$(i, j) - S_c$ – Continuous and $(i, j) - \Theta S_c$ – continuous Functions

ALIAS BARAKAT KHALAF¹, HARDI NASRADDIN AZIZ² AND HARDI ALI SHAREF² ¹Dept. of Mathematic, Faculty of Science, University of Duhok, Kurdistan Region-Iraq ² Dept. of Mathematic, Faculty of Science, University of Sulaimani, Kurdistan Region-Iraq *(Accepted for publication: June 9, 2013)*

ABSTRACT

In this paper, we introduce new types of continuity in bitopological spaces called $(i, j) - S_c$ – continuous and $(i, j) - \theta S_c$ – continuous. We discuss the relationship between these types of continuity and other known types of continuous functions.

Keywords: $(i, j) - S_c$ - continuous, $(i, j) - \theta S_c$ - continuous, Semi - continuous.

1. Introduction

In [Kelley, 1963] Kelley was first introduced the concept of bitopological spaces, where X is a nonempty set and τ_1, τ_2 are topologies on X. Throughout this paper, (X, τ_1, τ_2) is a bitopological space, and if $A \subseteq X$, then i - Int(A) and i - Cl(A) denote respectively the interior and closure of A with respect to the topology τ_i on X.

A subset A of a space (X, τ) is called preopen [Mashhour, 1982] (resp., semi-open [Levine, 1963], regular open [Stone, 1937]) if $A \subseteq$ Int(Cl(A)) (resp., $A \subseteq Cl(Int(A))$, A =Int(Cl(A))).

The complement of a preopen (resp., semi-open, regular open) set is said to be preclosed (resp., semi-closed, regular closed).

The intersection of all preclosed (resp., semi – closed) sets of X containing A is called preclosure [El-Deeb, 1983] (resp., semi – closure [Crossely, 1971]).

The union of all preopen (resp., semi – open) sets of X contained in A is called preinterior (resp., semi - interior).

A subset A of a space X is called θ – semi – open [Joseph, 1980], if for each $x \in A$, there exists a semi – open set G such that $x \in G \subseteq$ $Cl(G) \subseteq A$. A point $x \in X$ is said to be in semi – θ – closure [Di Maio, 1987] (resp., θ – semi – closure [Joseph, 1980]) of a subset A of X denoted by $sCl_{\theta}(A)$ (resp., $\theta sCl(A)$), if $A \cap$ $sCl(U) \neq \emptyset$ (resp., $A \cap Cl(U) \neq \emptyset$), for each semi – open set U of X containing x. A subset A of a space X is said to be θ – semi closed, if $A = \theta sCl(A)$.

In [Levine, 1963] Levine defined a function $f: X \to Y$ to be semi – continuous if $f^{-1}(V)$ is semi – open set in X for every open set V of Y. A function $f: X \to Y$ is said to be θs – continuous in sense of khalaf and Easif [Khalaf, 1999]

(resp., RC- continuous [Dontchev, 1999]) if the inverse image of each open subset of *Y* is θ – semi – open (resp., regular closed) in *X*. A function $f: X \to Y$ is said to be θ – irresolute in sense of park and park [Park, 1995] (resp., θ – irresolute in sense of Kheder and Noiri [Kheder, 1986], weakly θ – irresolute [Ganster, 1988]), if for each $x \in X$ and each semi–open set *V* of *Y* containing f(x), there exists a semi–open set *U* of *X* containing *x* such that $f(sCl(U)) \subseteq$ sCl(V) (resp., $f(Cl(U)) \subseteq Cl(V), f(U) \subseteq$ Cl(V)).

In [Joseph, 1980] Joseph and Kwack introduced a function $f: X \to Y$ to be (θ, s) continuous, if for each $x \in X$ and each semi – open set *V* of *Y* containing f(x), there exists an open set *U* of *X* containing *x* such that $f(U) \subseteq$ Cl(V). A function $f: X \to Y$ is called *R* – map [Carnahan, 1973], if the inverse image of each regular open subset of *Y* is regular open in *X*. In the present paper we introduce and investigate the concept of $(i, j) - S_C$ – continuous and $(i, j) - \theta S_C$ – continuous functions.

2. Preliminaries

We give the following definition and results which are used in next sections.

Definition 2.1 A space *X* is regular if for each $x \in X$ and each open set *G* containing *x*, there exists an open set *H* such that $x \in H \subseteq Cl(H) \subseteq G$.

Definition 2.2 [Ganster, 1990] A space *X* is said to be strongly s–regular space, if for each closed set *A* and any point $x \notin X \setminus A$, there exists a regular closed set *F* of *X* such that $x \in F$ and $F \cap A = \emptyset$.

Definition 2.3 [Arya, 1982] A space X is said to be s–Urysohn, if for each two distinct points x, y in X, there exist two semi – open sets U, V such

that $x \in U, y \in V, y \notin U$ and $x \notin V$ and $Cl(U) \cap Cl(V) = \emptyset$.

Definition 2.4 [Stone, 1937] A space X is said to be extermally disconnected, if Cl(G) is open for every open set G of X.

Definition 2.5 [Hardi, 2012] A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(i, j) - S_C - open$, if A is j - semi - open and for all $x \in A$, there exist an i - closed set F such that $x \in F \subseteq A$. A subset B of X is called $(i, j) - S_C - closed$ if and only if B^C is $(i, j) - S_C - open$. The family of $(i, j) - S_C - open$ (resp., $(i, j) - S_C - closed$) subset of X is denoted by $(i, j) - S_CO(X)$ (resp., $(i, j) - S_CC(X)$).

Theorem 2.6: Let *A* be a subset of a topological space (X, τ) , then:

1- If $A \in SO(X)$, then pCl(A) = Cl(A). [Dontchev, 2000]

2- If $A \in \tau$, then $Cl_{\theta}(A) = Cl(A)$. [Velicko, 1986].

3- $A \in PO(X)$ if and only if sCl(A) = Int(Cl(A)). [Jankovich, 1985].

4- If A is open set in a space X, then sCl(A) = Int(Cl(A)). [Di Maio, 1987].

Theorem 2.7 [Hardi, 2012] A subset A of a bitopological space (X, τ_1, τ_2) is an $(i, j) - S_C -$ open set if and only if for each $x \in A$, there exists an $(i, j) - S_C -$ open set B such that $x \in B \subseteq A$.

Theorem 2.8 [Hardi, 2012] Let (X, τ_1, τ_2) be a bitopological space. If (X, τ_i) is a T_1 – space, then $(i, j) - S_C O(X) = j - SO(X)$.

Theorem 2.9 [Hardi, 2012] Let (X, τ_1, τ_2) be a bitopological space. If (X, τ_i) is a regular space, then $\tau_j \subseteq (i, j) - S_C O(X)$.

Theorem 2.10 [Donchev, 19988] The intersection of preopen set A and regular closed set B is regular closed in the preopen set A.

Theorem 2.11[Hardi, 2012] Let *Y* be a subspace of a bitopological space (X, τ_1, τ_2) and $A \subseteq Y$. If $A \in (i, j) - S_C O(Y)$ and $Y \in j - RC(X) \cap i - RC(X)$, then $A \in (i, j) - S_C O(X)$.

