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ABSTRACT: 
Eigenvalues of a graph are the eigenvalues of its adjacency matrix. The energy of a graph is the sum of 

the absolute values of its eigenvalues, was studied by (Gutman 1978 ). This paper divided in to  three 
parts, in part one spectra and nullity of graphs are defined (   Brouwer  and  Haemers, 2012) and (Harary, 
1969).  In the second part graph products an their spectra is studied (Shibata and Kikuchi 2000) and 
(Balakrishnan and Ranganathan , 2012). In the last part, we proves the energy of some graph products 
including Cartesian, tensor, strong, skew and inverse skew which are applied of some graphs.  
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1. INTRODUCTION 

et G be a graph of p vertices with adjacency matrix A, then A is a real symmetric matrix and so 
the eigenvalues of A are real and hence can be ordered. The eigenvalues of A, λ1 ≥ λ2  ≥ ··· ≥ 

λp are called the eigenvalues of G and form the spectrum of G. The energy E(G) of a graph G is 
defined as the sum of absolute values of its eigenvalues. That is E(G)=	∑ |λ |.The study of 
properties of  E(G)  was initiated by ( Gutman, 1978 ). All graphs considered in this paper are finite, 
simple and undirected. 

In this part, we look at the properties of graphs from their eigenvalues. The set of eigenvalues of a 
graph G with its multiplicities is known as the spectrum of G and denoted by Sp(G).   
 
Definition 1.1: The adjacency matrix A(G) or A=[aij] of a labeled graph G with vertex set V(G), 
V(G)=v1, v2, …., vp is a  pp matrix in which  aij =1 if vi  and vj are adjacent, and 0 if they are not.  

     Adjacency matrices define graphs up to isomorphism. Moreover, the adjacency matrix of a 
graph G is a symmetric 0, 1 matrix having zero entries along the main diagonal, and in which the sum 
of the entries in any row or column is equal to the degree of the corresponding vertex. Because of this 
correspondence between graphs and matrices, any graph theoretic concept is reflected in the adjacency 
matrix. 
 
Definition 1.2: The characteristic polynomial of the adjacency matrix A(G) of a graph G with p 
vertices is called the characteristic polynomial of G, denoted by (G; x) with the convention that the 
coefficient of the highest order term is positive: 

(G;x)=Det(xIp-A(G))=(-1)pDet(A(G)-xIp). 
Therefore, the characteristic polynomial of a graph G of order p is a polynomial of degree p:  

(G; x) =a0x
p+a1x

p-1+…+ap-1x+ap.  
It has two practical forms, explicitly as a polynomial in the variable x, or as product of linear 

factors. Thus,  
     (G; x)=∑ a x =∏ (x −  ).

  
Definition 1.3: The eigenvalues of a graph G of order p are defined to be the eigenvalues of the 
adjacency matrix associated with the graph G. That is, if G has adjacency matrix A(G), then the 
eigenvalues of G are those p (not necessarily distinct) numbers  which satisfy the determinant 
equation Det(A(G)-Ip)=0, viz each  is a root of the polynomial equation A(G)-Ip = 0. 

Equivalently, a number  is an eigenvalue of G if there exists a non-zero p1 vector X (called an 
eigenvector of   ) such that A(G)X = X.  

Since A(G) is a real symmetric ( 0, 1) matrix, its eigenvalues 1, 2, …, p must be real by the 
next theorem and can be ordered as  1  2  …  p. See (Balakrishnan, 2004) 
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Theorem 1.4: The eigenvalues of a real symmetric matrix are real. ■ 
 
Theorem 1.5: The sum of the eigenvalues of any simple graph is zero. ■ 
 
Definition 1.6: Let G be a graph of order p and H is a subgraph of G of order m, m  p, then H is 
called a partial cover of G if every component of H is isomorphic with K2 or a cycle graph. If m = p, 
then H is called a spanning cover of G. 
 
Theorem 1.7: (Sachs’ Theorem) The coefficients ai’s of (G; x) are given by 

ai=∑ (−1) ( ) 2 ( ),  
Where the summation extends over all partial covers H on i vertices of G, and where k(H) and c(H) 

denote respectively, the number of components and of cycles in H.  
 
Definition 1.8: The spectrum Sp(G) of a graph G is defined as the eigenvalues of its adjacency 
matrix, that is, another matrix of two rows, the first row   consists of the eigenvalues of the graph G 
and the second row consists of the multiplicities of the corresponding eigenvalues. That is if the 
distinct eigenvalues of G are 1, 2, …, k  and their multiplicities are m1, m2, …, mk, respectively, 
then we write 

Sp(G)=
 					  					 …  					m m … m  

Or just as  ,  , …,   . 
If G is a disconnected graph with components G1, G2, …, Gk, then the spectrum of G is the “union” 

of the eigenvalues of the components of G in some manner because of the fact that                 
(G; x)=∏ (G ; x). 
Spectra of graphs can be obtained using the fact that the coefficients of the characteristic 

polynomial are integers. It follows that the sum of k-th powers of eigenvalues are integers too. Since 
the coefficient of the highest power term xp of the characteristic polynomial (G; x) is equal to 1, 
hence any eigenvalue of G which is rational must be an integer, and for any square matrix with real 
entries, the sum of its eigenvalues is equal to its trace. 

