database is a

software program that enables you to quickly store and

retrieve data. Data objects are organised into formal tables in

a relational database that can be retrieved and put together in

many different ways, like when you want to look up a

B. T. Chicho et al. / Science Journal of University of Zakho 11(2), 190 –201, April-June, 2023

194

person's name. The relational model is shown in Figure 2,

along with a few of its terms.

Figure 2: The Relational Model.

A relational database is composed of a series of tables, each

with its own unique name. In a table, a row (or tuple)

indicates connections between sets of values; the table itself is

a collection of these relationships. Since the table strongly

matches the mathematical concept of "relation," the term

"relational model" was created. Figure 2 displays column

headings A1, A2, ...An, which reflect table properties. The

conceptual design of the database is defined by the database

schema, while a database example is a representation of the

data in the database at a specific point. A tuple's

characteristics must be distinguishable from those of other

tuples, i.e., each tuple must be uniquely recognised. This is

accomplished through the use of keys. Extra relationship

restrictions can be created using foreign keys. Additionally,

more integrity requirements may be provided. Likewise, a

query language is necessary for users to query a database [30].

MySQL and Oracle are two of the most widely used relational

database tools. With websites, MySQL is becoming

increasingly popular. While Oracle is a lightweight system

that is incredibly quick, it is mostly utilised for massive

database needs in industries such as banking, insurance,

Enterprise Resource Planning (ERP), and financial services.

Besides this, Oracle is used to handle complicated issues and

to support large OLTP settings. There are some differences

between them, although both of the tools work in basically the

same way [31]. Several advantages of a database designed

using the relational model include the following [32]:

• Managing redundancy.

• It is simple to add, update, or delete data.

• Assembling a permanent storage mechanism for software

objects.

• Providing a variety of graphical user interfaces.

• It provides data summarizing, retrieval, and reporting

capabilities.

• Preventing unauthorized access and enforcing integrity

checks.

• Representing intricate relationships between data.

3.5.2 Graph Database (GD)

In mathematical terminology, a graph is made up of two parts:

a node (also known as a vertex) and an edge. Each edge

symbolises a connection or relationship between two nodes,

and each node represents a data object (such as a person,

place, item, class, or another piece of information).

Relationships are treated as first-class citizens in the graph

model. An index-less storage system is one in which

comparable items are connected without the need for an

index. The physical pointer may also be used to obtain the

object's neighbours. In this case, it is a database with CRUD

operations that displays a data model built up of graphs like

property graphs, superlative graphs, and RDF triads.

The construction of a property graph model is shown in

Figure 3, and an example is illustrated in Figure 4. In the

graph, the most often used model is the property graph model.

In addition, the property graph can run on Neo4j, TigerGraph,

AllegroGraph, OrientDB, MongoDB, infiniteGraph, and

many other popular graph databases.

Figure 3: Building blocks for property graph model.

Figure 4: An example of graph model.

4. GRAPH DATABASE TOOLS

4.1 Neo4j (Neo Technology)

Neo4j is a graph database built for network-oriented data,

whether in the form of a tree or a general graph, and was

initially released in 2007. Neo4j stores data using a network

model, where it stores nodes, relationships, and attributes

instead of a relational data structure [33], and Figure 5

illustrates an example of Neo4j.

Recently, Neo4j has become one of the top graph databases.

A property graph model with nodes, relations, and both

having attributes and value pairs are supported by Neo4j.

When indexing was first introduced in Neo4j, each index

action had to be done directly and manually. Neo4j developed

auto indexing, which automatically includes any changes

made to data into the index using the global property key, to

reduce user participation and enhance the indexing module.

The global property key, which has no semantic connection

and extracts the same property from several nodes, reduces

the accuracy of query responses [15].

Neo4j supports a querying language named Cypher, operating

at the highest conceptual database level. Cypher was first

developed by Neo Technology for its Neo4j graph database.

Neo4j provides complex traversal operations for graphs. The

Cypher query language makes querying data from a database

quite straightforward. A cipher contains many clauses.

MATCH and WHERE are among the most frequently used.

These functions vary significantly from those used in SQL.

MATCH is used to describe the structure of the pattern being

searched for, based mostly on relationships. WHERE is used

to apply more constraints to patterns. In addition to clauses for

writing, updating, and deleting data, the cipher provides

clauses for writing, updating, and erasing data. "Create" and

"DELETE" are used to create and delete nodes and

relationships [10].

B. T. Chicho et al. / Science Journal of University of Zakho 11(2), 190 –201, April-June, 2023

195

Figure 5: An Example of a Neo4j Graph Database

Furthermore, Neo4j is a graph database that is designed to

deal with graphs rather than tables. In comparison to other

graph databases, it is a particular kind of graph database.

Today, Neo4j is the most popular graph database [6], [34].

Also, Neo4J provides a number of competitive benefits,

making it one of the most widely used databases. These are

the main features of Neo4j:

• It has its own language, Cypher, which was developed by the

corporation specifically for its query techniques. This

language is used to manage all of the data in the graph

databases.