Proposition 2.12 [Hardi, 2012] Let X_1 , X_2 be two bitopological spaces. If $A \in (i, j) - S_C O(X_1)$ and $B \in (i, j) - S_C O(X_2)$, then $A \times B \in (i, j) - S_C O(X_1 \times X_2)$.

3. $(i, j) - S_c$ – Continuous Function

Definition 3.1: A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called $(i, j) - S_C$ – continuous at a point $x \in X$, if for each j – open V of Y containing f(x), there exists an $(i, j) - S_C$ –

open set U of X containing x such that $f(U) \subseteq V$.

If f is $(i,j) - S_C$ – continuous at every point x of X, then it is called $(i,j) - S_C$ – continuous.

Proposition 3.2: A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(i, j) - S_C$ – continuous if and only if the inverse image of every *j* –open set in *Y* is an $(i, j) - S_C$ – open set in *X*.

Proof (\rightarrow) : Let *f* be an $(i,j) - S_C$ – continuous function and let *V* be any *j* – open set in *Y*. If $f^{-1}(V) = \phi$ implies $f^{-1}(V)$ is an $(i,j) - S_C$ – open set in *X*, if $f^{-1}(V) \neq \phi$, then there exists $x \in f^{-1}(V)$ implies $f(x) \in V$. Since *f* is $(i,j) - S_C$ – continuous, there exists an $(i,j) - S_C$ – open set *U* in *X* containing *x* such that $f(U) \subseteq V$, this implies that $x \in U \subseteq$ $f^{-1}(V)$. Therefore, by Theorem 2.7., $f^{-1}(V)$ is $(i,j) - S_C$ – open set in *X*.

(←): Let *V* be any *j* − open set in *Y*, then by hypothesis, $f^{-1}(V)$ is an $(i,j) - S_C$ − open set in *X* containing *x* and $f(f^{-1}(V)) \subseteq V$. Therefore, *f* is $(i,j) - S_C$ − continuous.

It is evident that every $(i, j) - S_c$ – continuous function is j – semi – continuous, but the converse may not be true.

Example 3.3 : Let $X = \{a, b, c\}$, $\tau_1 = \{X, \{a\}, \phi\}$ and $\tau_2 = \{X, \{a, c\}, \phi\}$, then the identity function $f: (X, \tau_1, \tau_2) \rightarrow (X, \tau_1, \tau_2)$ is j-semi-continuous but it is not $(i, j) - S_C -$ continuous because $\{a, c\}$ is not $(i, j) - S_C$ -open set.

Proposition 3.4: A function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called $(i, j) - S_C$ – continuous if and only f is j – semi – continuous and for each $x \in X$ and each j – open set V of Y containing f(x), there exists an i – closed set F of X containing x such that $f(F) \subseteq V$.

Proof: (\rightarrow) : Let *f* be an $(i, j) - S_C$ – continuous and let $x \in X$ and *V* be any *j* –open set of *Y* containing f(x). By hypothesis, there exists an $(i, j) - S_C$ – open set *U* of *X* containing *x* such that $f(U) \subseteq V$. Since, *U* is an $(i, j) - S_C$ – open set, then for each $x \in U$, there exists an *i* – closed set *F* of *X* such that $x \in F \subseteq U$. Therefore, we have $f(F) \subseteq V$ and $(i, j) - S_C$ – continuous always implies *j* – semi – continuous.

(\leftarrow): Let *V* be any *j* – open set of *Y*, we have to show that $f^{-1}(V)$ is an $(i,j) - S_C$ – open set in *X*. Since, *f* is *j* – semi–continuous, then $f^{-1}(V)$ is *j* – semi – open set in *X*. Let $x \in f^{-1}(V)$, then $f(x) \in V$. By hypothesis there exists an *i* – closed set *F* of *X* containing *x* such that $f(F) \subseteq f^{-1}(V)$. Therefore, $f^{-1}(V)$ is an $(i, j) - S_c$ – open set in X. Hence, by Proposition 3.2, f is $(i, j) - S_C$ – continuous. **Proposition 3.5:** For a function $f:(X, \tau_1, \tau_2) \rightarrow$ (Y, σ_1, σ_2) , the following statements are equivalent: 1f is $(i, j) - S_C$ – continuous. 2 $f^{-1}(V)$ is an $(i, j) - S_C$ – open set in X, for each j – open set V in Y. $f^{-1}(F)$ is an $(i,j) - S_C$ - closed set 3in X, for each j – closed set F in Y. $f((i,j) - S_C Cl(A)) \subseteq j - Cl(f(A)),$ 4for each subset A of X. $(i,j)-S_{\mathcal{C}}Cl\bigl(f^{-1}(B)\bigr)\subseteq f^{-1}\bigl(j-$ 5-ClB, for each subset B of Y. $f^{-1}(j - Int(B)) \subseteq (i, j) -$ 6- $S_C Int(f^{-1}(B))$, for each subset B of Y.

7- $j - Int(f(A)) \subseteq f((i,j) - S_c Int(A)),$ for each subset A of X.

Proof: $1 \Rightarrow 2$: Follows from **Proposition 3.2.** $2 \Rightarrow 3$: Let *F* be any *j* - closed set of *Y*. Then *Y* - *F* is *j* - open in *Y*. By (2), $f^{-1}(Y - F = X - f - 1F$ is an *i*, *j*-*SC*- open set in *X*. Hence, $f^{-1}(F)$ is $(i, j) - S_C$ - closed in *X*.

3 ⇒ **4**: Let *A* be any subset of *X*, then $f(A) \subseteq j - Cl(f(A))$ and j - Cl(f(A)) is j - closed set in *Y*. Hence $A \subseteq f^{-1}(j - Cl(f(A)))$, by (3) we have, $f^{-1}(j - Cl(f(A)))$ is an $(i, j) - S_C -$ closed set in *X*. Therefore, $(i, j) - S_C Cl(A) \subseteq f^{-1}(j - Cl(f(A)))$. Therefore, $f((i, j) - S_C Cl(A)) \subseteq j - Cl(f(A))$. **4** ⇒ **5**: Let *B* be any subset of *Y*. Then $f^{-1}(B)$ is a subset of *X*, by (4), we have, $f((i, j) - S_C Cl(f - 1B \subseteq j - Cl(f^{-1}B)) \subseteq f^{-1}(j - Cl(B))$.

 $5 \Longrightarrow 6: \text{Let } B \text{ be any subset of } Y. \text{ Then if we}$ apply (5) to Y - B, we obtain $(i,j) - S_C Cl(f^{-1}(Y - B))$ $\subseteq f^{-1}(j - Cl(Y - B))$ if and only if $(i,j) - S_C Cl(X - f^{-1}(B)) \subseteq$ $f^{-1}(Y - (j - Int(B)))$ if and only if $X - ((i,j) - S_C Int(f^{-1}(B))) \subseteq$ $f^{-1}(Y - (j - Int(B)))$ if and only if $f^{-1}(j - Int(B)) \subseteq (i,j) - S_C Int(f^{-1}(B)).$ Therefore, $f^{-1}(j - Int(B)) \subseteq (i,j) - S_C Int(f^{-1}(B)).$ $6 \Rightarrow 7$: Let *A* be any subset of *X*. Then f(A) is a subset of *Y*. By (6) we have, $f^{-1}(j - IntfA\subseteq i, j-SCIntf-1fA=i, j-SCIntA$.

