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ABSTRACT: 
The method of optimization is used to determine the most precise value for certain functions within a certain domain; it is 
mostly studied and employed in the fields of mathematics, computer science, and physics. This work presents a novel three-
term conjugate gradient (CG) approach for unconstrained optimization problems. Both the descending criteria and the 
sufficient descent criterion were met by the new approach. The novel method that has been proposed has been evaluated for 
global convergence. The outcomes of numerical trials on a few well-known test functions demonstrated how highly 

successful our new modified method is, depending on the number of iterations (NOI) and the number of functions to be 
evaluated (NOF).  
KEYWORDS: Optimization, Conjugate Gradient Methods and Three Terms Conjugate Gradient. 

1. INTRODUCTION 

The field of applied mathematics known as numerical 

optimization seeks the best answer to a mathematical problem 

involving the maximization or minimization of a particular 

function. The function can represent a wide range of things, 

including the financial success of an enterprise, the effectiveness 

of a manufacturing procedure, or the precision of a statistical 

model. 

The objective of numerical optimization is to identify the input 

values that, within any constraints or limitations, result in the best 

output value. Various optimization algorithms can be used, 

depending on the properties of the function being optimized, the 

kinds of constraints involved, and the computational resources 

available. 

Gradient descent, Newton's method, simulated annealing, 

genetic algorithms, and particle swarm optimization are a few of 

the frequently used optimization algorithms. These approaches 

employ iterative procedures to find the best solution, modifying 

the input values slightly at each iteration until the best solution is 

found or a stopping criterion is satisfied. 

Iterative techniques such as conjugate gradient methods (CG) 

are used to solve linear systems of equations. They are 

particularly useful for solving large, sparse, symmetric positive 

definite (SPD) systems, which arise in many scientific and 

engineering applications. 

CG methods can also be applied to nonlinear functions, but the 

approach is slightly different from the linear case. Nonlinear CG 

methods are used to find the minimum of a nonlinear function of 

several variables 

Min 𝑓(𝑥), 𝑥 ∈ 𝑅𝑛                                                                                 (1.1) 

where 𝑓: 𝑅𝑛 → 𝑅 is  a real-valued continuously differentiable 

function. Starting from a first guess 𝑥1 ∈ 𝑅𝑛,  a nonlinear CG 

algorithm creates the sequence {𝑥𝑘}, defined as 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘                                                                 (1.2) 

The main idea of NCG methods is to iteratively create a sequence 

of search directions that are conjugate to the previous search 

directions. The previous search directions are linearly combined 

in each direction of the search, with certain coefficients that 

ensure that the search direction is a descent direction. The 

conjugacy condition ensures that the search directions are as 

independent as possible, which leads to a faster convergence. 

The popular CG methods are Fletcher-Reeves (FR) [1], the 

Hestenes-Stiefel (HS) [2], and the Polak-Rivière (PR) [3], Dai 

and Yuan (DY) [4], are respectively determined as follows: 

𝛽𝑘
𝐹𝑅 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑔𝑘
𝑇𝑔𝑘

                                                                       (1.3) 

𝛽𝑘
𝐻𝑆 =

𝑔𝑘+1
𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑦𝑘

                                                                          (1.4) 

𝛽𝑘
𝑃𝑅 =

𝑔𝑘+1
𝑇 𝑦𝑘

𝑔𝑘
𝑇𝑔𝑘

                                                                          (1.5) 

𝛽𝑘
𝐷𝑌 =

‖𝑔𝑘+1‖2

𝑑𝑘
𝑇(𝑔𝑘+1−𝑔𝑘)

                                                                 (1.6) 

which is based on the following update rule for the search 

direction: 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑑𝑘                                                        (1.7) 

where 𝑔𝑘 is a gradient of 𝑓 at 𝑥𝑘 and 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘. The 

Euclidean norm of vectors is represented by the letter ‖. ‖. There 

are also many studies on this method see ([5,6,7,8,9]) 

Three-term conjugate gradients (TT CG) are additional 

significant classes of CG which is itself an iterative algorithm 

used for solving linear systems of equations. The three-term CG 

method is a specific class of conjugate gradient methods, which 

are characterized by their use of conjugate search directions in 

each iteration. 