To specify the spectrum of a graph G with order p, the coefficients ai
sof the characteristic 

polynomial (G; x)=∑ a x   are of important use. Thus, we seek the coefficients ai
s first. 

Certainly a0 =1, and using Theorem 1.7, we can easily verify that a1=0, -a2 = q and -a3 is twice the 
number of triangles in G. And to find the remaining coefficients apply Theorem 1.7. 
 
Definition 1.9: A graph G is said to be a singular graph provided that its adjacency matrix A(G) is a 
singular matrix. The algebraic multiplicity of the number zero in the spectrum of the graph G is called 
its nullity (degree of singularity), and is denoted by (G).  
 
Lemma 1.10:  

i) The eigenvalues of the cycle graph Cp are of the form	2cos 	 , i = 0,… , p − 1, and  

                           η(Cp)= 				2,				if	p ≡ 0(mod	4),0,														otherwise.       
ii) The eigenvalues of the path graph Pp are of the form	2cos 	, i = 1,… , p, and     

                          η(Pp)=
	1, if	p	is	odd,			0, if	p	is	even.       

iii) The spectrum of the complete graph Kp,  Sp(Kp)=
p − 1 −11 p − 1 ,and  η(Kp)=

					1, if	p = 1,					0, if	p > 1.        
iv) The spectrum of the complete bipartite graph Kp1,p2,                    

Sp(Kp1,p2)	= p p 0 − p p1 p +p − 2 1 	 , and η(Kp1,p2)=p1+p2-2, for all p1, p2.    

 
2. Graph Products 
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In this part, we study some graph products and determine the spectra of some of them. 
Let G1 =(V1, E1) and G2=(V2, E2) be vertex disjoint non-trivial graphs.                 

Definition 2.1: The Cartesian product G1G2 of the two graphs G1 and G2 is the graph with vertex 
set V(G1G2)=V1V2 and two vertices (u1, v1) and (u2, v2) are adjacent in G1G2 if, and only if, [u1 ≡ u2 
and v1v2E(G2)] or [u1u2E(G1) and v1 ≡ v2].  

It is clear that: p(G1G2)=p(G1)p(G2) and q(G1G2)=p(G1)q(G2)+q(G1) p(G2) 
 
Definition 2.2: The tensor product G1G2 of the two graphs G1 and G2 is the graph with vertex set 
V(G1G2)=V1V2 and two vertices (u1, v1) and (u2, v2) are adjacent in G1 G2 if, and only if, [u1 u2 
E(G1) and v1v2E(G2)]. 

It is clear that: p(G1G2)=p(G1)p(G2) and q(G1G2)=2q(G1) q(G2). 
 
Definition 2.3: The strong product G1⊠G2 of the two graphs G1 and G2 is the graph with vertex set 
V(G1⊠G2)=V1V2 and two vertices (u1, v1) and (u2, v2) are adjacent in G1⊠G2 if, and only if, [u1 ≡ u2 
and v1v2E(G2)] or [u1u2E(G1) and v1 ≡ v2] or [u1 u2  E(G1) and v1v2E(G2)].  

It is clear that: p(G1⊠G2)=p(G1)p(G2) and q(G1⊠G2)=p(G1)q(G2)+q(G1) p(G2)+2q(G1) q(G2). 
 
Definition 2.4: The skew product G1G2 of the two graphs G1 and G2 is the graph with vertex set 
V(G1G2) = V1V2 and where (u1, v1) and (u2, v2) are adjacent in G1G2  if, and only if, [u1 ≡ u2 and 
v1v2E(G2)] or [u1u2E(G1) and v1v2E(G2)].  

It is clear that: p(G1G2) = p(G1)p(G2) and q(G1G2) = p(G1)q(G2)+2q(G1)q(G2). 
 
Definition 2.5: Let G1 = (V1, E1) and G2 = (V1, E1) be vertex disjoint non-trivial graphs. The inverse  
 
skew product G1 G2 of the two graphs G1 and G2 is the graph with vertex set V(G1 G2) = V1V2 and 
where (u1, v1) and (u2, v2) are adjacent in G1G2  if, and only if, [u1u2 E(G1)and v1 ≡ v2] or 
[u1u2E(G1) and v1v2E(G2)].  

It is clear that: p(G1 G2) = p(G1)p(G2) and q(G) = q(G1)p(G2)+2q(G1)q(G2). 
 