Therefore, $j - Int(f(A)) \subseteq f((i, j) - SCIntA.$

7 ⇒ 1: Let $x \in X$ and let V be any j – open set of Y containing f(x). Then $x \in f^{-1}(V)$ and $f^{-1}(V)$ is a subset of X, by (7), we have $j - Int(f(f^{-1}(V))) \subseteq f((i, j) - SCIntf - 1V$. Then

$$j - Int(V) \subseteq f\left((i, j) - S_C Int(f^{-1}(V))\right).$$

Since V is j – open set, then

 $V \subseteq f((i,j) - S_C Int(f^{-1}(V))), \text{ implies that}$ $f^{-1}(V) \subseteq (i,j) - S_C Int(f^{-1}(V)). \text{ Therefore,}$ $f^{-1}(V) \text{ is an } (i,j) - S_C - \text{ open set in } X \text{ which}$ $\text{ containing } x \text{ and } f(f^{-1}(V)) \subseteq V. \text{ Hence, } f \text{ is}$ $(i,j) - S_C - \text{ continuous.}$

1- Proposition 3.6: If a function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $(i, j) - S_C - \text{continuous, then } (i, j) - S_C Cl(f^{-1}(V)) \subseteq f^{-1}(j - Cl_{\theta}(V))$, for each j – open set V in Y.

Proof: Let *V* be any *j* – open set in *Y*. Suppose that $x \notin f^{-1}(j - Cl_{\theta}(V))$, then $f(x) \notin j - Cl_{\theta}(V)$, so there exists a *j* – open set *G* containing f(x) such that $j - Cl(G) \cap V = \phi$ implies $G \cap V = \phi$. Since *f* is $(i,j) - S_C$ – continuous, then there exists an $(i,j) - S_C$ – open set *U* containing *x* such that $f(U) \subseteq G$. Therefore, $f(U) \cap V = \phi$ and $U \cap f^{-1}(V) = \phi$. This shows that $x \notin (i,j) - S_C Cl(f^{-1}(V))$. Hence

 $(i,j) - S_C Cl(f^{-1}(V)) \subseteq f^{-1}(j - Cl_\theta(V))$

Proposition 3.7: Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function, and β be any basis for σ_j in Y. Then f is $(i, j) - S_C$ – continuous if and only if for each $B \in \beta$, $f^{-1}(B)$ is an $(i, j) - S_C$ – open subset of X.

Proof: (\rightarrow) : Suppose that f is $(i,j) - S_C - continuous$. Since $B \in \beta$ is j – open set in Y and f $(i,j) - S_C - continuous$, then by Proposition 3.2, $f^{-1}(B)$ is $(i,j) - S_C - copen$ subset of X.

(\leftarrow): Let *V* be any *j* – open subset of *Y*. Then $V = \bigcup \{B_i : i \in I\}$, where every B_i is a member of β and *I* is a suitable index set. It follows that

 $f^{-1}(V) = f^{-1}(\cup \{B_i : i \in I\}) = \cup f^{-1}(\{B_i : i \in I\})$ I. Since, $f^{-1}(B_i)$ is an $(i, j) - S_C$ open subset of *X*, for each $i \in I$. Then $f^{-1}(V)$ is a union of a family of $(i, j) - S_C$ – open sets of *X*. Hence $f^{-1}(V)$ is $(i, j) - S_C$ – open set of *X*. Therefore, by Proposition 3.2, *f* is $(i, j) - S_C$ – continuous.

Corollary 3.8: If a function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is j – continuous and (X, τ_i) is regular space, then f is $(i, j) - S_C$ – continuous. **Proof:** Follows from Theorem 2.9.

Proposition 3.9: Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be an $(i, j) - S_C$ – continuous and *Y* is *j* – open subset of a bitopological space *Z*, then $f: X \rightarrow Z$ is $(i, j) - S_C$ – continuous.

Proof: Let *V* be any j – open set in *Z*. Then, $V \cap Y$ is j – open set in *Y*, since $f: (X, \tau_1, \tau_2) \rightarrow$ (Y, σ_1, σ_2) is $(i, j) - S_C$ – continuous, by Proposition 3.2, $f^{-1}(V \cap Y)$ is $(i, j) - S_C$ – open set in *X*. But $f(x) \in Y$ for each $x \in X$ and thus $f^{-1}(V) = f^{-1}(V \cap Y)$ is an $(i, j) - S_C$ – open set in *X*. Therefore, by Proposition 3.2, $f: X \rightarrow Z$ is $(i, j) - S_C$ – continuous.

4. $(i, j) - \theta S_C$ - Continuous Functions **Definition 4.1:** A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called $(i, j) - \theta S_C$ - continuous at a point $x \in X$, if for j - semi - open set V of Ycontaining f(x), there exists an $(i, j) - S_C$ open set U of X containing x such that $f(U) \subseteq j - Cl(V)$.

If *f* is $(i,j) - \theta S_C$ - continuous at every point *x* of *X*, then it is called $(i,j) - \theta S_C$ - continuous.

Proposition 4.2: A function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called $(i, j) - \theta S_C$ – continuous if and only if for each $x \in X$ and each j – regular closed set F of Y containing f(x), there exists an $(i, j) - S_C$ – open set U of X containing x such that $f(U) \subseteq F$.

Proof: (\rightarrow) : Let *V* be a *j* - semi - open set in *Y*, so *j* - *Cl*(*V*) = *F* is *j* - regular closed, then by hypothesis, there exists an $(i,j) - S_C$ - open set *U* of *X* containing *x* such that $f(U) \subseteq F =$ *j* - *Cl*(*V*). Hence, *f* is $(i,j) - \theta S_C$ *continuous.*

 (\leftarrow) : Suppose that *f* is $(i,j) - \theta S_c - continuous, therefore for each$ *j*− sem*i*− open set*V*of*Y*containing*f*(*x* $), there exists an <math>(i,j) - S_c - open set U$ of *X* containing *x* such that $f(U) \subseteq j - Cl(V)$, put F = j - Cl(V) which is a *j* − regular closed set, this completes the proof.

Proposition 4.3: A function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(i, j) - \theta S_C - continuous$ if and

only if the inverse image of every j – regular closed set in Y is $(i, j) - S_c$ – open set in X.

Proof: (\rightarrow) : Let f be an (i, j) – continuous function and letV be any j - regular closed set in Y. If $f^{-1}(V) = \phi$ implies $f^{-1}(V)$ is an $(i,j) - S_c - open set in X, if f^{-1}(V) \neq \phi$, then there exists $x \in f^{-1}(V)$ implies $f(x) \in V$. Since f is $(i, j) - \theta S_C$ – continuous, then by Proposition 4.2, there exists an $(i, j) - S_c - S_c$ open set U in X *containing x* such that $f(U) \subseteq j - ClV = V$, this implies that $x \in U \subseteq f^{-1}(V)$. Therefore, by Theorem 2.7., $f^{-1}(V)$ is $(i, j) - S_c - open set in X$.

 (\leftarrow) : Let V be any j − regular closed set in Y, then by hypothesis, $f^{-1}(V)$ is an $(i, j) - S_C - open set in X$ containing x and $f(f^{-1}(V)) \subseteq j - ClV$. Therefore, f is $(i, j) - \theta S_C - continuous$.

