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ABSTRACT 

The seriousness of the spectrum scarcity has increased dramatically due to the rapid increase of wireless services. The key 

enabling technology that can be viewed as a novel approach for utilizing the spectrum more efficiently is known as 

Cognitive Radio. Therefore, assigning the spectrum opportunistically to the unlicensed users without interfering with the 

licensed users, concurrently with maximizing the spectrum utilization is addressed as a major challenge problem in cognitive 

radio networks. In this paper, an improved metaheuristic optimization algorithm has been proposed to solve this problem 

that contingent on a graph coloring model. The proposed approach is a hybrid algorithm composed of a Particle Swarm 

Optimization algorithm with Random Neighborhood Search. The key objective function is maximizing the spectrum 

utilization in the cognitive radio networks with the subjected constraints. MATLAB R2021a was used for conducting the 

simulation. The proposed hybrid algorithm improved the system utilization by 1.23% compared to Particle Swarm 

Optimization algorithm, 5.57% compared to Random Neighborhood Search, 7.9% compared to Color Sensitive Graph 

Coloring algorithm, and 27.33% compared to Greedy algorithm. Moreover, the system performance was evaluated with 

various deployment scenarios of the primary users, secondary users, and channels for investigating the impact of varying 

these parameters on the system performance.  

KEYWORDS: Cognitive Radio, Spectrum Allocation, Optimization Algorithms, Particle Swarm Optimization, Random Neighborhood 

Search. 

1. INTRODUCTION  

With the progressive development of wireless devices and 

gadgets, the traditional spectrum resource allocation scheme 

intensifies spectrum scarcity,  which in turn reduces the 

utilization of the spectrum significantly (Feng & Weilian, 2018; 

M. G & V, 2021). The fixed channel allocation policy regulates 

the wireless networks, in other word, the governmental agencies 

regulate the spectrum for the authorize holders or services on a 

long-term basis for a large geographical region. Furthermore, 

referring to the Federal Communication Commission (FCC) 

report, temporal and geographical variation of the licensed 

spectrum exploitation varies from 15% to 85% (Liu, Wang, 

Chen, & Guo, 2018a, 2018b). Even though the traditional fixed 

spectrum allocation worked well in the past, however, the 

effectiveness of the traditional spectrum assignment policies in 

recent years reduced dramatically due to the significant access to 

limited spectrum resources in wireless mobile services (L. Zhang, 

Xie, & Chen, 2020). 

Licensed users experience different needs for traffic and 

bandwidth for various amounts of time (Tarek, Benslimane, 

Darwish, & Kotb, 2020). Besides the new technologies, the 

bandwidth requirements for different types of applications keep 

on changing (Mishra, Sagnika, Singh, & Mishra, 2019). The 

inefficient spectrum utilization with the restricted spectrum 

availability necessitated a novel communication model for 

opportunistically exploiting the current wireless spectrum 

resources. Therefore, for solving these spectrum inefficiency 

problems, Cognitive Radio (CR) that is contingent on Dynamic 

Spectrum Access (DSA) was proposed (Singh & Dutta, 2020). 

The so-called NeXt Generation (xG) Networks, also called 

dynamic spectrum access networks (DSANs) are capable of 

 
  

providing high bandwidth for their users in an opportunistic 

manner (Salehi & Solouk, 2022). 

      

CR is the key enabling technology for the xG networks (Motta, 

Banerjee, & Sharma, 2023; Rajesh Babu, Garg, & Chakraborty, 

2022). This technology was first introduced by Dr. Joseph 

Mittola in his PhD dissertation in 2000 (Salih & Shakir, 2022). 

CR is a Software Defined Radio (SDR) that can intelligently 

detect the spectrum bands (holes) for the secondary users (SUs) 

(also known as unlicensed users or cognitive users) and 

opportunistically utilizing the spectrum bands without interfering 

with the licensed users or so-called primary users (PUs) (Latif et 

al., 2021). A CR device can regulate its operating parameters for 

instance (power transmission, communication technology, 

operating frequency, modulation scheme, … etc.). So it can adapt 

itself to the environment and achieve the desired objectives 

(Tarek et al., 2020). Spectrum allocation (also known as spectrum 

allotment or spectrum assignment) which is a part of the process 

of spectrum management is frequently addressed as a vital 

research challenge in the CRNs (Latif et al., 2021).  

An efficient spectrum allocation system can determine the 

efficiency of the whole cognitive radio network along with 

maximizing the spectrum utilization (Feng & Weilian, 2018). 

Efficient allocation scheme that aims to maximize the spectrum 

utilization and minimize the interference is considered to be an 

optimization problem (Latif et al., 2021). Various traditional 

models have been utilized for modeling the spectrum resource 

allocation problem for instance graph model, game model, 

interference temperature model, auction model, and among other 

models. Graph-based models are the most commonly used 

methods for modeling the spectrum allocation problem (Feng & 

Weilian, 2018). Although the graph-based allocation 

optimization problem is a non-deterministic polynomial (NP)-
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hard combinatorial optimization problem (Feng & Weilian, 

2018; Liu et al., 2018b; Sehli & Babes, 2020). Therefore, inexact 

methods (also called approximate methods) are used to solve 

such problems, like heuristic and meta-heuristic optimization 

algorithms (Feng & Weilian, 2018).  

In this paper, different optimization algorithms have been studied 

and has been applied for allocating the spectrum in CRNs. The 

algorithms were examined to show their capabilities for 

achieving the near optimal solution and to maximize the network 

utilization with interference-free allocation. Indeed, after 

studying each algorithm individually it was observed that there is 

a need to enhance the existing optimization algorithms as they 

tend to fall early into local optimum. Hence, an improved hybrid 

optimization algorithm is proposed. Therefore, the key 

contributions of this work can be listed as follows:  

1. Modeling the problem of the spectrum allocation using 

graph coloring model. 

2. Proposing an improved PSO algorithm that combines 

the Particle Swarm Optimization algorithm with Random 

Neighborhood Search. This algorithm improves the local search 

capabilities of the PSO, thus preventing the solution from falling 

early into local optimum.  

3. Comparing the achievement validation of the 

anticipated hybrid (PSO-RNS) algorithm with other optimization 

algorithms such as: Greedy algorithm, RNS algorithm, CSGC 

algorithm, and classical PSO algorithm.  