• Scalability and dependability are two important factors to

consider.

• Schema that is adaptable.

• Cypher is a query language developed by Cypher, which is a

widely-used and easy-to-read language.

• Its integrity is guaranteed by ACID (Atomicity, Consistency,

Isolation, and Durability).

• It offers a user-friendly web interface and APIs, as well as

support for a large number of third-party applications.

• Support for Java, Spring, Scala, and JavaScript drivers.

• Backups stored in the cloud;

• Query data may be exported to JSON and XLS formats.

• The world's most active graph community;

• Graph storage and processing are natively supported, resulting

in high performance.

Neo4J does not support sharding, and since it is a free version,

the community version has problems with the number of

nodes, relationships, and attributes. Neo4j utilises the linked

list storage format natively and independently to store

vertices, edges, and properties. This design often leads to high

memory usage and poor performance even when indexes are

created.

Real-time graph analysis is required for transactions and

operational decisions because it provides a local view of the

links between individual data items and allows for action. To

learn about the general nature of networks and to simulate the

behavior of complex systems, you need graph algorithms that

give a fuller overview of patterns and structures across all

data and interactions. The Table 1 might assist you in

determining the optimal method for your use case.

Table 1: Determine the optimal algorithm

Algorithm

Type
Graph Problem Examples

Path

Finding

Determine the

most efficient

route or evaluate

the route's

availability and

quality

▪ Determine the shortest

path between A and B.

▪ Routing of telephone

calls.

Centrality

Determine the

significance of

various nodes in a

network

▪ Customer segmentation.

▪ Identify possible

members of a fraud

ring.

Communit

y

Detection

Evaluating the

clustering or

partitioning of a

group

▪ Identify social media

influencers.

▪ Identify potential

assault targets inside

communication and

transportation networks.

4.2 TigerGraph

In recent years, TigerGraph has become one of the most

prominent distributed graph databases. Its fundamental system

is built from the ground up using C++. TigerGraph has great

scalability and speed, especially when it comes to hard

queries, because it combines native graph storage with

MapReduce, highly parallel processing, and fast data

compression and decompression. In addition, TigerGraph can

be efficiently implemented on a wide number of clusters, and

queries may be processed in a distributed manner, enabling it

to answer queries on enormously massive graphs that would

fail on a single system. Figure 6 shows the main blocks of

TigerGraph. It also creates its own sophisticated procedures,

such as query language, GSQL. As a proprietary, non-open-

source component, TigerGraph is not openly accessible [35].

Geospatial analysis and time series analysis are two of the

specific use cases described by TigerGraph. Utilizing the

GSQL querying language, TigerGraph is queried.

GraphStudio is a web interface that works along with

TigerGraph and offers an interface for writing, installing, and

visualizing queries; designing and exporting a graph schema;

and monitoring database performance [36]

Figure 6: TigerGraph with its main blocks [19].

GSQL is the query language for TigerGraph. GSQL is a

straightforward extension of SQL to graph databases, as its

name indicates. Before querying, a rigorous schema

declaration is enforced. The design employs the labelled

property graph data model. It is composed of four parts: the

B. T. Chicho et al. / Science Journal of University of Zakho 11(2), 190 –201, April-June, 2023

196

vertex, the edge, the graph, and the label. The vertex kind is

equivalent to a SQL table. It has a name and distinct

characteristics. The number of vertices determines the edge

type. It may or may not be directed. The number of vertices

determines the edge type. It may or may not be directed. In

the case of a directed edge, it is possible to declare an optional

reverse edge kind. The graph kind specifies the kinds of

vertices and edges that compose the graph. The label type

only exists to provide compliance with the labeled graph data

model. TigerGraph can use the appropriate storage structure

and query execution method since everything is determined

from the start. GSQL queries are stored procedures that have

several SELECT clauses and instructions like branching and

looping. GSQL queries resemble SQL stored procedures. This

method is prompted by the growing difficulty of some graph

computations. Similarly to the MATCH statement in Cypher,

the SELECT statement in GSQL matches a route in the graph

that begins at a vertex and continues along edges. The FROM

clause specifies the route. GSQL adds the "accumulator"

(ACCUM) notion associated with a route. On the basis of

certain grouping criteria, a path's data may be gathered and

combined into accumulators. This is done in parallel, with one

process per FROM clause match [20]. So that multi-pass and

iterative calculations can be done more easily, the results can

be spread out among the vertices. Table 2 shows the basic

information about both Neo4j and TigerGraph.

Table 2: Basic information about Neo4j and TigerGraph.