The functions $(i, j) - \theta S_c - continuous$ and $(i, j) - S_c - continuous$ are incomparable as it is shown in the following examples:

Example 4.4: Let = {a, b, c}, $\tau_1 = {X, {a}, \phi}$ and $\tau_2 = {X, {<math>b, c$ }, $\phi}$, then the identity function $f: (X, \tau_1, \tau_2) \rightarrow (X, \tau_1, \tau_2)$ is $(i, j) - \theta S_C$ - continuous but it is not $(i, j) - S_C$ - continuous because {a, c} is not $(i, j) - S_C$ -open set.

Example 4.5: Let = {a, b, c, d} , $\tau_1 = {X, {a}, {b}, {a, b}, {a, c, d}, \phi}$ and $\tau_2 = {X, {a}, {b}, {a, b}, {a, c, d}, \phi}$ and $\tau_2 = {X, {a}, {b}, {a, b}, {a, b, c}, \phi}, then we define a function <math>f: (X, \tau_1, \tau_2) \rightarrow (X, \tau_1, \tau_2)$ as follows: f(a) = f(c) = b, f(b) = a and f(d) = d, so f is $(i, j) - S_C$ - continuous but it is not $(i, j) - \theta S_C$ - continuous because {a, c, d} is *j*-regular closed set but its inverse is {a, d} which is not(i, j) - S_C-open.

Proposition 4.6: A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is $(i,j) - \theta S_c - continuous$ if and only if for each $x \in X$ and each and each $j - \theta - semi - open setV$ of Ycontaining f(x), there exists an $(i,j) - S_c - open setU$ of X containing x such that $f(U) \subseteq V$.

Proof: (\rightarrow) : Let $x \in X$ and V be any j - semi - open set of <math>Y containing f(x), so j - Cl(V)is $j - \theta - semi - open of <math>Y$ containing f(x). By hypothesis, there exists an $(i, j) - S_c - open set U$ of X containing x such that $f(U) \subseteq j - Cl(V)$. This shows that f is $(i, j) - \theta S_c - continuous$.

 $\theta S_C -$

 (\leftarrow) : Follows from the fact that $j - Cl(V) ∈ j - \theta SO(X)$, for each V ∈ j - SO(X).

Proposition 4.7: For a function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$, the following statements are equivalent:

 $f is(i,j) - \theta S_C - continuous.$

For each $x \in X$ and each j - semi - open set Vof Y containing f(x), there exists an $(i, j) - S_c - open set U$ in X containing xsuch that $f(U) \subseteq j - Cl(V)$.

For each $x \in X$ and each j - semi - open set Vof Y containing f(x), there exists an $(i, j) - S_c - open set U$ in X containing xsuch that $f(U) \subseteq j - pCl(V)$.

For each $x \in X$ and each j – regular closed set F of Y containing f(x), there exists an $(i,j) - S_c$ – open set U in X containing x such that $f(U) \subseteq F$.

For each $x \in X$ and each $j - \theta - semi - open$ set V of Y containing f(x), there exists an $(i, j) - S_c - open$ set U in X containing xsuch that $f(U) \subseteq V$.

Proof: $\mathbf{1} \Rightarrow \mathbf{2}$: *Obvious.*

2 \Rightarrow **3**: Since j - Cl(V) = j - pCl(V), for each j - semi- open set V of Y

 $3 \Rightarrow 4$: Since $j - Cl(V) \in j - RC(Y)$, for every j - semi - open set V of Y.

4 ⇒ **5**: Let $x \in X$ and V be any $j - \theta - sem i - open set of <math>Y$ containing f(x). Then for each $f(x) \in V$, there exists j - regular closed set F containing f(x) such that $F \subseteq V$. By (4), there exists an $(i, j) - S_c - open$ set U in X containing x such that $f(U) \subseteq F \subseteq V$. This completes the proof.

 $\mathbf{5} \Rightarrow \mathbf{1}$: It is proved in Proposition 4.6.

Proposition 4.8: Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be $aj - weakly\theta - irresolute$ function and for each $x \in X$ and each $j - \theta - semi - open$ set V of Y containing f(x), there exists an i closed set F in X containing X such that $f(F) \subseteq V$, then f is $(i, j) - \theta S_c$ continuous.

Proof: Let V be any $j - \theta - semi - open$ set of Y. To show $f^{-1}(V)$ is an $(i, j) - S_C - open$ set in X. Since f is $j - weakly \theta - irresolute$, then $f^{-1}(V)$ is j - semi - open set in X. Let $x \in f^{-1}(V)$ implies $f(x) \in V$. By hypothesis, there exists an i - closed set F of X containing x such that $f(F) \subseteq V$. This implies that $x \in F \subseteq f^{-1}(V)$. Therefore, $f^{-1}(V)$ is an $(i, j) - S_C - open$ set in X and $f(f^{-1}(V)) \subseteq V$. By Proposition 4.6, f is $(i, j) - \theta S_C - continuous$.

Proposition 4.9: For a function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following statements are equivalent:

 $f is(i,j) - \theta S_C - continuous.$ $f^{-1}(j - Cl(V))$ is an $(i,j) - S_C - open$ set

in X, for each j - semi - open set V in Y.

 $f^{-1}(j - Int(F))$ is an $(i, j) - S_c - closed$ set in X, for each j - semi - closed set F in Y.

 $f^{-1}(V)$ is an $(i, j) - S_c - closed$ set in X, for each j - regular closed set V of Y.

 $f^{-1}(F)$ is an $(i, j) - S_c - open set in X$, for each j - regular closed set F of Y.

 $f^{-1}(V)$ is an $(i, j) - S_c - open set in X$, for each $j - \theta - semi - open set V$ of Y.

 $f^{-1}(F)$ is an $(i, j) - S_C - closed$ set in X, for each $j - \theta - semi - closed$ set F of Y.

 $f((i, j) - S_C Cl(A)) \subseteq j - \theta sCl(f(A))$, for each subset A of X.

 $(i,j) - S_C Cl(f^{-1}(B)) \subseteq f^{-1}(j - \theta sCl(B)), \text{ for } each subset B of Y.$

 $f^{-1}(j - \theta s Int(B)) \subseteq (i, j) - S_c Int(f^{-1}(B)),$ for each subset B of Y.

 $j - \theta sInt(f(A)) \subseteq f((i,j) - S_cInt(A)),$ for each subset A of X.

Proof: $\mathbf{1} \Rightarrow \mathbf{2}$: Let V be any j - semi - openset in Y and let $x \in f^{-1}(j - Cl(V))$. Then $f(x) \in j - Cl(V)$ and j - Cl(V) is j - regular closed set in Y. Since f is $(i, j) - \theta S_C - continuous$, then by Proposition 4.3, there exists an $(i, j) - S_C - open$ set U of Xcontaining x such that $f(U) \subseteq j - Cl(V)$, implies that $x \in U \subseteq f^{-1}(j - Cl(V))$. Therefore, by Theorem 2.7, $f^{-1}(j - Cl(V))$ is an $(i, j) - S_C - open$ set in X.