The rest of this paper is organized as follows: Section 2 presents 

the related studies that have been conducted in the research field 

of the spectrum allocation in CRNs. Section 3, presents the 

allocation system model and the utility function. Section 4, 

presents the proposed optimization algorithms for allocating the 

spectrum in CRNs. Section 5, presents the simulation results and 

analysis for the given optimization algorithms. Lastly, the 

conclusions are drawn in section 6. 

2. LITERATURE REVIEW 

Recently, the efficient spectrum allocation scheme has gained a 

huge attention in the research area of CRNs. A large number of 

works have been conducted by researchers for finding a near-

optimal solution and proposing a new fast algorithm to solve this 

intractable problem in the research field. In this section various 

optimization algorithms that have been applied for spectrum 

allocation in the CRNs with the latest research conducted in this 

field has been reviewed. 

 Peng, Zheng, & Zhao (2006) proposed a Color Sensitive Graph 

Coloring (CSGC) technique to address the problem of the 

spectrum allocation. The system model was based on a graph 

coloring model. Three objective functions were presented and 

three policy labeling rules with both collaborative and non-

collaborative rules each corresponds to a different objective 

function (Maximum Sum Reward (MSR), Maximum-Minimum 

Reward (MMR), and Maximum Proportional Fairness MPF). 

This algorithm has shown its capability not only in improving the 

spectrum performance, but also improved the utilization and 

fairness of the network.  

 Teng, Xie, Chen, & Zhang (2020) proposed an improved 

spectrum allocation scheme of a dynamic-time varying that based 

on chaotic binary particle swarm optimization. The chaotic map 

idea was introduced in the improved algorithm for optimizing the 

initial population and the optimal position for all particles in each 

generation. Moreover, the global ergodicity of the chaotic map 

was utilized to overcome the shortcomings of the PSO algorithm. 

The experimental results showed that a fast and efficient 

spectrum allocation can be realized for satisfying the demands of 

cognitive radio communication.While Yesaswini & Annapurna, 

(2021) in their study presented a comparison between the two 

optimization algorithms that is particle swarm optimization and 

genetic algorithm for assigning the spectrum in CRNs. The 

results showed that PSO algorithm provided more spectrum 

utilization as compared to the GA based approach with less 

number of iterations to obtain the near optimal result. 

Moreover, Satria, Mustika, & Widyawan (2018) presented a 

solution for spectrum allocation in CRN using  Modified-ACO 

algorithm. The proposed solution depends on the intensity of the 

pheromone in the path used by the ants for making decision about 

the channel selection. The simulation results showed that the ants 

have improved the spectrum allocation and achieved fairness in 

the CR environment, as well as it increased the throughput of the 

system.  

 Mishra et al. (2019) proposed a PSO algorithm for allocating the 

spectrum for cognitive system. The author focused on maximizing 

the total transfer rate along with the subjected constraints such as 

individual transfer rate, total power usage, and bit error rate. The 

presented algorithm has shown its capability to increase the real-

time total transfer rate and required less iterations to obtain the 

near optimum result as compared to GA based approach. 

Additionally, X. Zhang, Zhang, & Wu (2020) proposed an 

adaptive PSO algorithm based on sawtooth propagation technique 

(SA) for allocating the spectrum in the (OFDMA) cellular 

network system. They assessed the network utility performance 

with two forms, one with no fairness for the linked users and the 

other with considering the fairness with the linked users. The 

simulation results showed validation of the proposed algorithm in 

terms of utilization and fairness among the linked users in the 

cellular network system. 

 M. G & V (2021) studied and analysed the performance of the 

PSO algorithm taking into consideration several parameters such 

as individual power rate, entire power usage, and bit error rate 

(BER). These parameters were considered to confirm the fairness 

among the users along with the efficient energy with minimum 

BER. The simulation results showed the ability of the proposed 

algorithm to offer larger allocation rate instantaneously with less 

number of iterations. 

Moreover, Tian, Deng, & Xu (2020) proposed an Immune Parallel 

Artificial Bee Colony Optimization (IPABCO) algorithm. The 

authors adopted the immune theory and the parallel theory for 

solving the problem of the spectrum allotment in the cognitive 

radio sensor networks.  The proposed algorithm was based on the 

classical graph coloring model that aims at optimize the network 

efficiency. The anticipated algorithm showed its capabilities in 

terms of maximizing the total network benefits. In addition, it 

showed superiority in terms of having fast convergence speed and 

high optimization ability as compared to PSO and ACO 

algorithms.  

However, an enhanced ABCO algorithm was presented in 

Agarwal, Vijay, & Bagwari (2021), for spectrum allocation in 

cognitive radio network. The proposed method first predicted the 

channel of the PUs, then it performed the spectrum sensing, thus 

the probability has been reduced, and the overall throughput of 

the network has increased. The simulation results showed that the 

proposed method had better efficiency by 11.48% in terms of 

spectrum usage compared to the binary artificial bee algorithm. 

While, Feng & Weilian (2018) pioneered the Fireworks 

Algorithm (FA) to address the spectrum allocation problem in the 

cognitive radio networks. The system was based on a graph 

coloring model with considering multiple objective functions. 

Two binary coding layers were considered for individual 

fireworks. The given algorithm has shown its capability in 

avoiding the local optimum and enhancing the system fairness, 

utilization, and convergence speed.  

Moreover,   Latif et al. (2021) proposed  an improved 

evolutionary algorithm which is a differential evolution based 

particle swarm optimization algorithm with a repair process (DE-

PSO-RP). Where the repair process is considered for excluding 

the interference among the secondary users, hence increasing the 

spectrum resources in the CRNs. The authors compared the 
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results obtained by the anticipated algorithm with that obtained 

by the other algorithms such as PSO with repair process (PSO-

RP) and differential evolution with repair process (DE-RP). The 

simulation results showed that the proposed algorithm improved 

the spectrum utilization in the CRNs.  

3. SYSTEM MODEL 

In the conditions of the dynamic spectrum access like cognitive 

radio networks, the channel allocation problem is described by 

enabling unlicensed users (SUs) to access the spectrum with 

legacy users (PUs). Hence, dynamic spectrum systems increase 

the available spectrum's capacity and commercial value. Based 

on restrictions agreements upheld by PUs, secondary users are 

able to access the available spectrum in a non-interfering way. 

This section presents the system model aided by a sample model. 

The suggested model assumes that the environmental factors like 

user location and spectrum availability will not change during the 

period of spectrum allocation. This is because users quickly adapt 

to environmental changes despite the sluggish changes in the 

spectrum environment. 