System Neo4j TigerGraph

Type Native Native

Storage
Linked

lists

Native

engine

Open Source Yes No

Supporting Distributed

Processing
No Yes

Transactional Yes Yes

Schema-Free Yes No

Implementation

Languages
Java C++

Query Languages Cypher GSQL

5. NETWORK CENTRALITY

The concept of centrality was initially used to describe human

communication by Bavelas [37], who was interested in the

description of communication in small groups of people and

assumed a relationship between structural centrality and

influence in group processes. Since then, several centrality

metrics have been put forward throughout time to measure an

individual's significance in a social network [38]. As for

graphs, centrality metrics are a vital tool for understanding

networks. It aims to determine the significance of a network

element based only on the network's structural pattern. The

centrality values can be employed to find and evaluate

subgoals in multiagent systems and are commonly used as a

ranking or identification system [39]. Additionally, centrality

metrics are among the most commonly used network-based

indicators. The vertex centrality measures have been used in

many fields, such as strategic network formation, game

theory, social behaviour, transportation, influence and

marketing, communication, scientific citation and

collaboration, communities, and group problem-solving [40].

Centrality is a crucial feature of complex networks that has a

significant impact on the behavior of dynamical processes. A

complex network is a graph G with a highly structured

organization consisting of an ordered pair of disjoint sets (V,

E), where V denotes a set of vertices (or nodes) and E is a

subset of ordered pairings of distinct elements of V, known as

edges or arcs. If the network is undirected, meaning that a

connection from vertex i to vertex j also implies a connection

from j to i, the connections are referred to as edges.

Otherwise, directed links are referred to as "arcs". Weights

can also be assigned to the network edges, indicating the

strength or intensity of the relationships between the nodes

[41]. In this section, we will define several metrics that will be

used to evaluate the performance of both Neo4j and

TigerGraph.

5.1 Degree Centrality

Degree Centrality of a node is determined by the number of

incident edges that are connected to it (i.e., the number of

edges a node has). If the network is directed (edges have

direction), then in-degree and out-degree centrality

measurements are specified separately. In-degree is the

number of edges directed to the node (head endpoints),

whereas out-degree is the number of edges directed away

from the node (tail endpoints). In these instances, the degree

is equal to the sum of the in-degree and out-degree [42]. For

normalization, degree centrality can be calculated by:

𝐶𝐷(𝑢) =
𝐾𝑢

𝑛−1
 (1)

Where n represents number of nodes, K is the degree of the

node u, and CD(u) is the degree centrality of the node u.

For an unweighted network, degree centrality has an O(m)

time complexity, where m is the number of edges. The

primary drawback of degree-based centrality is that it only

provides local information about a network vertex. In other

words, this metric does not account for global structural

change. It is clear that this metric is easier and more helpful in

a variety of applications [43]. The minimax criteria are

commonly employed to determine the optimal locations for

emergency facilities such as hospitals, police stations, and

military bases, as well as other amenities including schools,

gas stations, markets, restaurants, and hotels.

5.2 Betweenness Centrality

One early definition of centrality encapsulating the notion of

betweenness was developed from the finding that some nodes,

depending on their location in the network, had power over

the communication between a pair of other nodes. Nodes that

have the ability to communicate between a pair of other nodes

have been discovered through laboratory experiments on

human interactions. The ability of a node to regulate this

communication gives it an important position as a mediator or

facilitator. Locally, a node with a high degree has the ability

to play this function, depending on the degree of clustering

(links) between the node's neighbours, but only for its near

neighbours. It does not capture the node's influence on the

communication between two distant nodes [43]. The

betweenness centrality of node v can be calculated by:

𝐶𝑏𝑒𝑡(𝑣) = ∑
𝜎 𝑢𝑤(𝑣)

𝜎 𝑢𝑤𝑢,𝑣,𝑤 (2)

Where 𝜎 𝑢𝑤 is the number of shortest paths between u and w

and 𝜎 𝑢𝑤(𝑣) is the number of shortest paths between u and w

that include 𝑣.

5.3 Closeness Centrality

How quickly one may get from one node to every other node

in the network is measured by a concept called "closeness

centrality". It may be described as the average length of all the

shortest routes in a network between a node and every other

node. High closeness centrality nodes are significantly closer

and can reach other nodes in the network much more rapidly

[44]. The closeness centrality of node v is defined as:

𝐶𝑙𝑣 =
𝑛−1

∑ 𝑑(𝑢,𝑣)𝑢∈𝑉 (𝐺)
 (3)

Where Clv denotes the closeness centrality of node v, n is the

number of nodes, and d(u,v) is the distance between u and v.

B. T. Chicho et al. / Science Journal of University of Zakho 11(2), 190 –201, April-June, 2023

197

5.4 Eigenvector Centrality

In a network, a node's effect is quantified by eigenvector

centrality. Degree centrality has been extended by eigenvector

centrality. According to degree centrality, the total number of

connected nodes affects a node's degree centrality. Whereas in

eigenvector centrality, the number of adjacent nodes and the

significance of the adjacent node are both considered, and all

connections are not equal [45].