 $\begin{aligned} \mathbf{2} &\Longrightarrow \mathbf{3}: \ Let \ F \ be \ j - semi - closed \ set \ in \ Y, \\ then \ Y - F \ is \ j - semi - open \ set \ in \ Y. \ By \ (2), \\ f^{-1}(j - Cl(Y - F)) \ is \ an \ (i, j) - S_C - open \ set \\ in \ X \qquad and \ f^{-1}(j - Cl(Y - F)) = f^{-1}(Y - j - Int F = X - f - 1j - Int F \ is \ an \ i, \ j - SC - open \ set \\ in \ X. \ Hence, \ f^{-1}(j - Int(F)) \ is \ an \ (i, j) - S_C - closed \ set \ in \ X. \end{aligned}$

3 ⇒ **4**: Let V be any j − regular open in Y, then V is j − semi − closed in Y and j − Int(V) = V. By (3), $f^{-1}(j - Int(V)) = f^{-1}(V)$ is an $(i, j) - S_C$ − closed set in X.

4 ⇒ **5**: Let F be any j − regular closed set of Y, then Y - F is j − regular open set of Y. By (4), $f^{-1}(Y - F)$ is an $(i, j) - S_C$ − closed set in X and

 $f^{-1}(Y - F) = X - f^{-1}(F)$. Therefore, $f^{-1}(F)$ is an $(i, j) - S_c$ - open set in X.

 $5 \Rightarrow 6$: This follows from the fact that $any\theta$ – semi – open set is a union of regular closed sets. $6 \Rightarrow 7$: Similar to the proof of $4 \Rightarrow 5$. **7** \Rightarrow **8**: Let A be any subset of X and y ∉ j − $\theta sCl(f(A))$. Then there exists $V \in j - SO(Y)$ containing y such that $f(A) \cap j - Cl(V) = \phi$. Since, j - Cl(V) is $j - \theta - semi - open$ set, $sof^{-1}(j - Cl(V))$ is an $(i, j) - S_c - open$ set in X and $A \cap f^{-1}(j - Cl(V)) = \phi$. Therefore, $(i,j) - S_C Cl(A) \cap f^{-1}(j - Cl(V)) = \phi$ and $f((i,j) - S_C Cl(A)) \cap j - Cl(V) = \phi.$ Consequently, we obtain $y \notin f((i,j) - S_C Cl(A)).$ f((i,j) -Hence. SCClA⊆j−θsClfA. **8** \Rightarrow **9**: Let *B* be any subset of *Y*. Then $f^{-1}(B)$ is a subset of X. By (8), $f\left((i,j) - S_C Cl(f^{-1}(B))\right) \subseteq$ $j - \theta sCl(f(f^{-1}(B))) = j - \theta sCl(B).$ $(i,j) - S_C Cl(f^{-1}(B)) \subseteq$ Therefore, $f^{-1}(j - \theta sCl(B)).$ $9 \Rightarrow 10$: Let B be any subset of Y, then Y - Balso subset of Y. By (9), $(i,j) - S_C Cl(f^{-1}(Y-B))$ $\subseteq f^{-1}(j - \theta sCl(Y - B))$ $\Leftrightarrow (i,j) - S_C Cl(X - f^{-1}(B))$ $\subseteq f^{-1}(Y - (j - \theta sInt(B)))$ $\Leftrightarrow X - \left((i,j) - S_C Int(f^{-1}(B)) \right)$ $\subseteq X - f^{-1}(j - \theta sInt(B))$ $\Leftrightarrow f^{-1}(j - \theta sInt(B)) \subseteq$ $(i,j) - S_C Int(f^{-1}(B)).$ $f^{-1}(j - \theta sInt(B)) \subseteq (i, j) -$ Therefore, $S_C Int(f^{-1}(B)).$ **10** \Rightarrow **11**: Let *A* be a subset of *X*, then *f*(*A*) is a subset of Y. By (10), $f^{-1}(j - \theta sInt(f(A))) \subseteq$ $(i,j) - S_C Int(f^{-1}(f(A))) = (i,j) - S_C Int(A).$ Therefore, $j - \theta sInt(f(A)) \subseteq f((i,j) -$ SCIntA. **11** \Rightarrow **1**: Let $x \in X$ and V be any j - semi open set of Y containing f(x), then $x \in f^{-1}(j - Cl(V))$ and $f^{-1}(j - Cl(V))$ is a subset of X. By (11), $j - \theta sInt\left(f\left(f^{-1}(j - Cl(V))\right)\right) \subseteq$ $f\left((i,j)-S_{C}Int\left(f^{-1}(j-Cl(V))\right)\right).$ Then,

 $j - \theta SInt(j - Cl(V)) = j - Cl(V) \subseteq f\left((i, j) - S_C Int(f^{-1}(j - Cl(V)))\right)$ So, $j - Cl(V) \subseteq f\left((i, j) - S_C Int(f^{-1}(j - ClV))\right)$ ClV, implies that

$$f^{-1}(j - Cl(V)) \subseteq (i, j) - S_C Int (f^{-1}(j - ClV))$$
. Therefore,

 $f^{-1}(j - Cl(V))$ is an $(i, j) - S_C - open$ set in X which contain x and $f(f^{-1}(j - Cl(V))) \subseteq j - Cl(V)$. Hence, f is $(i, j) - \theta S_C - continuous$.

 $\begin{array}{lll} Proposition & 4.10: & For & a \\ function f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2), & the \\ following statements are equivalent: \\ f is (i,j) - \theta S_C - continuous. \\ (i,j) - S_C Cl(f^{-1}(V)) \subseteq f^{-1}(j - Intj-ClV, for each j- preopen set V of Y. \end{array}$

 $f^{-1}(j - Cl(j - Int(F))) \subseteq (i, j) S_{C}Int(f^{-1}(F)), \text{ for each } j - preclosed \text{ set } F$ of Y. Proof: $\mathbf{1} \Rightarrow \mathbf{2}$: Let V be any j - preopen setin Y, then $V \subseteq j - Int(j - Cl(V))$ and j - Int(j - Cl(V)) is j - regular open set in Y. Since f is $(i, j) - \theta S_{C} - continuous$, then by Proposition 4.9 part (4), $f^{-1}(j - Int_{j} - ClV$ is an i, j - SC - closed set in X.

Hence, we obtain $(i,j) - S_C Cl(f^{-1}(V)) \subseteq f^{-1}(j - Int(j - Cl(V)))$. $2 \Rightarrow 3$: Let F be any j - preclosed set in Y, then Y - F is j - preopen of Y and by (2), $(i,j) - S_C Cl(f^{-1}(Y - F)) \subseteq f^{-1}(j - Intj - ClY - F)$ If and only if $X - ((i,j) - S_C Int(f^{-1}(F))) \subseteq f^{-1}(Y - (j - Cl(j - Int(F))))$ If and only if $X - ((i,j) - S_C Int(f^{-1}(F))) \subseteq X - f^{-1}(j - Cl(j - Int(F)))$ Therefore, $f^{-1}(j - Cl(j - Int(F)))$ $Therefore, f^{-1}(j - Cl(j - Int(F))) \subseteq (i,j) - S_C Int(f^{-1}(F))$. $\begin{array}{l} \mathbf{3} \Longrightarrow \mathbf{1} \colon LetV \ be \ any j - regular \ open \ set \ ofY. \\ Then X - V \ is j - preclosed \ set \ ofY, \ by \ (3), \\ we \ have \ f^{-1} \Big(j - Cl \big(j - Int(X - V) \big) \Big) \subseteq \\ (i,j) - S_C Int \big(f^{-1}(X - V) \big) \quad if \ and \ only \ if \\ (i,j) - S_C Cl \big(f^{-1}(V) \big) \subseteq f^{-1} \big(j - Int(X - V) \big) \\ \end{array}$

Intj-ClV=f-1V. Therefore, f-1V is i, j-SCclosed set in X. So by Proposition 4.8 part (4), f is $(i, j) - \theta S_C - continuous$.