3.1 System Sample Model  

In this section a sample model describing the proposed system 

model is presented. Figure 1, illustrates the sample model 

deployment of a single cell with a base station to provide a 

wireless connection to a residential community. In this sample 

model there are four randomly distributed primary users (PU-Ⅰ, 

PU-Ⅱ, PU-Ⅲ, PU-Ⅳ) and four randomly distributed secondary 

users (SU-Ⅰ, SU-Ⅱ, SU-Ⅲ, SU -Ⅳ). Randomly every primary 

user 𝑘 occupies a channel 𝑚 with a protection area (radius) 

denoted as  𝑑𝑝(𝑘, 𝑚). It is assumed that the four secondary users 

opportunistically access the channels available in the network 

without affecting the transmission of the primary users only in 

two cases; either when PU is absent, or SU lies outside the 

protection area of the PU. Otherwise, there will be harmful 

interference. Accordingly, as demonstrated in Figure 1, SU-Ⅰ 

cannot access the channel occupied by PU-Ⅰ since the coverage 

area for both users are overlapped. However, SU-Ⅰ can utilize the 

channel occupied by PU-Ⅰ when it is absent (i.e., PU-Ⅰ not 

transmitting data). On the other hand, SU-Ⅱ can opportunistically 

access all the channels available in the network without affecting 

the PUs transmission as it allocates far away from all primary 

user’s protection areas. As a result, a list of available channels 

will be attained for every secondary user, and each channel will 

provide a different reward for the secondary users which is the 

protection range that a user can get after utilizing that channel. 

Additionally, for preventing the interference among the 

secondary users, each channel will list a pair of secondary users 

that cannot utilize the same channel simultaneously. Therefore, 

(SU-Ⅲ) and (SU-Ⅳ) cannot utilize channel m at the same time 

as their protection ranges overlapped. Hence, the system model 

output parameters are Availability matrix (L), Reward matrix 

(B), and interference matrix(C). 

 

 
Figure 1: System Sample Model. 

3.2 Allocation Model and System Utility Function  

Suppose a network of secondary users indexed from n=1 to N and 

primary users indexed from k=1 to K that are competing for a 

number of channels indexed from m=1 to M. Furthermore, based 

on the location and usage of the channel by adjacent primary 

users, the channel availability and rewards of each secondary user 

can be determined. To adjust the interference range, each 

secondary user modifies the transmit power on channel m which 

is denoted as  𝑑𝑠(𝑛, 𝑚) to avoid the interference constraints 

imposed by PUs. Thereby, the secondary user will regulate the 

interference range to the maximum permissible level using a 

fixed power control scheme. As a result, the transmission power 

of the SU will be bounded by two boundaries: the minimum 

transmit power  𝑃𝑡𝑚𝑖𝑛
 which corresponds to minimum 

interference rage 𝑑𝑚𝑖𝑛 and the maximum transmit power 𝑃𝑡𝑚𝑎𝑥
 

which corresponds to maximum interference range  𝑑𝑚𝑎𝑥   
[𝑑𝑚𝑖𝑛 , 𝑑𝑚𝑎𝑥]. Hence, it is assumed that channel 𝑚 will be 

available for the secondary user 𝑛 only if (Ghasemi & Ghasemi, 

2020): 

 

𝑑𝑠(𝑛, 𝑚) ≤ 𝐷𝑖𝑠𝑡(𝑛, 𝑘) − 𝑑𝑝(𝑛, 𝑚) (1) 
Where 𝑑𝑠(𝑛, 𝑚) is the protection range of the secondary user 𝑛 

on channel 𝑚 , 𝑑𝑝(𝑘, 𝑚) is the protection range of the primary 

user 𝑘 on channel 𝑚, and 𝐷𝑖𝑠𝑡(𝑛, 𝑘) is the distance between 

secondary user 𝑛 and primary user 𝑘. Furthermore, it is assumed 

that 𝑆𝑈𝑠 uses the out of band mechanism to determine the 

primary users' location and power in order to correctly adjust 

their 𝑑𝑠 to avoid interference with the 𝑃𝑈. If such power 

adjustment is utilized, the secondary user’s interference ranges  

will be equal to the minimum value between the maximum 

permissible transmit power and the minimum distance from all 

the primary users which occupies that channel, according to Peng 

et al. (2006): 

 

𝐷𝑖𝑠𝑡𝑆𝐸(𝑛, 𝑚)

= 𝑚𝑖𝑛(𝑑𝑚𝑎𝑥  , 𝑚𝑖𝑛𝑘=1…𝐾,𝑦𝑘=1…𝑚(𝐷𝑖𝑠𝑡(𝑛, 𝑘) − 𝐷𝑃𝑅) 
(2) 

 

[pWhere  𝐷𝑖𝑠𝑡𝑆𝐸(𝑛, 𝑚) represents the distance of secondary user 

𝑛 from channel m occupied by 𝑘 number of PUs, 𝑑𝑚𝑎𝑥  is the 

maximum permissible transmit power of SU, 𝐷𝑖𝑠𝑡(𝑛, 𝑘) is the 

Euclidian distance between the 𝑛𝑡ℎ secondary user and 

𝑘𝑡ℎ primary user, and 𝐷𝑃𝑅 is the primary user’s coverage area 

(interference range). Additionally, after determining the 

availability of the channels for the secondary users based on 

interference ranges of the 𝑆𝑈𝑠 with the 𝑃𝑈𝑠 for a given topology, 

the interference among the secondary users will be determined. 

This can be implemented by measuring the distance from the 

centers of the protection range of secondary user 𝑛 and 𝑖 on 

channel 𝑚 which is denoted as  𝐷𝑖𝑠𝑡(𝑛, 𝑖, 𝑚). This distance 
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indicates the position of the secondary users with respect to each 

other. If this distance was less or equal than the sum of radii of 

the protection ranges of 𝑆𝑈𝑛 and 𝑆𝑈𝑖, that is:     

                                                                        

𝐷𝑖𝑠𝑡(𝑛, 𝑖, 𝑚) ≤  𝑑𝑠(𝑛, 𝑚) + 𝑑𝑠(𝑖, 𝑚) (3) 
Then secondary users 𝑛 and 𝑖 cannot utilize channel 𝑚 

simultaneously because there will be interference due to 

overlapped regions of the protection area for both users. Where 

𝑑𝑠(𝑛, 𝑚) is the 𝑆𝑈𝑛 protection area and 𝑑𝑠(𝑖, 𝑚) is the 𝑆𝑈𝑖 

protection area. The key component of the proposed model is 

presented as follows (Ghasemi & Ghasemi, 2020): 

Channel availability matrix: 𝑳 = {𝑙𝑛,𝑚|𝑙𝑛,𝑚 𝜖 {0,1}}
𝑁×𝑀

is an N 

by M binary matrix that indicates weather channel 𝑚 is available 

for secondary users 𝑛 or not. Depending on the distance if 

𝑑𝑠(𝑛, 𝑚) ≤ 𝑑𝑚𝑖𝑛  , it means channel 𝑚 is not available to 𝑆𝑈𝑛 ( 

𝑙𝑛,𝑚 = 0), otherwise the channel is available ( 𝑙𝑛,𝑚 = 1).  