In general, connections with influential people confer greater

influence than connections with less influential people. Not

only the connections but also the score (eigenvector

centrality) of the connected node are important in eigenvector

centrality. Eigenvector centrality is determined by evaluating

a node's degree of connectivity with the network's highly

connected nodes. A matrix's dominant eigenvector, or

eigenvector centrality, is known as an adjacency matrix. In

other words, the foundation of Eigenvector Centrality 𝜎𝐸 is

the idea that a connection to a more interconnected node helps

one's own centrality more than a relationship to a less

interconnected node does [46]. So, the 𝜎𝐸 is defined as

follows for node x:

𝜎𝐸(𝑥) = 𝑣𝑥 =
1

λ𝑚𝑎𝑥(𝐴)
 . ∑ 𝑎𝑗𝑥 . 𝑣𝑗

𝑛
𝑗=1 (4)

With 𝑣 = (𝑣1,..., 𝑣n)T referring to an eigenvector for the

maximum eigenvalue λ𝑚𝑎𝑥(𝐴) of the adjacency matrix A.

When employing the Eigenvector centrality method, you

should be aware of the following:

▪ For nodes without any incoming relationships, centrality

ratings will converge to 0.

▪ High-degree nodes have a significant impact on the scores of

their neighbours because degree normalization is missing.

5.5 PageRank

PageRank is Google's primary ranking algorithm for web

page placement on search engine results pages. PageRank

refers to both the system and algorithm that Google employs

to rank web pages, as well as the numeric score that is

assigned to every page. Using pages as network nodes and

links as edges, it modelled human browsing behaviour to rank

pages. According to the presumption that a node's significance

is the predicted total of the significance of all linked nodes

plus the direction of edges, PageRank represents the

"importance" of nodes. The probable distributions of random

accesses to nodes are represented by their values. PageRank

iteratively calculates a normalised and propagated value for

each node in a network [47], [48]. Let x and p be two nodes in

a graph G; the undirected PageRank of x can be calculated as

follows:

𝑃𝑅(𝑥) = (1 − 𝑐) + 𝑐 . ∑
𝑃𝑅(𝑝)

|𝑃𝑛𝑡𝑜𝑢𝑡(𝑝)|𝑝∈𝑃𝑛𝑡𝑖𝑛(𝑥) (5)

𝑃𝑛𝑡𝑖𝑛(𝑥) is the set of nodes pointing to 𝑥, 𝑃𝑛𝑡𝑜𝑢𝑡(𝑝) is the

collection of nodes directed by 𝑝 and |𝑃𝑛𝑡𝑜𝑢𝑡(𝑝)| is the

cardinality of 𝑃𝑛𝑡𝑜𝑢𝑡. c is a damping factor with a value in the

range [0,1] (usually 0.85). The PageRank works in a directed

network, and it keeps figuring out the value of a node based

on the PageRanks of the nodes that point to it.

6. DATASET DESCRIPTION

The experiments were done using four datasets belonging to

three separate parts, namely, social networks, location-based

online social networks, and collaboration networks. These

datasets are available as part of the Stanford Large Network

Dataset Collection [49]. The following is an explanation of

the datasets utilised, with numerical information presented in

Table 3:

1. Social Network

• Ego-Facebook: This dataset includes undirected Facebook

"circles" (sometimes known as "friend’s lists"). Using this

Facebook app, poll respondents' Facebook information was

gathered. The dataset consists of node characteristics

(profiles), circles, and ego networks. Each user's Facebook

internal id has been replaced with a new value, therefore

anonymizing Facebook data [50].

• Musae-Github: The vast developer social network on GitHub

was compiled in June 2019 using data from the open API.

Edges are connections between developers who are mutual

followers, and nodes are developers who have starred at least

10 repositories. Based on the location, repositories starch,

employer, and email address, the vertex characteristics are

retrieved [51].

2. Location-Based Online Social Networks

• Brightkite: This undirected network includes user–user

friendship relationships from the previous location-based

social network Brightkite, where members disclosed their

locations. A node represents a user, and an edge denotes a

friendship between the user represented by the node on the

left and the user represented by the node on the right.

3. Collaboration Networks

• Ca-HepPh: The Arxiv HEP-PH (High Energy Physics-

Phenomenology) collaboration network is from the e-print

arXiv and covers scientific collaborations between authors of

papers submitted to the High Energy Physics-Phenomenology

category [52].

Table 3: Description of datasets

Network

Type
Dataset Nodes Edges Size

Social

Networks

Ego-

Facebook
4,039 88,234

854.4 KB

(854,381

Bytes)

Musae-

github
37,700 289,003

3.3 MB

(3,306,148

Bytes)

Location-

Based Online
Brightkite 58,228 214,078

2.3 MB

(2,277,939

Bytes)

Collaboration

Networks
Ca-HepPh 12,008 118,521

2.8 MB

(2,783,072

Bytes)

7. EXPERIMENTAL RESULTS

In this section, we present the results obtained by the Neo4j

and TigerGraph databases. We used five important centrality

metrics as described in Section 5 to show the capabilities of

two graph databases that were applied to four different sizes

of datasets. Additionally, both are implemented using Linux

(Ubuntu 20.04.4 LTS, 64-bit) on a Core i7-5600U, 2.60 GHz

x 4 CPU, with 16 GB of physical memory, and standard Solid

State Drives (SSD). Then, in Neo4j, we use the Neo4j

Browser (4.4.5) and Neo4j Desktop (1.4.15) to execute the

used metrics, while in TigerGraph, we use GraphStudio.