Corollary 4.10: For a function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following statements are equivalent: $f is(i, j) - \theta S_c - continuous.$

 $(i,j) - S_C Cl(f^{-1}(V)) \subseteq f^{-1}(j - sCl(V)), \text{ for } each j - preopen set V of Y.$

 $f^{-1}(j - sInt(F)) \subseteq (i, j) - S_c Int(f^{-1}(F)),$ for each j - preclosed set F of Y.

Proof: Follows from Proposition 4.9 and the fact that j - sCl(V) = j - Int(j - Cl(V)), for each j - preopen setV of Y. [Jankovich, 1985].

Proposition 4.11: A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(i, j) - \theta S_C - continuous$ if and only if $f^{-1}(V) \subseteq (i, j) - S_C Int \left(f^{-1} (j - CIV, for each j - semi - open set V in Y. \right)$

Proof: (\rightarrow) : *LetV* be any j - semi - open set in *Y*. Then $V \subseteq j - Cl(V)$ and

j - Cl(V) is j - regular closed set in Y. Since fis $(i, j) - \theta S_C - continuous$, so by Proposition 4.8 part (5), $f^{-1}(j - Cl(V))$ is an $(i, j) - S_C - open$ set in X. Hence, $f^{-1}(V) \subseteq f^{-1}(j - ClV=i, j-SCIntf-1j-ClV$.

 (\leftarrow) : Let V be any j – regular closed set in Y, then V is j – semi – open set of Y. By hypothesis, we have

$$f^{-1}(V) \subseteq (i, j) - S_C Int \left(f^{-1} (j - Cl(V)) \right) = (i, j) - S_C Int \left(f^{-1}(V) \right).$$

Therefore, $f^{-1}(V)$ is an $(i, j) - S_c - open set$ in X. Hence by Proposition 4.8, f is $(i, j) - \theta S_c - continuous$.

From Proposition 4.11 and Theorem 2.6, we get the following corollaries:

Corollary 4.12: A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(i, j) - \theta S_C - continuous$ if and only if $f^{-1}(V) \subseteq (i, j) - S_C Int (f^{-1}(j - pCIV, for each j - semi - open set V of Y.$

Corollary 4.13: A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(i, j) - \theta S_c - continuous$ if and

only if $(i,j) - S_C Cl(f^{-1}(j - Int(F))) \subseteq$ $f^{-1}(F)$, for each j – semi – closed set F of Y. Corollary 4.15: A function $f:(X, \tau_1, \tau_2) \rightarrow$ (Y, σ_1, σ_2) is $(i,j) - \theta S_C - continuous$ if and only if $(i,j) - S_C Cl(f^{-1}(j - pInt(F))) \subseteq$ $f^{-1}(F)$, for each j – semi – closed set F of Y. Proposition 4.16: If a function $f:(X, \tau_1, \tau_2) \rightarrow$ (Y, σ_1, σ_2) is $(i,j) - \theta S_C - continuous$, then $f^{-1}(V) \subseteq (i,j) - S_C Int(f^{-1}(j - Int_j)) =$ $Int_j - ClV$, for each j – preopen set V of Y.

Proof: Let V be any j – preopen set in Y, then $V \subseteq j$ – Int(j - Cl(V)) and j – Int(j - Cl(V)) is j – regular open set in Y. Since f is $(i, j) - \theta S_c$ – continuous, then by Proposition 4.8 Part (4), $f^{-1}(j - Intj-ClV)$ is an i, j–SC– open set in X. Therefore,

$$f^{-1}(V) \subseteq f^{-1}\left(j - Int(j - Cl(V))\right) = (i, j) - S_C Int\left(f^{-1}\left(j - Int(j - Cl(V))\right)\right).$$

From Proposition 4.16 and Theorem 2.6, we obtain the following corollaries:

Corollary 4.17: If a function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(i, j) - \theta S_C - continuous$, then $f^{-1}(j - Cl(j - Int(F))) \subseteq (i, j) -$

 S_C Int $(f^{-1}(F))$, for each j – preclosed set F of Y.

Corollary 4.18: If a function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(i, j) - \theta S_C - continuous$, then $f^{-1}(j - sInt(F)) \subseteq (i, j) - S_C Int(f^{-1}(F))$,

for each j - preclosed set F of Y.

Proposition 4.19: A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is not $(i,j) - \theta S_C - continuous$ at the point x of X if and only if $x \in (i,j) - S_C Bd(f^{-1}(F))$ for some j - regular closed subsets F of Y containing f(x).

Proof: (\rightarrow) : If f is not $(i, j) - \theta S_c - continuous at <math>x \in X$, then there exists aj - regular closed set F containing f(x) such that for every $(i, j) - S_c - open$ set U of X containing x, $f(U) \cap (Y - F) \neq \phi$. This means that for every $(i, j) - S_c - open$ set U of X containing x, we have $U \cap (X - f^{-1}(F)) \neq \phi$. Hence, it follows that $x \in (i, j) - S_c Cl(X - f^{-1}F, but x \in f^{-1}F$ and hence $x \in i$, j-SCClf-1F. This means that $x \in i$, j-SCBdf-1F.

(\leftarrow): Suppose that $x \in (i, j) - S_C Bd(f^{-1}(F))$ for some *j* – regular closed subsets *F* of Y If f is $(i,j) - \theta S_C$ containing f(x). continuous at x. Then by Proposition 4.8, there exists an $(i, j) - S_c - open set U of X$ *containing x* that $f(U) \subseteq F$. such Then $U \subseteq f^{-1}(F)$. This shows that $x \in (i, j) S_C Int(f^{-1}(F)).$ Therefore, $x \notin (i, j) S_{C}Bd(f^{-1}(F))$ which is contradiction. Hence, f is not(i, j) – θS_C – continuous.

Corollary 4.20: If (X, τ_i) is a $T_1 - space$, then the following properties are equivalent for a function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$.

f is $(i,j) - \theta S_c - continuous$ (resp., $(i,j) - S_c - continuous$).

f is j – weaklyθ – irresolute (resp., j – semi – continuous).

Proof: Follows from Theorem 2.9.

Proposition 4.21: Let (X, σ_j) be an extermally disconnected space, (X, τ_i) be a T_1 – space, and $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_{1s}, \sigma_{2s})$ is j – semi – continuous, then f is $(i, j) - \theta S_C$ – continuous.

Proof: Let F be any j – regular closed set of Y. Since (Y, σ_j) is extermally disconnected, so $F \in j - RO(Y)$ and by hypothesis, $f^{-1}(F)$ is j – semi– open set of X. Since (X, τ_i) is T_1 – space, then $f^{-1}(F)$ is $(i, j) - S_c$ – open, by Proposition 4.8 part (5), f is $(i, j) - \theta S_c$ – continuous.

Proposition 4.22: Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ be an $(i,j) - \theta S_C - continuous$ function and Y is j - preopen subset of a bitopological space Z, then $f: X \rightarrow Z$ is $(i,j) - \theta S_C - continuous$.