Channel reward matrix: 𝑩 = {𝑏𝑛,𝑚|𝑏𝑛,𝑚 > 0}
𝑁×𝑀

 is an N by M 

matrix that gives the reward matrix for each secondary user. In 

addition, this matrix signifies the bandwidth that a user 𝑛 can 

attain after occupying channel 𝑚 with the assumption that there 

is no interference from neighbors. Relying on the sample in 

Figure 1, the reward for each secondary user can be one of the 

following: 

1. Coverage area of SU using channel 𝑚:  

𝑏𝑛,𝑚 = 𝑑𝑠(𝑛, 𝑚)2, 𝑑𝑚𝑖𝑛 ≤ 𝑑𝑠(𝑛, 𝑚) ≤ 𝑑𝑚𝑎𝑥  (4) 
2. The Capacity using channel 𝑚 (with the assumption that the SNR 

is a function of 𝑑𝑠(𝑛, 𝑚)):  

𝑏𝑛,𝑚 = log(1 + 𝑓(𝑑𝑠(𝑛, 𝑚)) )  

𝑤ℎ𝑒𝑟𝑒,  𝑑𝑚𝑖𝑛 ≤ 𝑑𝑠(𝑛, 𝑚) ≤ 𝑑𝑚𝑎𝑥  

 

(5) 

Where 𝑏𝑛,𝑚 represents the reward of secondary user n after 

occupying channel m. It is worth noting that if 𝑙𝑛,𝑚 = 0 , then 

𝑏𝑛,𝑚 = 0. For the given problem, (Equation (4)) which 

represents the coverage area of the secondary users is considered 

as a reward for the secondary users).  

Interference constraint matrix: 𝑪 = {𝑐𝑛,𝑖,𝑚|𝑐𝑛,𝑖,𝑚  ∈

{0,1}}
𝑁×𝑁×𝑀

, is an N by N by M matrix representing the 

interference constraints among the secondary users. In this matrix 

each channel will have a N-by-N matrix that represents the 

interference among users. Where 𝑐𝑛,𝑖,𝑚 represents the 

interference of 𝑆𝑈𝑛  and 𝑆𝑈𝑖 occupying channel m 

simultaneously.  If 𝑐𝑛,𝑖,𝑚 = 1, it means that 𝑆𝑈𝑛 and 𝑆𝑈𝑖 cannot 

utilize channel 𝑚 simultaneously. This matrix is a channel 

availability dependent matrix that is: 𝑐𝑛,𝑖,𝑚 ≤ 𝑙𝑛,𝑚 × 𝑙𝑖,𝑚 and 

𝑐𝑛,𝑖,𝑚 = 1 − 𝑙𝑛,𝑚 if 𝑛 = 𝑖. In this paper the geometry model has 

been used in which two users will conflict if there was no 

sufficient distance between them that is: 𝐷𝑖𝑠𝑡(𝑛, 𝑖, 𝑚) ≤
 𝑑𝑠(𝑛, 𝑚) + 𝑑𝑠(𝑖, 𝑚). Moreover, this constraint is a channel 

specific in which two users might have conflict on one channel 

but not in another. 

Conflict-free channel allocation matrix: 𝑨 = {𝑎𝑛,𝑚|𝑎𝑛,𝑚  ∈

{0,1}}
𝑁×𝑀

, is a N by M matrix representing the final channel 

allocation matrix. Where 𝑎𝑛,𝑚 represents the occupation of 

secondary users n to channel m. That is: if 𝑎𝑛,𝑚 = 1, it means 

that channel 𝑚 is allocated to user 𝑛, otherwise channel 𝑚 cannot 

be allocated to user 𝑛. This matrix necessitates to satisfy all the 

constraints imposed by the PUs.    

Radio interface limit 𝑪𝒎𝒂𝒙 : Represents the quantity of channels 

that the secondary user can allocate. 

User reward 𝕽 =  {𝑟𝑛 =  ∑ 𝑎𝑛,𝑚
𝑀−1
𝑚=0 . 𝑏𝑛,𝑚}

𝑁×1
,representing the 

reward vector that each secondary user can get after assigning the 

channels. 

Network utilization U(ℜ): This represents the objective, as the 

key objective of the spectrum assignment problem is to increase 

the utilization of the network.  

 

3.3 Utility Function  

After defining system model for the given network, the following 

utility function (i.e., objective function or fitness function) can 

define the  spectrum allocation problem (Teng et al., 2020):  

 

𝐴∗ =   𝐴∈Λ(𝐿,𝐶)𝑁×

arg 𝑚𝑎𝑥
𝑈(ℜ) (6) 

The utility functions for a specific application type can be 

acquired based on extensive surveys. Alternatively, based on 

traffic pattern and fairness inside the network the utility functions 

can be designed.  The single-hop-flows is considered for 

addressing the utility, as they are the simplest format of wireless 

transmission. In addition, in this work the utility function has 

been expressed as Maximum-Sum-Reward (MSR), the aim of 

this objective function is maximizing the network utilization 

without taking into consideration the fairness. The expression of 

this objective function is represented as follows (Peng et al., 

2006): 

 

      𝑈𝑀𝑆𝑅 = ∑ 𝑟𝑛

𝑁−1

𝑛=0

= ∑ ∑ 𝑎𝑛,𝑚

𝑀−1

𝑚=0

𝑁−1

𝑛=0

𝑏𝑛,𝑚 (7) 

 

To facilitate the simulation, the Mean Reward fitness function 

has been considered instead of the Maximum-Sum-Reward as 

follows:  

 

     𝑈𝑀𝑒𝑎𝑛 =
1

𝑁
∑ 𝑟𝑛

𝑁−1

𝑛=0

 (8) 

 

The conflict-free assignment matrix requires to satisfy the 

subjected constraints bellow:  

 

𝑎𝑛,𝑚 = 1   (9) 

∑ 𝑎𝑛,𝑚 ≤  𝐶𝑚𝑎𝑥

𝑀−1

𝑚=0
 

 

(10) 

𝑎𝑛,𝑚 + 𝑎𝑖,𝑚  ≤ 1 if  𝑐𝑛,𝑖,𝑚 = 1, Where 𝑛 ≠ 𝑖 ,

∀ {
𝑛, 𝑖 ∈ 𝑁
𝑚 ∈ 𝑀

 
(11) 

 

The first constraint (Equation   (9)) states that the channel has to 

be available in order to be allocated for the cognitive user. 