Besides, the results that are shown in Figure 1 are the findings

that were obtained by running each query five times and then

determining the average of those five runs in order to get the

execution rate for each of the centrality metrics. The data

loading experiments are executed once because they require a

much longer time, especially in Neo4j.

7.1 Loading the Dataset

To import data, both Neo4j and TigerGraph need a CSV file,

and TigerGraph's results are much better than those of Neo4j

during the data loading phase, as shown in Figure 7. For all

datasets, the data import time of TigerGraph is shorter than

that of Neo4j. This means that TigerGraph has a faster loading

time than Neo4j. In other words, TigerGraph has an advantage

B. T. Chicho et al. / Science Journal of University of Zakho 11(2), 190 –201, April-June, 2023

198

over Neo4j in the loading phase. In contrast, Neo4j requires

more time to load the data and for the data to become

available for use. Neo4j is very user-friendly with importing

data compared to TigerGraph. In Neo4j, you can specify the

exact amount of data to be imported, whereas in TigerGraph,

you can only provide a percentage of data.

TigerGraph is very efficient, even when loading large

datasets. As can be seen from Figure 7, Musae-Github is

much bigger than Ego-Facebook; however, the loading time

for Musae-Github is only two times that of Ego-Facebook.

Regarding Neo4j, there is a big difference when loading a

large dataset versus a small dataset, as can be seen again in

Figure 7.

Figure 7: Shows the loading time for Neo4j and

TigerGraph(ms)

7.2 Evaluation and results

7.2.1 Neo4j and TigerGraph: In this part of the article,

we conducted an evaluation of the two graph databases that

were used.

Neo4j: Figure 8 and Table 4 display the latency time of Neo4j

for each centrality metric. As can be seen, Neo4j performs

very efficiently in calculating centrality metrics. One of the

most important features of Neo4j is that when importing data,

it first stores the data in memory to improve performance and

then indexes the data until it is ready for use, at which point

queries can be applied to the data. Therefore, if we look at the

results of implementing the metrics in Table 4 and Figure 8,

we see that the degree, eigenvector, and PageRank did not

take much time; only betweenness and closeness took more

time. This is due to the complexity and type of algorithm

implemented in Neo4j. This means that the worst among them

is the betweenness, followed by the closeness, which takes

longer than the others, but for the rest, there is a small

difference between them.

Table 4: Performance of Neo4j for centrality metrics.

Metrics

Latency (ms)

Ego-

Facebook

Musae-

github
Brightkite

Ca-

HepPh

Degree

Centrality
54 238 322 112

Betweenness

Centrality
7,020 629,833 756,921 56,718

Closeness

Centrality
249 17,958 24,315 3,699

Eigenvector

Centrality
163 733 701 487

PageRank 168 609 626 447

Figure 8: Shows the latency time of Neo4j for centrality

metrics.

TigerGraph: If we compare the results obtained by

TigerGraph for each metric in Table 5 with those obtained by

Neo4j in Table 4, we can see that they are completely

different and larger than Neo4j. See Figure 9 and Table 5 for

more details. The datasets that were used have quite a large

variation when it comes to latency time. The degree centrality

is the best metric applied to all datasets, while the

betweenness centrality is the worst. This is indeed because of

their complexity and the algorithm implemented in

TigerGraph. Betweenness requires calculating all the shortest

paths from the node that you find its betweenness with all the

others and the number of those nodes that pass through the

node that you find its betweenness, and then dividing them.

As for closeness, it comes after the betweenness in the term of

latency. This also takes time when centrality metrics are

applied to it, but less than betweenness centrality. For

instance, if we look at Table 5, the latency of the closeness of

the Brightkite dataset is equal to 781,264 ms, while the

betweenness is much bigger and is equal to 3,294,742 ms.

In reality, dealing with a TigerGraph interface takes time

because of the need to design schema, map data to graph, load

graph, explore graph, and write queries sequentially so that a

query can be executed. Each of these requires different phases

of implementation. One other point is that when writing

queries, you must first debug the errors if any, and then save

the query. After that, the query must be installed to store the

query inside the database, and then, it can be executed. All the

points mentioned above require a lot of time to be ready for

use, which means that dealing with the TigerGraph interface

costs a lot of time until certain queries can be applied.

Table 5: Performance of TigerGraph for centrality metrics.

Metrics

Latency (ms)

Ego-

Faceboo

k

Musae-

Github

Brightkit

e

Ca-

HepPh

Degree

Centrality
59 305 252 168

Betweennes

s Centrality
183,007

1,644,11

7

3,294,74

2

1,510,13

8

Closeness

Centrality
15,001 526,565 781,264 89,314

Eigenvector

Centrality
2,049 17,855 13,057 2,548

PageRank 1,413 5,975 3,839 2,468

B. T. Chicho et al. / Science Journal of University of Zakho 11(2), 190 –201, April-June, 2023

199

Figure 9: Shows the latency time of TigerGraph for centrality

metrics.