The three-term CG method is an improvement over the 

classical CG method in terms of convergence rate, and is 

particularly useful for solving symmetric, positive-definite 

systems of linear equations. It is based on the idea of generating 

a sequence of three-term conjugate directions, which are linearly 

independent and orthogonal with respect to a symmetric positive-

definite matrix. In each iteration of the algorithm, three terms are 

computed: the current solution vector, the residual vector, and the 

search direction vector. 
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The three-term CG method is a more general class of CG 

methods that includes other variants, such as, the HS and the PR 

methods. All of these approaches generate a sequence of 

conjugate directions, but they differ in how they compute the 

search direction vectors. The three-term CG method is a powerful 

variation of the conjugate gradient method that is especially 

useful for solving symmetric, positive-definite linear systems of 

equations. Numerous disciplines, including engineering, physics, 

computer science, and finance, use the method extensively. 

The three-term CG methods presented by Zhang et al. [10, 11] 

in the literature by taking into consideration a descent-modified 

PRP and also a descent-modified HS CG method as 

𝑑𝑘+1
𝑍𝑃𝑅𝑃 = −𝑔𝑘+1 +

𝑔𝑘+1
𝑇 𝑦𝑘

𝑔𝑘1
𝑇 𝑔𝑘

𝑑𝑘 −
𝑔𝑘+1

𝑇 𝑑𝑘

𝑔k
𝑇𝑔𝑘

𝑦𝑘                            (1.8) 

𝑑𝑘+1
𝑍𝐻𝑆 = −𝑔𝑘+1 +

𝑔𝑘+1
𝑇 𝑦𝑘

𝑑𝑘1
𝑇 𝑦𝑘

𝑑𝑘 −
𝑔𝑘+1

𝑇 𝑑𝑘

𝑑𝑘1
𝑇 𝑦𝑘

𝑦𝑘                                 (1.9) 

In the same way, Alaa and Salah in (2019) [12], proposed a new 

class of the three-term CG method that is computationally 

efficient and is defined in the following search direction: 

𝑑𝑘+1
𝑁𝑇𝑇−𝐶𝐺 = −𝑔𝑘+1 + 𝛽𝑘𝑑𝑘 − 𝑡𝑘(

𝑔𝑘+1
𝑇 𝑑𝑘

𝑑𝑘1
𝑇 𝑦𝑘

)𝑦𝑘                   (1.10) 

where 𝑡𝑘 = 𝛾 
‖𝑦𝑘‖

‖𝑣𝑘‖
+ (1 − 𝛾)

𝑣𝑘
𝑇𝑦𝑘

‖𝑣𝑘‖2
 , and the parameter 𝛽𝑘 is 

given from normal CG methods (HS, PRP and FR). 

This essay is organized as follows: In Section two, we'll submit a 

new three-term CG method suggestion. We demonstrate the 

descent and sufficient descent conditions of the new algorithm in 

section 3. Section 4 presents numerous numerical evaluations of 

our three-terms CG technique. Section 5 contains our concluding 

observations. 

2. DERIVATION OF THE NEW DIRECTION OF 

THREE TERMS  

In this part, we will create a new three terms direction. The main 

idea to drive the new search direction is replace the 𝑔𝑘+1 in the 

third term of the search direction (1.8) by �̅�𝑘+1 that is defined 

below 

�̅�𝑘+1 = 𝑔𝑘+1 + (1 − 𝛿)((
𝑔𝑘+1

𝛾
) − μ𝑔𝑘+1                              (2.1)          

Where, 𝛿 ∈ (0,1),    𝜇 = 0.1 and 𝛾 =
2√𝜔

‖𝑣𝑘‖
(1 + ‖𝑥𝑘+1‖) and 𝜔 

is the machine error. 

 More specifically, the search direction of our method, named as 
(New1 TT-CG) method, defined by: 

𝑑𝑘+1
𝑁𝑒𝑤 = −𝑔𝑘+1 +

𝑔𝑘+1
𝑇 𝑦𝑘

𝑔𝑘
𝑇𝑔𝑘

𝑑𝑘 −
�̅�𝑘+1

𝑇 𝑑𝑘

𝑔𝑘
𝑇𝑔𝑘

𝑦𝑘                                      (2.2) 

Where �̅�𝑘+1 = 𝑔𝑘+1 + (1 − 𝛿)((
𝑔𝑘+1

𝛾
) − μ𝑔𝑘+1    

Or 𝑑𝑘+1
𝑁𝑒𝑤 = −𝑔𝑘+1 +

𝑔𝑘+1
𝑇 𝑦𝑘

𝑔𝑘
𝑇𝑔𝑘

𝑑𝑘 − (1 + (1 − 𝛿)((
1

𝛾
) −

𝜇)
𝑔𝑘+1

𝑇 𝑑𝑘

𝑔𝑘
𝑇𝑔𝑘

𝑦𝑘                                                                               (2.3) 

Where, 𝛿 ∈ (0,1),    𝜇 = 0.1 and 𝛾 =
2√𝜔

‖𝑣𝑘‖
(1 + ‖𝑥𝑘+1‖) and 𝜔 

is the machine error.    