Otherwise, the user-channel pair will not be considered in the 

final solution. The second constraint (Equation (10)) shows that 

the highest quantity of channels that can be allocated to SU for 

the final conflict-free allocation matrix have to be less or equal 

than 𝐶𝑚𝑎𝑥. Meanwhile, the third constraint (Equation (11)) 

represents the incompatibility constraint, in other word, each 

channel might contain pairs of incompatible users that cannot 

utilize the same channel simultaneously to avoid interference. 

Therefore, for achieving a conflict-free assignment matrix, the 

proposed algorithms necessitate first to satisfy all the 

aforementioned constraints presented in this section. 
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4. OPTIMIZATION ALGORITHMS FOR   SPECTRUM 

ALLOCATION IN CRNS 

4.1 Spectrum Allocation using RNS Algorithm 

Local search is based on the concept of the neighborhoods. This 

algorithm can be used for finding solutions for highly complex 

problems where their analytical model contains a huge number 

of variables and constraints or little theoretical knowledge is 

available. The neighborhoods require to be well defined for 

efficiently searching them. Thus, the local search can be 

implemented to find a good solution quickly for large scale 

instances of such problems. The local search is implemented with 

a number of iterations on the same problem instance using 

different (e.g. random generated) initial solutions.  The size of the 

neighborhood can determine how the local search can effectively 

improve the solution in each iteration (Crama, Kolen, & Pesch, 

1995).  

The Random Neighborhood Search (RNS) algorithm is used for 

generating a population of candidate solutions for the given 

optimization problem (Saleh, Ahmed, & Nashat, 2020). 

Algorithm I illustrates the steps of the RNS method for allocating 

the spectrum in CRNs. This algorithm starts by initializing the 

number of iterations (Step2) in which it represents the population 

of candidate solutions. Step2 to Step7 defines the main steps for 

implementing this method which starts by randomly selecting a 

channel m and allocating it to a secondary user. After that 

checking the interference with other secondary users on channel 

m. If the selected user 𝑛 has interference with user 𝑖 on channel 

𝑚 (𝑐𝑛,𝑖,𝑚 = 1), then allocate the channel to user 𝑛 (𝑎𝑛,𝑚 =
1) and delete it from its channel list (𝑙𝑛,𝑚 = 0) and from user 𝑖 

channel list (𝑙𝑖,𝑚 = 0). Otherwise, if there was no interference 

with user 𝑖 (𝑐𝑛,𝑖,𝑚 = 0), then just allocate channel m to user 

𝑛 (𝑎𝑛,𝑚 = 1),  and delete it from its channel list (Step 4). Repeat 

until the availability matrix is empty, then evaluate the fitness 

function using Equation (8) for evaluating the Mean Reward. 

After that update the iteration and repeat the previous steps (from 

3 to 5). If maximum iteration is met, then select the best solution 

which represents the final conflict-free assignment matrix. 

Otherwise, repeat the procedure.  

Algorithm I: RNS Algorithm 

Inputs: Availability matrix(L), Reward matrix(B), and 

Interference matrix (C) 

Output: Conflict-free allocation matrix (A) 

Let N be the number of secondary users   

Let M be the number of available channels 

Step1: Initialize parameters set and simulation model 

Step2: Set the value of maximum iteration. 

Step3: For 𝒏 = 𝟏: 𝑵 , randomly select channel 𝒎  for 

𝑺𝑼𝒏  

Step4: For the selected   channel m, check if 𝑺𝑼𝒏  and 

𝑺𝑼𝒊   satisfy 𝒄𝒏,𝒊,𝒎 = 𝟏, then set  𝒂𝒏,𝒎 = 𝟏,  𝒍𝒏,𝒎 = 𝟎 

and 𝒍𝒊,𝒎 = 𝟎.  Otherwise, if 𝒄𝒏,𝒊,𝒎 = 𝟎, then set  𝒂𝒏,𝒎 =

𝟏 , 𝒍𝒏,𝒎 = 𝟎. 

Step5: Repeat Step2 for all 𝑺𝑼𝒏 until the availability (L) 

matrix is empty. 

Step6: Evaluate the Fitness Function according to 

equation (8). 

Step7: If a predefined maximum iteration is met, then 

select the best solution among all iterations, otherwise 

return to Step3.  

Step8:  End 

 

4.2 Spectrum Allocation using PSO Algorithm 

Particle Swarm Optimization is a swarm intelligent optimization 

algorithm that was basically introduced for the first time in 1995 

by Kennedy and Eberhart. This algorithm is utilized for solving 

the optimization problems as it imitates the attitude of the flock 

of birds and school of fishes as they continuously change their 

location to search for food relying on their current location. 

Recently, the researchers and scholars have adopted PSO 

algorithm for solving different problems in CRNs, although it has 

revealed a massive flexibility for solving the spectrum allocation 

problem and searching the  near optimal solution (Mishra et al., 

2019; Salih & Shakir, 2022). Since the spectrum allocation is a 

discrete space optimization problem, the binary PSO has been 

utilized with this problem. Therefore, for simulating the PSO 

behavior to solve the spectrum allocation problem and find near 

optimal solution, the birds will be represented by a population of 

particles. This algorithm starts by defining the number of 

particles or the population size denoted by P, and the length of 

particles is set to D = ∑ ∑ 𝑙𝑛,𝑚
𝑀
𝑚=1

𝑁
𝑛=1  , which counts the number 

of ones in the availability matrix. Binary coding mechanism is 

used to randomly generate particle 𝑖 position at iteration 𝑡  as 

𝑥𝑖𝑑
𝑡 = [𝑥𝑖1

𝑡 , 𝑥𝑖2
𝑡 , … . . , 𝑥𝑖𝐷

𝑡 ], where 1 ≤ 𝑑 ≤ 𝐷  is the 𝑑𝑡ℎ bit in the 

particle position vector, and  𝑥𝑖𝑑
𝑡 ∈ [0,1]. This mechanism is 

analogous to that used in Genetic Algorithm (GA), which is 

regarded as a possible solution in the optimization problem. 