7.2.2 The Overall Evaluations: In this section, we

provide an overall evaluation to demonstrate the capabilities

of Neo4j and TigerGraph based on the centrality metrics used

in Section 5. This evaluation is based on the results of the data

presented in Table 6. The findings can be summarised as

follows:

TigerGraph performs significantly better than Neo4j during

the data loading phase, particularly with large datasets. There

is very little difference in loading time when you are

comparing the loading times of small and large datasets in

TigerGraph. When looking at the results achieved by the

Neo4j in the data loading stage, there is a big difference

compared to the TigerGraph. The Neo4j database takes a lot

of time, especially when the dataset is large. There is a very

big difference in the loading time of the large datasets

compared to the small datasets. TigerGraph achieved lower

loading phase latency than Neo4j for each dataset, as shown

in Figure 7. For instance, to load the Musae-Github dataset in

Neo4j, it took 5,313,174 ms; however, for TigerGraph, it took

only 2000 ms.

In terms of centrality metrics, the performance of Neo4j

outperforms TigerGraph. This is because Neo4j first stores the

data in memory to improve performance before allowing

queries to be applied to it. In contrast, the TigerGraph did not

have such a feature, so when implementing metrics, it takes a

lot of time, especially when the datasets are large. This is

because TigerGraph employs a hybrid memory and disk

storage model during query execution. Also, the results of this

feature are quite clear in Table 6. If we look at Table 6, we

can see that the results of the latency of each metric gained by

Neo4j are much lower than those obtained by TigerGraph. In

the degree centrality the difference between Neo4j and the

TigerGraph is small; for example, if we look at the Ego-

Facebook dataset, the latency of Neo4j is equal to 54, whereas

in the TigerGraph it is equal to 59. However, for the

betweenness centrality, there is a significant difference in

latency between the two commonly used graph databases. For

instance, if we look at the same dataset, the latency of the

betweenness centrality that was achieved by the TigerGraph is

equal to 183,007 ms, but the result that was gained by the

Neo4j is equal to 7,020 ms, which is much less than what was

achieved by the TigerGraph.

In fact, when we deal with the interfaces of the two graph

databases, Neo4j is the easiest compared to TigerGraph.

Because in TigerGraph, in order for the query to be ready for

execution, TigerGraph requires many stages before starting to

execute the query, and these operations are time-consuming,

TigerGraph takes a long time for the query to be ready to be

executed. With Neo4j, you don't need to go through any other

steps before executing the query.

8. CONCLUSION

Graph databases can manage complex and massive amounts

of data without requiring a restructuring since only the

relationships between the nodes need to be added. In addition,

graph databases offer index-free adjacency results that only

search for entries that are closely connected to other records,

eliminating the need for an index and accelerating retrieval

speeds. In this paper, we experimentally evaluate the

performance of Neo4j and TigerGraph graph databases for

centrality metrics including degree, betweenness, closeness,

eigenvector, and PageRank centralities. Additionally, we also

evaluated the performance of data loading for both graph

databases. Experimental results showed that Neo4j achieved

excellent performance over TigerGraph for computing those

metrics. However, the performance of data loading in

TigerGraph is promising compared to Neo4j. In the future, we

aim to apply some other metrics and algorithms to the two

graph databases utilised in this study in order to examine their

capabilities in more depth and also compare them with some

other graph databases.

REFERENCES

D. Fernandes and J. Bernardino, “Graph Databases

Comparison: AllegroGraph, ArangoDB,

InfiniteGraph, Neo4J, and OrientDB.,” in Data, 2018,

pp. 373–380.

F. Chen, Y.-C. Wang, B. Wang, and C.-C. J. Kuo, “Graph

representation learning: a survey,” APSIPA Trans.

Signal Inf. Process., vol. 9, 2020.

N. Shadbolt, T. Berners-Lee, and W. Hall, “The semantic web

revisited,” IEEE Intell. Syst., vol. 21, no. 3, pp. 96–

101, 2006.

X.-M. Xu, J. Zhan, and H. Zhu, “Using social networks to

organize researcher community,” in International

Conference on Intelligence and Security Informatics,

2008, pp. 421–427.

R. Soussi, M.-A. Aufaure, and H. Baazaoui, “Graph database

for collaborative communities,” in Community-Built

Databases, Springer, 2011, pp. 205–234.

R. Kumar Kaliyar, “Graph databases: A survey,” in

International Conference on Computing,

Communication & Automation, 2015, pp. 785–790.

B. Ristevski, “Using Graph Databases for Querying and

Network Analysing,” 2019.

A. G. Baset, “Graphical Database Architecture For Clinical

Trials,” 2015.

Table 6: Performance of Neo4j and TigerGraph for centrality metrics.