Proof: Let V be any j – regular closed subset of Z. Since Y is j – preopen set, then by Theorem 2.11 V \cap Y is j – regular closed set in Y. Since, $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(i, j) - \theta S_C$ – continuous, then by Proposition 4.8, $f^{-1}(V \cap Y)$ is an $(i, j) - S_C$ – open set in X. But $f(x) \in Y$ for each $x \in X$, thus $f^{-1}(V) = f^{-1}(V \cap Y)$ is an $(i, j) - S_C$ – open set in X. Therefore, by Proposition 4.8, $f: X \rightarrow Z$ is $(i, j) - \theta S_C$ – continuous.

Proposition 4.23: A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is $(i,j) - S_C - continuous$ (resp., $(i,j) - \theta S_C - continuous$), if for each $x \in X$, there exists an i - regular closed and j - regular closed set A of X containing x such that $f|A: A \rightarrow Y$ is $(i,j) - S_C - continuous$ (resp., $(i,j) - \theta S_C - continuous$).

Proof: Let $x \in X$, then by hypothesis there exists a subset A of X which is both i regular closed and j - regular closed set containing x such that $f | A: A \to Y$ is $(i, j) - S_C -$ continuous (resp., $(i, j) - \theta S_C$ continuous).

Let V be any j – open (resp., j – semi – open) set of Y containing f(x), there exists an $(i, j) - S_C$ – open set U in A containing x such that $(f|A)(U) \subseteq V$ (resp., $(f|A)(U) \subseteq j$ – Cl(V)). Since, A is i – regular closed and j – regular closed set, then by Theorem 2.11, U is $(i, j) - S_C$ – open set in X. Hence, $f(U) \subseteq V$ (resp., $f(U) \subseteq j - Cl(V)$). This shows that f is $(i, j) - S_C$ – continuous (resp., $(i, j) - \theta S_C$ – continuous). Proposition 4.24: If X = A $\cup P$ where A and P

Proposition 4.24: If $X = A \cup B$, where A and Bare both i – regular closed and j – regular closed sets and $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a function such that both f|A and f|B are $(i, j) - S_C$ – continuous (resp., $(i, j) - \theta S_C$ – continuous), then f is $(i, j) - S_C$ – continuous (resp., $(i, j) - \theta S_C$ – continuous).

Proof: Let *V* be any *j* – open (resp., *j* – regular closed) set of *Y*. Then

 $f^{-1}(V) = (f|A)^{-1}(V) \cup (f|B)^{-1}(V)$, since f|Aand f|B are $(i, j) - S_c - continuous$ (resp., $(i,j) - \theta S_C - continuous),$ then bv Proposition 3.2 (resp., Proposition 4.8), $(f|A)^{-1}(V)$ and $(f|B)^{-1}(V)$ are $(i,j) - S_c - S_c$ open sets in A and B respectively. Since $A, B \in i - RC(X) \cap j - RC(X)$, then by *Theorem 2.11,* $(f|A)^{-1}(V)$ and $(f|B)^{-1}(V)$ are $(i, j) - S_c - open$ sets in X. Since the union of two $(i, j) - S_c - open$ sets is Hence $f^{-1}(V)$ $(i,j) - S_c - open.$ is $(i, j) - S_c - open set in X$. Therefore by Proposition 3.2 (resp., Proposition 4.8), f is $(i, j) - S_c - continuous (resp., <math>(i, j) - \theta S_c$ continuous).

Proposition 4.25: Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ and

 $g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ be functions. Then the composition function

 $gof: X \rightarrow Z$ is $(i, j) - S_C$ – continuous, if f and g satisfies one of the following conditions:

f is $(i,j) - S_c - continuous$ and g is j - continuous.

f is $(i,j) - \theta S_C - continuous$ and g is $j - \theta s - continuous$.

f is $(i, j) - \theta S_c -$ continuous and g is j - RC - continuous. Proof: 1) Let W be any j – open subset of Z. Since g is j – continuous, so $g^{-1}(W)$ is j – open subset of Y. Since, f is $(i, j) - S_C$ – continuous, then by Proposition 3.2, $(gof)^{-1}(W) = f^{-1}(g^{-1}(W))$ is $(i, j) - S_C$ – open subset in X. Therefore, by Proposition 3.2, gof is $(i, j) - S_C$ – continuous.

2) Let W be any j – open subset of Z. Since, gis $j - \theta s$ – continuous, so $g^{-1}(W)$ is $j - \theta$ – semi – open subset of Y. Since f is $(i, j) - \theta S_C$ – continuous, then by Proposition 4.8 part (6), $(gof)^{-1}(W) = f^{-1}(g^{-1}(W))$ is $(i, j) - S_C$ – open subset in X. Therefore, by Proposition 4.8, gof is $(i, j) - S_C$ – continuous.

3) Let W be any j – open subset of Z. Since, g is j - RC – continuous, so $g^{-1}(W)$ is j – regular closed subset of Y. Since, f is $(i,j) - \theta S_C$ – continuous, then by Proposition 4.8 part (5), $(gof)^{-1}(W) = f^{-1}(g^{-1}(W))$ is $(i,j) - S_C$ – open subset in X. Therefore, by Proposition 4.8, gof is $(i,j) - S_C$ – continuous.

Proposition 4.26: Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ and $g:(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ be two functions. Then the composition function $gof: X \rightarrow Z$ is $(i,j) - \theta S_C$ – continuous, if f and g satisfies one of the following conditions:

f is $(i,j) - S_c - continuous and g$ is $j - (\theta, s) - continuous.$

f is $(i, j) - \theta S_c$ - continuous and g is $j - \theta$ - *irresolute.*

f is $(i, j) - \theta S_c$ - continuous and g is j - R - Map.

Proof:

Let W be any j – regular closed subset of Z. Since g is $j - (\theta, s) -$ continuous, then $g^{-1}(W)$ is j – open subset of Y. Since fis $(i, j) - S_C$ – continuous, then by Proposition 3.2, $(gof)^{-1}(W) = f^{-1}(g^{-1}(W))$ is $(i, j) - S_C$ – open subset in X. Therefore, by Proposition 4.8, gof is $(i, j) - \theta S_C$ – continuous.

Let W be any j – regular closed subset of Z. Since g is $j - \theta$ – irresolute, then $g^{-1}(W)$ is $j - \theta$ – semi – open subset of Y. Since f is (i, j) – θS_C – continuous, then by Proposition 4.8 part (6), $(gof)^{-1}(W) = f^{-1}(g^{-1}(W))$ is (i, j) – S_C – open subset in X. Therefore, gof is (i, j) – θS_C – continuous.

Let W be any j – regular closed subset in Z. Since g is j - R - Map, then $g^{-1}(W)$ is j - Map. regular closed in Y. Since f is $(i,j) - \theta S_C - continuous$, then by Proposition 4.8, $(gof)^{-1}(W) = f^{-1}(g^{-1}(W))$ is $(i,j) - S_C - open$ subset in X. Therefore, gof is $(i,j) - \theta S_C - continuous$.

Proposition 4.27: If $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(i, j) - \theta S_C - continuous and <math>(Y, \sigma_j)$ is strongly s - regular space, then f is $(i, j) - S_C - continuous$.

Proof: Let $x \in X$ and let V be any j – open set in Y containing f(x). The strongly s – regular of Y gives that, there exists aj – regular closed subset F of Y such that $f(x) \in F \subseteq Y$. Since f is $(i, j) - \theta S_c$ – continuous, then by Proposition 4.2, there exists an $(i, j) - S_c$ – open set U of X containing x such that $f(U) \subseteq F \subseteq V$. Therefore, f is $(i, j) - S_c$ – continuous.