Similarly, the velocity of particle 𝑖 is implied by 𝑣𝑖𝑑
𝑡 =

[𝑣𝑖1
𝑡 , 𝑣𝑖2

𝑡 , … . . , 𝑣𝑖𝐷
𝑡 ], where 𝑣𝑖𝑑

𝑡  ∈  [−𝑉𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥], and 𝑉𝑚𝑎𝑥 is a 

system parameter that prevent 𝑣𝑖𝑑
𝑡  from the continuous value . 

Additionally, this parameter has not been set to a small value to 

prevent high mutation rate. Then for each particle 𝑖 map the 𝑗𝑡ℎ 

element in 𝑥𝑖𝑑
𝑡  to 𝑎𝑛,𝑚 in the pre-conflict assignment matrix, 

according to the example in  Figure 2 (Teng et al., 2020). 

𝐿 = [
0 1 1
0 1 1
1 0 0

] , 𝑥𝑖𝑑
𝑡 = [0 1 0 1 1], 𝐴 = [

0 0 1
0 0 1
1 0 0

] 

Figure 2: Code Mapping Example 

 

Then the interference is examined in each channel to achieve a 

conflict-free assignment matrix. After that the fitness function 

will be evaluated according to Equation (8). Then define 𝑝𝑖𝑏𝑒𝑠𝑡
𝑡 =

[𝑥𝑖1
𝑡 , 𝑥𝑖2

𝑡 , . . , 𝑥𝑖𝐷
𝑡 ] which  is the local best solution that particle 𝑖 

has attained at iteration 𝑡, and  𝑔𝑏
𝑡 =  [𝑥𝑏1

𝑡 , 𝑥𝑏2
𝑡 , … . . , 𝑥𝑏𝐷

𝑡 ], is the 

global best solution among all particles. At  𝑡 + 1, all particle’s 

velocities and positions will be updated using below expressions 

(Teng et al., 2020): 

 

 

𝑥𝑖𝑑
𝑡+1 =  {

1, 𝜂 < 𝑆(𝑣𝑖𝑑
𝑡+1)

0, 𝜂 ≥ 𝑆(𝑣𝑖𝑑
𝑡+1) 

 (13) 

Where 𝑣id
𝑡+1is the d -dimensional velocity of the particle 𝑖 in the 

following generation, it is determined by the previous velocity 

value of particle 𝑖,  the cognition part: c1r1(𝑝𝑖𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖𝑑

𝑡 ) and the 

social part: c2r2(𝑔𝑏
𝑡 − 𝑥𝑖𝑑

𝑡 ). Where  𝑤 is the inertial weight, c1  

and 𝑐2 are the acceleration coefficients, 𝑟1and 𝑟2 are uniform 

random numbers generated in the interval of [0,1]. The value of 

𝑣id
𝑡+1 is limited to a value in the interval of [0,1] according to the 

following sigmoid function (Teng et al., 2020): 

 

S (𝑣𝑖𝑑
𝑡+1)  =  

1

1+𝑒𝑥𝑝(−𝑣𝑖𝑑
𝑡+1)

 (14) 

Equation (13) defines that the probability of bit  𝑥𝑖𝑑
𝑡+1 = 1, if η < 

S (𝑣id
𝑡+1), Otherwise,  𝑥𝑖𝑑

𝑡+1 = 0, where η is a uniform random 

number distributed in the interval of [0,1]. Additionally, to avoid 

S (𝑣id
𝑡+1) from approaching 0 or 1, the value of 𝑣id

𝑡+1 is constrained 

in the limit of [−𝑉𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥], that is (Zhao, Xu, Zheng, & Shang, 

2009): 

𝑣𝑖𝑑
𝑡+1 = 𝑤 ∗ 𝑣𝑖𝑑

𝑡 + 𝑐1𝑟1(𝑝𝑖𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖𝑑

𝑡 )

+ 𝑐2𝑟2(𝑔𝑏
𝑡 − 𝑥𝑖𝑑

𝑡 ) 
(12) 
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Equation (15) defines that if the value of  𝑣𝑖𝑑
𝑡+1 is greater than 

𝑉𝑚𝑎𝑥 then set the value of 𝑣𝑖𝑑
𝑡+1 = 𝑉𝑚𝑎𝑥, or  if the value of  𝑣𝑖𝑑

𝑡+1 

is less than the −𝑉𝑚𝑎𝑥, then set the value of 𝑣𝑖𝑑
𝑡+1 = −𝑉𝑚𝑎𝑥. 

 

4.3 Proposed Hybrid PSO-RNS Algorithm for Spectrum 

Allocation in CRNs 

In this section a new algorithm is proposed which is hybrid PSO 

with the Random Neighborhood Search (PSO-RNS) algorithm. 

The performance of this algorithm has been compared with other 

optimization algorithms (such as: Greedy algorithm, RNS 

algorithm, CSGC algorithm, PSO algorithm) that have been 

examined individually to evaluate its capability to fit the given 

objective function and to validate the performance of the new 

proposed algorithm.  As aforementioned, RNS is used to enhance 

the initial starting solution by providing a population of 

candidates to choose the best solution among all candidates with 

a predefined maximum iteration. While in PSO, particles can 

search globally and find the initial near optimal solution. As a 

result, in later algorithm, PSO tends to fall into the local optimum 

during the search process. Therefore, RNS is performed for each 

generation of particle velocity, allowing particles to achieve the 

near global optimum via evolution during the search iteration. 

Algorithm II illustrates the main steps for the proposed hybrid 

system. It starts by initializing all the parameters with defining 

the fitness function and the population size 𝑃 (Step 1 to 3). At 

iteration t = 0, randomly generate particle 𝑖 position vector xid
t  

using a  

binary coding mechanism. Additionally, generate particle 

velocity vector vid
t  , where the bit values of this vector are 

randomly generated in the interval of [−Vmax, Vmax] (Step4). 