2.1 ALGORITHM OF (NEW TT-CG)  

Step 1 : Given an 𝑥0 ∈ 𝑅𝑛 and set 𝑑0 = −𝑔0, 𝑘 = 0. 

Step 2 : If  ‖𝑔𝑘‖ = 0 then stop, else go to Step 3. 

Step 3 : Determine 𝛼𝑘   by using the cubic line search. 

Step 4 : Set 𝑥𝑘+1 = 𝑥𝑘 + 𝑣𝑘 . . 

Step 5 : Compute 𝑔𝑘+1, if  ‖𝑔𝑘+1‖ ≤ 10−5 stop. 

Otherwise, go to Step 6. 

Step 6 : Compute 𝑑𝑘+1 from the equation [(2.3)]. 

Step 7 : If ‖𝑔𝑘+1‖2 ≤  
|𝑔𝑘

𝑇𝑔𝑘+1|

0.2
 is satisfied go to step 2, 

                  Otherwise, set  𝑘 = 𝑘 + 1 and go to step 3. 

3. GLOBAL CONVERGENCE AND (DESCENT AND 

SUFFICIENT DESCENT PROPERTYS) OF THE (NEW 

TT-CG). 

Theorem 3.1:- suppose that the {𝑥𝑘} is a sequence created by 

(1.2), then the 𝑑𝑘+1
𝑁𝑇𝑇−𝐶𝐺satisfy the descent condition. 

Proof:-  By multiplying both sides of equation(2.3) by 𝑔𝑘+1 from 

right, we obtain  

𝑑𝑘+1
𝑁𝑒𝑤 𝑇

𝑔𝑘+1 = −‖𝑔𝑘+1‖2 +
𝑔𝑘+1

𝑇 𝑦𝑘

𝑔𝑘
𝑇𝑔𝑘

𝑑𝑘
𝑇𝑔𝑘+1 −

�̅�𝑘+1
𝑇 𝑑𝑘

𝑔𝑘
𝑇𝑔𝑘

𝑔𝑘+1
𝑇 𝑦𝑘 

(3.1) 

If 𝑑𝑘
𝑇𝑔𝑘+1 = 0, (which is mean 𝛼𝑘 is chosen by an exact line 

search), then we get  𝑑𝑘+1
𝑁𝑒𝑤𝑇

𝑔𝑘+1 = −‖𝑔𝑘+1‖2 ≤  0 . If we have 

inexact line search which is 𝑑𝑘
𝑇𝑔𝑘+1 ≠ 0. 

By mathematical induction, from the first search direction, we get 

 𝑑1
𝑇𝑔1 = −‖𝑔1‖2 ≤  0, and we assume that it is true for case 𝑘 

that is mean 

 𝑑𝑘
𝑇𝑔𝑘 ≤  0. To prove case 𝑘 + 1 

Because the PR parameter satisfies the descent condition, the first 

two terms of the previous formula are less than or equal to zero. 

We just need to demonstrate that the third term is less than or 

equal to zero at this point. 

−
�̅�𝑘+1

𝑇 𝑑𝑘

𝑔𝑘
𝑇𝑔𝑘

𝑔𝑘+1
𝑇 𝑦𝑘 = −(

𝑑𝑘
𝑇(𝑔𝑘+1+(1−𝛿)((

𝑔𝑘+1
𝛾

)−μ𝑔𝑘+1)

𝑔𝑘
𝑇𝑔𝑘

𝑔𝑘+1
𝑇 𝑦𝑘  

from Lipschitz Condition ‖𝑦𝑘‖ ≤ 𝐿‖𝑣𝑘‖ and 

 𝑔𝑘+1
𝑇 𝑦𝑘 ≤ 𝐿𝑔𝑘+1

𝑇 𝑑𝑘 where  𝐿 > 0                                             (3.2) 