Proposition 4.28: If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(i, j) - \theta S_c - continuous$ injection and (Y, σ_j) is $s - Urysohn space, then <math>(X, \tau_j)$ is semi – Hausdorff and (X, τ_i) is T1 space.

Proof: Since f is injective, it follows that $f(x_1) \neq f(x_2)$, for any two distinct point x_1 and x_2 . Since, (Y, σ_j) is s - Urysohnspace, then there exist $j - semi - open setsV_1$ and V_2 of Y such that $f(x_1) \in V_1$, $f(x_2) \in V_2$ and $j - Cl(V_1) \cap j - Cl(V_2) = \phi$. Since f is $(i, j) - \theta S_C - continuous$, then there exist an $(i, j) - S_C - open sets U_1$ and U_2 of Xcontaining x_1 and x_2 respectively, such that $f(U_1) \subseteq j - Cl(V_1)$ and $f(U_2) \subseteq j - Cl(V_2)$.

Hence, $U_1 \cap U_2 = \phi$. Since U_1 and U_2 are $(i, j) - S_c$ – open sets, then U_1 and U_2 are j – semi – open sets. Therefore, (X, τ_j) is semi – Hausdorff . Also there exist two disjoint i – closed sets F_1 and F_2 containing x_1 and x_2 . Hence (X, τ_i) is T1 space.

Proposition 4.29: If $f_i: X_i \to Y_i$ is $(i, j) - S_c - continuous$ (resp., $(i, j) - \theta S_c - continuous$) functions, for i = 1, 2. Let $f: X_1 \times X_2 \to Y_1 \times Y_2$ be a function defined as follows: $f(x_1, x_2) = (f_1(x_1), f_2(x_2))$. Then f is $(i, j) - S_c - continuous$ (resp., $(i, j) - \theta S_c - continuous$). Proof: Let $R_1 \times R_2 \subseteq Y_1 \times Y_2$, where R_i is j - open (resp., j - regular closed) sets in Y_i , for i = 1, 2. Then $f^{-1}(R_1 \times R_2) = f^{-1}(R_1) \times f^{-1}(R_2)$. Since f_i is $(i, j) - S_c - continuous$ (resp., $(i, j) - \theta S_c - continuous$), for i = 1, 2, then by Proposition 3.2 (resp., Proposition 4.8) and Proposition 2.13 $f^{-1}(R_1 \times R_2)$ is an $(i, j) - S_c - open set in X_1 \times X_2$. Now, if R is any j – open (resp., j – regular closed) subset of $Y_1 \times Y_2$, then $f^{-1}(R) = f^{-1}(\cup R_{\alpha})$, where $\cup R_{\alpha}$ is of the form $R_{\alpha_1} \times R_{\alpha_2}$. Therefore, $f^{-1}(R) = \cup f^{-1}(R_{\alpha})$ is an $(i, j) - S_C$ – open set in $X_1 \times X_2$. Which completes the proof.

REFERENCES

- Arya S. P. and Bhamini M. P., (1982), A note on Semi– US spaces, Ranchi Univ. Maths.

J., 13 60 – 69.

- Carnahan D. A. (1973), Some Properties Related to Compactness in Topological Spaces, Ph. D.

Thesis, Univ. of Arkansas,.

- Crossely S. G. and Hildebrand S. K., (1971), Semi–closure, Texas J. Sci., 22, 99–112.

- Di Maio G. and Noiri T., (1987), On s – closed spaces, Indian J. pure Appl. Math.,

18(3), 226–233.

- Dontchev J., (1998), Survy on preopen sets, The proceedings of the Yatsushiro Topological

Conference , 1 – 18.

- Dontchev J. and Noiri T., (1999), Contra semi – continuous functions, Math. Pannon, 10(2), 159–168.

- Dontchev J., Ganster M. and Noiri T., (2000), On p – closed spaces, Internat J. Math. Math. Sci., 2(3), 203 – 212.

- El– Deeb S. N., Hasanein I. A., Mashhour A. S. and Noiri T., (1983), On p – regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roum., 27(4) 311–315.

- Ganster M., Noiri T. and Reilly I. L., (1988), Weak and strong forms of θ – irresolute functions, J. Inst. Math. Comput. Sci., 1(1) 19– 29.

- Ganster M., (1990), On stongly s – regular spaces, Glasnik Mat., 25(45) 195 – 201.

- Hardi N. A., (2012), (i, j) – S_c – open set in bitopological spaces, Int. J. of Scientific and Engineering research, 3(10). - Jankovic D. S., (1985), A note on mappings of extermally disconnected spaces, Acta Math. Hungar., 46(1–2) 83–92.

- Joseph J. E. and Kwack M. H., (1980), On S – closed spaces, Proc. Amer. Math. Soc.,

80(2) 341 - 348.

- Kelley J. C., (1963), Bitopological spaces, Proc. London Math. Soc., 13(3) 71-89.

- Khalaf A. B. and Easif F. H., (1999), θs – continuous functions, J. Dohuk Univ. (Special issue) 2(1) 1 – 7.

- Kheder F. H. and Noiri T., (1986), $On\theta$ – irresolute functions, Indian J. Math., 28(3) 211–217.

- Levine N., (1963), Semi–open sets and semi – continuity in topological spaces, Amer. Math. Monthly, 70(1) 36–41.

- Mashhour A. S., Abd El – Monsef M. E. and El – Deeb S. N., (1982), On precontinuous and weak precontinuous mappings, Proc. Math. phys. Soc. Egypt, 53 47–53.

- Park J. H. and Park Y. B., (1995), Weaker forms of irresolute functions, Indian J. pure Appl. Math., 26(7) 691–696.

- Stone M. H., (1937), Algebraic Characterizations of special Boolean rings, fund. Math., (29), 223–302.

- Stone M. H., (1937), Applications of the theory of Boolean rings to topology, Trans. Amer.

Math. Soc., (41), 375–481.

- Velicko N. V., (1968), H – closed topological spaces, Amer. Math. Soc. Transl., 78(2), 103 – 118.

(i,j)- ΘS_c - الدوال المستمرة -(i,j)- S_c والدوال المستمرة -(i,j)

الملخص

في هذا البحث ادخلنا نمطا جديدا من الاستمرارية في الفضاءات الثنائية التوبولوجي سميت بالاستمرارية -s_- البحث ادخلنا نمطا جديدا من الاستمرارية -i,j) والاستمرارية - Θ_c - (i,j) . ناقشنا العلاقات بين هذه الانماط وانماط اخرى معروفة من الدوال المستمرة.

(i,j)- $heta S_c$ - نەخشێن بەردەوام -(i,j)- S_c نەخشێن بەردەوام

كورتى

دڤێ ڤەكولينێدا مە دوو جورێن نوى ژ بەردەواميێ د ڤالاهيێن دوو توپولوجيدا دانە نياسين بناڤێ بەردەواميا -S_c-(i,j) و بەردەواميا -ΘS_c-(i,j) . مە پەيوەنديێن دناڤ بەرا ڤان جورێن بەردەواميا وجورێن دى ژ نەخشێن بەردەوام گفتوگو كرن.