Then map the elements in the position vector to the pre-conflict 

assignment matrix then perform RNS algorithm utilizing 

Algorithm I (Step5). Where RNS algorithm provides additional 

search for finding the best position vector which is generated 

initially by the PSO algorithm. Hence, RNS with a predefined 

maximum iteration randomly selects the channels for the 

secondary users. The interference is checked among all the 

secondary users, so if two users interfere if they utilize the same 

channel, randomly allocate the channel to one of them and delete 

it from the other user channel’s list. Thus, the free-assignment 

matrix will be generated for each particle. After a predefined 

maximum iteration is met for the RNS algorithm it will select the 

best solution for each particle among all iterations which in turn 

enhances the solution for all particles. Then evaluate the fitness 

function for all particles. Then it will search for the local best 

solution 𝑝𝑖𝑏𝑒𝑠𝑡
𝑡  and global best solution  𝑔𝑏

𝑡  (Step7). Update the 

iteration t and all particles’ velocities and positions according to 

equation (12) and (13) respectively, then reassess the fitness 

function (Step8). If the current solution vector is superior to the 

previous best solution, then the particle position and global best 

position is updated (Step9). Finally (Step10), terminate the 

algorithm if a predefined maximum iteration is met and choose 

the best solution among all iterations, otherwise repeat Step7. 

Figure 3 demonestrate the  

flow chart of hybrid PSA with RNS algorithm for spectrum 

allocation in CRNs. 

 

 

 

                      

 

 

 

 

 

 

 

 

 

 

 

𝑣𝑖𝑑
𝑡+1 =  {

𝑉𝑚𝑎𝑥  ,  𝑣𝑖𝑑
𝑡+1 > 𝑉𝑚𝑎𝑥  

−𝑉𝑚𝑎𝑥  , 𝑣𝑖𝑑
𝑡+1 < −𝑉𝑚𝑎𝑥

 (15) 

Algorithm II: Hybrid PSO with RNS Algorithm  

Inputs: Availability matrix(L), Reward matrix(R), and 

Interference matrix (C) 

Output: Conflict-free allocation matrix (A) 

Let N be the number of secondary users 

Let M be the number of available channels 

Step1: Initialize system parameters set, simulation model, 

and PSO parameter 

Step2: Identify the Fitness Function 𝑼(𝕽). 

Sep3: Set population size P and the length of particle 𝒊 to: 

D = ∑ ∑ 𝒍𝒏,𝒎
𝑴
𝒎=𝟏

𝑵
𝒏=𝟏 . 

Step4: Set iteration 𝒕 = 𝟎, and randomly generate the 

initial particle 𝒊 position:  𝒙𝒊𝒅
𝒕 = [𝒙𝒊𝟏

𝒕 , 𝒙𝒊𝟐
𝒕 , … . . , 𝒙𝒊𝑫

𝒕 ] and 

particle 𝒊 velocity: 𝒗𝒊𝒅
𝒕 = [𝒗𝒊𝟏

𝒕 , 𝒗𝒊𝟐
𝒕 , … . . , 𝒗𝒊𝑫

𝒕 ], where 

𝒙𝒊𝒅
𝒕  ∈ {𝟎, 𝟏} , and  𝒗𝒊𝒅

𝒕  ∈  [−𝑽𝒎𝒂𝒙, 𝑽𝒎𝒂𝒙], 𝟏 ≤ 𝒊 ≤ 𝑷. 

Step5:  Map the 𝒋𝒕𝒉 element in 𝒙𝒊𝒅
𝒕  to 𝒂𝒏,𝒎 for each 

particle. Then apply the RNS algorithm (refer to 

Algorithm I) which will return the Fitness Function 

𝑼(𝕽) after a predefined maximum iteration. 

Step6: Find the best position  for each particle  𝒑𝒊𝒃𝒆𝒔𝒕
𝒕 =

[𝒙𝒊𝟏
𝒕 , 𝒙𝒊𝟐

𝒕 , … . . , 𝒙𝒊𝑫
𝒕 ] and the global best position among all 

particles  𝒈𝒃
𝒕 = [𝒙𝒃𝟏

𝒕 , 𝒙𝒃𝟐
𝒕 , … . . , 𝒙𝒃𝑫

𝒕 ], where b is the index 

position of the particle that has the highest fitness value. 

Step7: Set iteration 𝒕 = 𝒕 + 𝟏, then update the velocity 

𝒗𝒊𝒅
𝒕  and position 𝒙𝒊𝒅

𝒕   for all particles according to equation 

(12) and (13)  respectively.   

Step8: Update the particle position if the current particle’s 

position is better than the previous best position. Then 

update the global best position.  

Step9:  Find the best solution if a predefined maximum 

iteration is met, otherwise return to Step7. 
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Figure 3: Flow Chart of the Hybrid PSO with RNS Algorithm for Spectrum Allocation in CRNs.

5. SIMULATION ENVIRONEMENT AND 

PARAMETERS 

The simulation has been conducted on a personal computer: 

Intel(R) Core (TM) i5-3230M CPU @ 2.60GHz and 8 GB RAM 

processor using MATLAB R2021a software. The simulation 

model area of the wireless network is taken to be (20km×20km). 

Where K primary users has been deployed randomly with a 

uniform coverage area of 𝐷𝑝 = 2, and randomly each PU selects 

a random channel from the M number of channels. Additionally, 

randomly deploying N secondary users that regulates their 

transmit power on channel m 𝑑𝑠(𝑛, 𝑚) to prevent interfering 

with the primary users. 𝐶𝑚𝑎𝑥 is assumed to be the same quantity 

as the available channels in the network (i.e., 𝐶𝑚𝑎𝑥 = 𝑀). The 

minimum and maximum coverage area of SUs are equal to  𝑑 𝑚𝑖𝑛 

and 𝑑𝑚𝑎𝑥  respectively. It is assumed that all the secondary users 

use the Orthogonal Frequency Division Multiple Access 

(OFDMA) technique for simultaneously accessing multiple 

channels without interference. The maximum iteration = 100, for 

the proposed hybrid PSO-RNS algorithms. The standard 

parameter setting is used for the PSO algorithm were acceleration 

coefficient  𝑐1 , 𝑐2  =  2 , 𝑟1 and 𝑟2 are random numbers in the 

interval of [0,1], and inertial weight 𝑤 = 1. Where population 

size 𝑃 = 20 , 𝑉𝑚𝑎𝑥 = 4, and 𝑉𝑚𝑖𝑛 = −4 for both PSO and PSO-

RNS algorithms. 

 

5.1 Simulation Results and Analysis 

In this section evaluation performance of the given optimization 

algorithms is presented. The same topological structure is used 

for the all algorithms and the initial parameter setting for 

simulation model is taken as:  N=10, K=10, M=10, 𝑑𝑚𝑖𝑛  = 1  

𝑑𝑚𝑎𝑥  = 4,  for the ten different topologies. Since the primary 

users and secondary users were distributed randomly, the 

configuration deployment of the PUs and SUs will be different 

which provides various numbers of topologies. Then the impact 

of varying the system parameters such as number of PUs, number 

of SUs, and number of channels on the Mean Reward system 

utility has also been examined.   