Then,  

𝑑𝑘+1
𝑁𝑒𝑤 𝑇

𝑔𝑘+1 ≤ −
�̅�𝑘+1

𝑇 𝑑𝑘

𝑔𝑘
𝑇𝑔𝑘

𝑑𝑘
𝑇𝑔𝑘+1  

      = − (1 + (
(1−𝛿)

𝛾
) − (1 − 𝛿)μ) 𝐿

(𝑑𝑘
𝑇𝑔𝑘+1 )

2

𝑔𝑘
𝑇𝑔𝑘

< 0    (3.3)     

Finally, we have   𝑑𝑘+1
𝑁𝑒𝑤1𝑇

𝑔𝑘+1 ≤  0 . ∎ 

 

Theorem 3.2:- If {𝑥𝑘} is a sequence generated by (1.2), then the 

search direction in (2.3) satisfies the sufficient descent condition. 

Proof:- from equations (31) and (3.3), we have 

𝑑𝑘+1
𝑁𝑒𝑤 𝑇

𝑔𝑘+1 ≤= − (1 + (
(1−𝛿)

𝛾
) − (1 − 𝛿)μ) 𝐿

(𝑑𝑘
𝑇𝑔𝑘+1 )

2

𝑔𝑘
𝑇𝑔𝑘

∗

‖𝑔𝑘+1‖2

‖𝑔𝑘+1‖2
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Let 𝐶 = (1 + (
(1−𝛿)

𝛾
) − (1 − 𝛿)μ) 𝐿

(𝑑𝑘
𝑇𝑔𝑘+1)

2

𝑔𝑘
𝑇𝑔𝑘‖𝑔𝑘+1‖2

      

Then, we have   𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤  −𝐶‖𝑔𝑘+1‖2 .∎ 

The global convergence of (New TT-CG) method will be 

presented by the following theorem. 

Assumption 3.1 [13]. The level set 𝑆 = {𝑥: 𝑥 ∈ 𝑅𝑛 , 𝑓(𝑥) ≤

𝑓(𝑥0)} is bounded. i.e.  ∃ 𝐵 > 0 such that 

 ‖𝑥‖ ≤ 𝐵, ∀ 𝑥 ∈ 𝑆                                                              (3.4) 

Assumption 3.2 In a neighbourhood  Ω ∈ 𝑆, 𝑓 is differentiable 

and its gradient 𝑔 is Lipschitz continuous, i.e. ∃ 𝐿 > 0 such that  

‖𝑔(𝑥) − 𝑔(𝑥𝑘)‖ ≤ 𝐿‖𝑥 − 𝑥𝑘‖, ∀  𝑥, 𝑥𝑘 ∈ Ω                   (3.5) 

From Assumptions (3.1) and (3.2), ∃ 𝑀 > 0 such that 

 ‖𝑔(𝑥)‖ ≤ 𝑀,    ∀  𝑥 ∈ 𝑆.                                                        (3.6) 

Lemma 3.1 [14]. The sequence {𝑥𝑘}  is produced by the 

equations (1.2) and (1.7), where 𝑑𝑘 satisfies the descent condition 

and 𝛼𝑘 is determined by strong Wolfe conditions and by 

assuming that Assumptions (3.5) and (3.5) are true. If 

∑
1

‖𝑑𝑘‖2
= ∞𝑘≥1                                                                         (3.7)                                                      

The 𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0.                                                              (3.8) 

Theorem 3.3:- suppose that assumptions (3.1) and (3.2),hold that 

If any iteration of the equations (1.2) and (2.3) and 𝛼𝑘 satisfies 

the strong Wolfe line search conditions, then 

     𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0  

Proof: From equation (3.2), we have  

‖𝑑𝑘+1
𝑁𝑒𝑤‖ ≤ ‖𝑔𝑘+1‖ + |

𝑔𝑘+1
𝑇 𝑦𝑘

𝑔𝑘
𝑇𝑔𝑘

| ‖ 𝑑𝑘‖ + |
�̅�𝑘+1

𝑇 𝑑𝑘

𝑔𝑘
𝑇𝑔𝑘

| ‖ 𝑦𝑘‖,            (3.9) 

by using (3.6) and (3.2)  