Metrics

Latency (ms)

Ego-Facebook Musae-Github Brightkite Ca-HepPh

Neo4j TigerGraph Neo4j TigerGraph Neo4j TigerGraph Neo4j TigerGraph

Degree Centrality 54 59 238 305 322 347 112 168

Betweenness Centrality 7,020 183,007 629,833 1,644,117 756,921 3,294,742 56,718 1,510,138

Closeness Centrality 249 15,001 17,958 526,565 24,315 781,264 3,699 89,314

Eigenvector Centrality 163 2,049 733 17,855 701 13,057 487 2,548

PageRank 168 1,413 609 5,975 626 3,839 447 2,468

B. T. Chicho et al. / Science Journal of University of Zakho 11(2), 190 –201, April-June, 2023

200

R. Angles and C. Gutierrez, “An introduction to graph data

management,” in Graph Data Management, Springer,

2018, pp. 1–32.

H. Lu, Z. Hong, and M. Shi, “Analysis of film data based on

Neo4j,” in 2017 IEEE/ACIS 16th International

Conference on Computer and Information Science

(ICIS), 2017, pp. 675–677.

S. Almabdy, “Comparative analysis of relational and graph

databases for social networks,” in 2018 1st

International Conference on Computer Applications

& Information Security (ICCAIS), 2018, pp. 1–4.

A. Lysenko, I. A. Roznovăţ, M. Saqi, A. Mazein, C. J.

Rawlings, and C. Auffray, “Representing and

querying disease networks using graph databases,”

BioData Min., vol. 9, no. 1, pp. 1–19, 2016.

M. Šestak, M. Heričko, T. W. Družovec, and M. Turkanović,

“Applying k-vertex cardinality constraints on a Neo4j

graph database,” Future Gener. Comput. Syst., vol.

115, pp. 459–474, 2021.

M. Macak, M. Stovcik, B. Buhnova, and M. Merjavy, “How

well a multi-model database performs against its

single-model variants: Benchmarking OrientDB with

Neo4j and MongoDB,” in 2020 15th Conference on

Computer Science and Information Systems

(FedCSIS), 2020, pp. 463–470.

M. Desai, R. G. Mehta, and D. P. Rana, “An empirical

analysis to identify the effect of indexing on influence

detection using graph databases,” Int J Innov Technol

Explor. Eng, vol. 8, pp. 414–421, 2019.

S. Beis, S. Papadopoulos, and Y. Kompatsiaris,

“Benchmarking graph databases on the problem of

community detection,” in New Trends in Database

and Information Systems II, Springer, 2015, pp. 3–14.

R. Wang, Z. Yang, W. Zhang, and X. Lin, “An empirical

study on recent graph database systems,” in

International Conference on Knowledge Science,

Engineering and Management, 2020, pp. 328–340.

C. Liu and H. Duan, “A Graph Database Storage Engine for

Provenance Graphs,” DBKDA 2020, p. 8.

T. Chen, C. Yuan, G. Liu, and R. Dai, “Graph based platform

for electricity market study, education and training,”

in 2018 IEEE Power & Energy Society General

Meeting (PESGM), 2018, pp. 1–5.

F. Rusu and Z. Huang, “In-depth benchmarking of graph

database systems with the Linked Data Benchmark

Council (LDBC) Social Network Benchmark (SNB),”

ArXiv Prepr. ArXiv190707405, 2019.

A. Deutsch, Y. Xu, M. Wu, and V. E. Lee, “Aggregation

support for modern graph analytics in tigergraph,” in

Proceedings of the 2020 ACM SIGMOD International

Conference on Management of Data, 2020, pp. 377–

392.

R. Angles and C. Gutierrez, “Survey of graph database

models,” ACM Comput. Surv. CSUR, vol. 40, no. 1,

pp. 1–39, 2008.

N. S. Patil, P. Kiran, N. P. Kiran, and N. P. KM, “A survey on

graph database management techniques for huge

unstructured data,” Int. J. Electr. Comput. Eng., vol.

8, no. 2, p. 1140, 2018.

R. Angles, “The Property Graph Database Model.,” in AMW,

2018.

A. Das, A. Mitra, S. N. Bhagat, and S. Paul, “Issues and

Concepts of Graph Database and a Comparative

Analysis on list of Graph Database tools,” in 2020

International Conference on Computer

Communication and Informatics (ICCCI), 2020, pp.

1–6.

R. H. Güting, “GraphDB: Modeling and querying graphs in

databases,” in VLDB, 1994, vol. 94, pp. 12–15.

M. Consens and A. Mendelzon, “Hy+ A hygraph-based query

and visualization system,” ACM SIGMOD Rec., vol.

22, no. 2, pp. 511–516, 1993.

U. Brandes, Network analysis: methodological foundations,

vol. 3418. Springer Science & Business Media, 2005.

W. Nejdl, W. Siberski, and M. Sintek, “Design issues and

challenges for RDF-and schema-based peer-to-peer

systems,” ACM SIGMOD Rec., vol. 32, no. 3, pp. 41–

46, 2003.