Figure 4 shows the relationship between the Mean Reward utility 

function and various topologies deployments under the proposed 

optimization algorithms. Table 1  summarizes the simulation 

results obtained for the Mean Reward using the proposed hybrid 

(PSO-RNS) algorithm and other algorithms such as Greedy 

algorithm, Random Neighborhood Search, Color Sensitive 

Graph Coloring with non-collaborative sum labeling rule 

(CSGC-NSUM), Particle Swarm optimization algorithm under 

different topologies. Ten different topologies have been 
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considered. The average value is calculated for the results 

obtained from the ten different topologies by the given 

optimization algorithms. Hence, the results confirmed that the 

proposed hybrid (PSO-RNS) algorithm improved the system 

utilization by 1.23% compared to PSO algorithm, 5.57% 

compared to RNS, 7.9% compared to color sensitive graph 

coloring algorithm, and 27.33% compared to Greedy algorithm. 

The time execution for the five given algorithms are as follows: 

CSGC-NSUM is the fastest algorithm to give the solution with 

less time, it takes approximately (0.021831) second. While 

Greedy algorithm takes slightly more time than the CSCG-

NSUM, it takes about (0.045582) second for the entire execution. 

The time execution for the RNS is (0.156339) second. While PSO 

algorithm takes much more time than the aforementioned 

algorithms, it takes approximately (7.564184) second. However, 

the execution time for the new proposed hybrid PSO-RNS 

algorithm is much heavier as compared to all other proposed 

algorithms, it approximately takes (35.271509) second. 

 
Figure 4:  Mean Reward System Utility Under                                                                                                                                            

Different Optimization Algorithms for Various Topologies. 

 

 

 

5.2 Effect of Varying PUs Number on System Utility  

The performance of the five optimization algorithms were 

examined in this section under various deployment 

configurations of primary users. The primary users' deployment 

will determine the channel availability, reward, and interference 

constraints for secondary users. Increasing the number of primary 

users, on the other hand, will force secondary users to reduce 

their protection ranges. As a result, secondary users' chances for 

obtaining a channel will be reduced, and thus lowering the 

spectrum utilization. Figure 5, depicts the relationship between 

increasing the number of primary users and deterioration of the 

system utility. For the simulation, different numbers of primary 

users (ranging from 5 to 35), a fixed number of secondary users 

(N=10), and a fixed number of channels (M=10) is taken. 

 

5.3 Effect of Varying SUs Number on System Utility 

The performance of the five given optimization algorithms were 

examined in this section under various secondary user 

deployment configurations. The simulation began by changing 

user’s density (i.e., the number of secondary users). Accordingly, 

increasing the secondary user’s density degrades the system 

utility performance as it generates further interference 

constraints. Figure 6, depicts the relationship between an increase 

in the number of secondary users and a decrease in the system 

utility. For the simulation, different numbers of secondary users 

ranging from 10 to 40 are used, as well as a fixed number of 

primary users (K=10) and a fixed number of channels (M=10). 

 

5.4 Effect of Varying the Number of Channels on System 

Utility  

In this section, the performance of the five given optimization 

algorithms were examined with varying the number of channels 

and its effect on the system utility. Figure 7, shows how the 

system utility scale with increasing the number of available 

channels. This is because as the number of channels increases 

more spectrum will be available for the secondary users which 

significantly improves the system utilization. For conducting the 

simulation different numbers of channels are taken varied from 5 

to 30, fixed number of SUs (N=10) and fixed number of PUs 

(K=10). 

Table 1: Simulation Results for Mean Reward utility 

function                                                                                            

with various topologies. 

 

 

 
Figure 5: The Performance of Spectrum Allocation with 

Varying the Number of the Primary Users. 

 

Mean Reward (System Utilization %) 

Top. Greedy RNS CSGC PSO 
PSO-

RNS 

1 54.76 65.84 61.27 67.97 71.52 

2 57.70 60.42 59.74 60.42 60.42 

3 48.56 55.85 48.99 58.86 60.64 

4 44.86 50.24 56.20 50.10 53.16 

5 52.78 61.47 61.96 61.82 61.96 

6 55.09 68.87 62.47 75.27 75.27 

7 60.29 65.73 69.56 71.09 71.07 

8 27.13 57.69 58.53 58.53 58.53 

9 32.68 42.58 41.48 49.78 48.80 

10 55.62 61.72 57.34 61.89 61.98 

Avg. 48.95 59.04 57.76 61.57 62.33 
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Figure 6: The Performance of Spectrum Allocation with 

Varying the Number of The Secondary Users. 

  
Figure 7: The Performance of Spectrum Allocation with 

Varying the Number of Channels. 

6. CONCLUSIONS 

In this study, an improved optimization algorithm was proposed 

that combines PSO algorithm with RNS for allocating the 

spectrum in the CRNs. The proposed algorithm was based on the 

graph coloring model. Therefore, based on the obtained 

simulation results the following points can be concluded: 

1. The proposed PSO-RNS algorithm improved the system 

utilization by 1.23% compared to PSO algorithm, 5.57% 

compared to RNS, 7.9% compared to color sensitive graph 

coloring algorithm, and 27.33% compared to Greedy algorithm. 

2. CSGC algorithm takes less execution time as compared to other 

algorithms (0.021831second), followed by Greedy algorithm 

(0.045582 second), RNS algorithm (0.156339 second), and PSO 

algorithm (7.564184 second). While the execution time of the 

proposed hybrid algorithm (PSO-RNS) was higher compared to 

the given optimization algorithms, it takes about (35.271509 

second). 

3. Increasing the quantity of primary users while fixing other 

parameters degraded the overall system performance for all 

optimization algorithms. Similarly, increasing the quantity of the 

secondary users also degraded the overall system performance 

for all algorithms. While it was noticed that the system 

performance was enhanced as the number of channels increases 

for all given optimization algorithms. 

To sum it up, RNS has improved the exploitation and exploration 

capabilities of the PSO algorithm and prevent it from falling early 

into local optimum. Consequently, it improved the system 

utilization in the cognitive radio networks as compared to other 

given optimization algorithms. However, the execution time of 

the proposed algorithm was heavier than the other algorithms. 

Hence, this problem necessitates further investigation in the 

future study.    
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