‖𝑑𝑘+1
𝑁𝑒𝑤‖ ≤ 𝑀 + |

𝐿𝑔𝑘+1
𝑇 𝑑𝑘

𝑔𝑘
𝑇𝑔𝑘

| ‖ 𝑑𝑘‖ + (1 + (1 − 𝛿)((
1

𝛾
) −

μ1) |
𝑔𝑘+1

𝑇 𝑑𝑘

𝑔𝑘
𝑇𝑔𝑘

| 𝐿‖𝑣𝑘‖                                                                    (3.10)                                                                                                  

since, 𝑑𝑘 = −𝑔𝑘 and |𝑔𝑘+1
𝑇 𝑑𝑘| ≤ 𝑀|𝑑𝑘|. So, 

‖𝑑𝑘+1
𝑁𝑒𝑤‖ ≤ 𝑀 + 𝐿𝑀 + (1 + (1 − 𝛿) ((

1

𝛾
) − μ1) 𝐿𝑀𝛼𝑘 = 𝛽  

⇒ ∑
1

‖𝑑𝑘+1
𝑁𝑒𝑤‖

2
 
𝑘≥1 ≥ ∑

1

𝛽2
 
𝑘≥1 = ∞ 

⇒ ∑
1

‖𝑑𝑘+1
𝑁𝑒𝑤‖

2
 
𝑘≥1 = ∞ 

Now, by using lemma (3.1), we get 𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0.  ∎ 

4. NUMERICAL RESULTS 

In this section, the numerical outcomes of the New Three Terms 

CG Method and the Traditional Method PR Method are 

compared, along with their performances. The comparative tests 

call for nine different functions with well-known non-linear 

problems where 4 ≤  𝑘 ≤  5000. The code was also written in 

the Fortran 95 programming language. The (NOI) and the (NOF) 

are shown in the comparative results shown in Table (4.1). Table 

(4.2) contains additional experimental findings that support the 

New TT-CG's superiority to the traditional CG method in terms 

of the NOI and NOF. 

Table 4.1: Comparison Between Two Algorithms (PR. and 

New1 TT-CG) 

Test 

function. 
DIM. 

PR New TT-CG 

NOI NOF NOI NOF 

G-Cantrel 

 

4 

10 

100 

500 

1000 

5000 

22 

22 

22 

23 

23 

30 

159 

159 

159 

171 

171 

270 

21 

21 

21 

22 

22 

23 

149 

149 

149 

161 

161 

175 

G-Wolfe 

4 

10 

100 

500 

1000 

5000 

11 

32 

49 

58 

64 

99 

24 

65 

99 

117 

129 

214 

16 

34 

46 

45 

55 

58 

33 

76 

98 

97 

120 

127 

Cubic 

4 

10 

100 

500 

1000 

5000 

15 

16 

16 

16 

16 

16 

45 

47 

47 

47 

47 

47 

14 

15 

15 

15 

15 

16 

39 

43 

43 

43 

43 

45 

Miele 

4 

10 

100 

500 

1000 

5000 

37 

37 

44 

44 

50 

50 

116 

116 

148 

148 

180 

180 

39 

40 

40 

43 

46 

46 

122 

124 

124 

143 

160 

160 

G-Wood 

 

4 

10 

100 

500 

1000 

5000 

29 

29 

30 

30 

30 

30 

67 

67 

69 

69 

69 

69 

26 

26 

26 

26 

26 

27 

61 

61 

61 

61 

61 

63 

Rosen 

4 

10 

100 

500 

1000 

5000 

30 

30 

30 

30 

30 

30 

85 

85 

85 

85 

85 

85 

28 

28 

28 

28 

28 

28 

66 

66 

66 

66 

66 

66 

Total 1170 3825 1053 3348 

Table 3.2: -The Percentage Of Improving Of New TT-CG 

Algorithm 

 PR New TT-CG 

NOI 100% 90 % 

NOF 100% 89.524 % 
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The suggested strategy raises NOI and NOF by 10.476% and 

10%, respectively. The modified new three term CG method has 

generally improved by 10.238% when compared to the standard 

PR approach. 

CONCLUSIONS 

For issues involving unconstrained optimization, we proposed a 

novel three-term CG approach in this study. The proofs using 

exact and approximate line searches must both be in decent 

condition and be sufficiently decent condition. We demonstrate 

that the suggested strategy converges globally for general 

functions. The numerical results clearly show that the new 

approach uses fewer iterations and more function evaluations per 

iteration than the old one.  
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