H. R. Vyawahare, P. P. Karde, and V. M. Thakare, “A hybrid

database approach using graph and relational

database,” in 2018 International Conference on

Research in Intelligent and Computing in Engineering

(RICE), 2018, pp. 1–4.

K. Islam, K. Ahsan, S. A. K. Bari, M. Saeed, and S. A. Ali,

“Huge and Real-Time Database Systems: A

Comparative Study and Review for SQL Server 2016,

Oracle 12c & MySQL 5.7 for Personal Computer,” J.

Basic Appl. Sci., vol. 13, pp. 481–490, 2017.

N. Jatana, S. Puri, M. Ahuja, I. Kathuria, and D. Gosain, “A

survey and comparison of relational and non-

relational database,” Int. J. Eng. Res. Technol., vol. 1,

no. 6, pp. 1–5, 2012.

D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vanó, S.

Gómez-Villamor, N. Martínez-Bazan, and J. L.

Larriba-Pey, “Survey of graph database performance

on the hpc scalable graph analysis benchmark,” in

International Conference on Web-Age Information

Management, 2010, pp. 37–48.

J. Guia, V. Gonçalves Soares, and J. Bernardino, “Graph

Databases: Neo4j Analysis:,” in Proceedings of the

19th International Conference on Enterprise

Information Systems, Porto, Portugal, 2017, pp. 351–

356. doi: 10.5220/0006356003510356.

G. Li, H. T. Shen, Y. Yuan, X. Wang, H. Liu, and X. Zhao,

Knowledge Science, Engineering and Management:

13th International Conference, KSEM 2020,

Hangzhou, China, August 28-30, 2020, Proceedings,

Part I, vol. 12274. Springer Nature, 2020.

S. Baker Effendi, B. van der Merwe, and W.-T. Balke,

“Suitability of graph database technology for the

analysis of spatio-temporal data,” Future Internet, vol.

12, no. 5, p. 78, 2020.

A. Bavelas, “A mathematical model for group structures,”

Hum. Organ., vol. 7, no. 3, pp. 16–30, 1948.

V. Latora and M. Marchiori, “A measure of centrality based

on network efficiency,” New J. Phys., vol. 9, no. 6, p.

188, 2007.

S. Adali, X. Lu, and M. Magdon-Ismail, “Deconstructing

centrality: thinking locally and ranking globally in

networks,” in Proceedings of the 2013 IEEE/ACM

International Conference on Advances in Social

Networks Analysis and Mining, 2013, pp. 418–425.

Ö. Şimşek and A. Barto, “Skill characterization based on

betweenness,” Adv. Neural Inf. Process. Syst., vol. 21,

2008.

F. A. Rodrigues, “Network centrality: an introduction,” in A

mathematical modeling approach from nonlinear

dynamics to complex systems, Springer, 2019, pp.

177–196.

A. Saxena and S. Iyengar, “Centrality measures in complex

networks: A survey,” ArXiv Prepr. ArXiv201107190,

2020.

B. T. Chicho et al. / Science Journal of University of Zakho 11(2), 190 –201, April-June, 2023

201

K. Das, S. Samanta, and M. Pal, “Study on centrality

measures in social networks: a survey,” Soc. Netw.

Anal. Min., vol. 8, no. 1, pp. 1–11, 2018.

P. Choudhary and U. Singh, “A survey on social network

analysis for counter-terrorism,” Int. J. Comput. Appl.,

vol. 112, no. 9, pp. 24–29, 2015.

A. Bihari and M. K. Pandia, “Eigenvector centrality and its

application in research professionals’ relationship

network,” in 2015 International Conference on

Futuristic Trends on Computational Analysis and

Knowledge Management (ABLAZE), 2015, pp. 510–

514.

A. Landherr, B. Friedl, and J. Heidemann, “A critical review

of centrality measures in social networks,” Bus. Inf.

Syst. Eng., vol. 2, no. 6, pp. 371–385, 2010.

K. Henni, N. Mezghani, and C. Gouin-Vallerand,

“Unsupervised graph-based feature selection via

subspace and pagerank centrality,” Expert Syst. Appl.,

vol. 114, pp. 46–53, 2018.

A. Hashemi, M. B. Dowlatshahi, and H. Nezamabadi-Pour,

“MGFS: A multi-label graph-based feature selection

algorithm via PageRank centrality,” Expert Syst.

Appl., vol. 142, p. 113024, 2020.

“Stanford Large Network Dataset Collection (SNAP).”

Accessed: Feb. 08, 2022. [Online]. Available:

“Stanford large network dataset,” http:

//snap.stanford.edu/data/index.html.

J. Leskovec and J. Mcauley, “Learning to discover social

circles in ego networks,” Adv. Neural Inf. Process.

Syst., vol. 25, 2012.

B. Rozemberczki, C. Allen, and R. Sarkar, “Multi-scale

attributed node embedding (2019),” ArXiv Prepr.

ArXiv190913021, 2019.

J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph

evolution: Densification and shrinking diameters,”

ACM Trans. Knowl. Discov. Data TKDD, vol. 1, no.

1, pp. 2-es, 2007.