Lemma 2.6: (Shibata and Kikuchi, 2000) Let G1 and G2 be two graphs with orders p1 and p2, 
respectively. Then 
i) A(G1G2) = (Ip1 A2)+(A1A2).  
ii) A(G1G2) = (A1Ip2)+(A1A2). ■  
 
Corollary 2.7:  Let Sp(G1)={ λ1, ..., λp1} and Sp(G2)={µ1,..., µp2}, and let A1 and A2 be the adjacency 
matrices of G1 and G2; respectively. Then 
(i) A(G1G2)=( Ip1 A2)+(A1Ip2) and Sp(G1G2)= {λi+µj: 1≤ i ≤ p1; 1≤ j ≤ p2}. 
(ii) A(G1G2)=(A1A2) and Sp(G1G2)= {λiµj : 1≤ i ≤ p1; 1≤ j ≤ p2}. 
(iii) A(G1 ⊠ G2) =(A1A2)+(Ip1A2)+(A1Ip2) and Sp(G1 ⊠ G2)= { λiµj + λi+µj : 1≤ i ≤ p1; 1≤ j ≤ p2}.■ 

 
3. Energy of a Product Graphs 

In this part, we discuss another application of eigenvalues of graphs. The energy E(G) of a graph G 
is defined as follows: 
 
Definition 3.1: Let G be a graph on p vertices, and let its ordinary spectrum (i. e., the spectrum of its 
adjacency matrix) consist of the numbers λ1, λ2, ..., λp. Then, The energy E(G) of a graph G is defined 
as follows: E(G) = ∑ |λ |. 

In the next proposition, the energy of some special graphs is studied by (Balakrishnan, 2004) and 
(Li, Shi, and Gutman, 2012). 
 
Proposition 3.2: The energy of some special graphs is defined as follows: 
1) E(Kp)= 2p-2. 
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2) E(Kp1,p2)=2 p p  . 

3) E(Pp)=
( ( )) − 2	, if	p = 0(mod	2),

	 ( ( ))( ( )) − 2, if	p = 1(mod	2). 
4) E(Cp)=

	( )	( ) 	 , if	p = 0(mod	4),
	( ) 	 , if	p = 2(	mod	4),
	( ) 	 , if	p = 1(	mod	2).    

In the following, we determine the spectra of skew and inverse skew products.  
Let A1 and A2 be the p1×p1 and p2×p2 adjacency matrices of G1 and G2 have eigenvalues λi,1≤ i ≤ p1 

and µj, 1≤ j ≤ p2, respectively.           
 
Theorem 3.3: The p1p2 eigenvalues of the skew product G1G2 are  µj+λiµj, ∀ i, j; 1 ≤ i ≥ p ;1 ≤ j ≥p . 

Moreover, if X1, ..., Xp1 are the eigenvectors of A1 corresponding to λ1, ..., λp1, and Y1, ...,Yp2 are 
the eigenvectors of A2 corresponding toµ1,...,µp2, then XiYj  are the eigenvectors of G1G2 
corresponding to µj +λiµj, 1≤ i ≤ p1; 1≤ j ≤ p2. 
 
Proof: By Lemma 2.6, we have: 

A(G1G2)=[(Ip1A2)+(A1A2)] 
Assume that X(Y) is an eigenvector of G1(G2) corresponding to the eigenvalue λ(µ). Then  
A(G1G2) (XY)=[(Ip1A2)+(A1A2)] (XY) 
                              =(XA2Y)+( A1XA2Y) 
                              =(XµY)+( λXµY) 
                              =( µ+ λµ)(XY). ■ 

 
Theorem 3.4: The p1p2 eigenvalues of the inverse skew product G1 G2 are λ i+λiµj, for all 1≤ i ≤ p1; 
1≤ j ≤ p2. 

Moreover, if X1, ..., Xp1 are the eigenvectors of A1 corresponding to λ1, ..., λp1, and Y1, ...,Yp2 are 
the eigenvectors of A2 corresponding to µ1, ..., µp2, then XiYj  are the eigenvectors of G1  G2 
corresponding to λi+λiµj, 1≤ i ≤ p1; 1≤ j ≤ p2. 
 
Proof: By Lemma 2.6, we have: 

A(G1 G2)=[( A1 Ip2)+(A1A2)] 
Also, assume that X(Y) is an eigen vector of G1(G2) corresponding to the eigen value λ(µ). Then  
A(G1 G2) (XY)=[( A1 Ip2)+(A1A2)] (XY) 
                              =(A1XY)+( A1XA2Y) 
                              =(λXY)+(λXµY) 
                              =(λ+ λµ)(XY). ■ 
Thus, as a result for the spectra of the above two products we have: 

 
Corollary 3.5:  Let Sp(G1)={ λ1, ..., λp1} and Sp(G2)={µ1, ..., µp2}. Then 

(i) Sp(G1G2)= {µj+λiµj : 1≤ i ≤ p1; 1≤ j ≤ p2}. 
(ii) Sp(G1 G2)= {λi+ λiµj: 1≤ i ≤ p1; 1≤ j ≤ p2}.■ 

 
Proposition 3.6: The energy of the Cartesian product of Kp1 and Kp2 where p1, p2 >1, is given by 
E(Kp1Kp2  )= 4(p1p2-p1-p2+1). 
 
Proof: By Corollary 2.7, we have: 
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Sp(Kp1Kp2) 

=	 p − 1 −11 p − 1 + p − 1 −11 p − 1 = 	 p + p − 2 p − 2 p − 2 −21 p − 1 p − 1 p p − p − p + 1                      

 
Thus, by Definition 3.1, we get: 

E(Kp1Kp2 ) =p1+p2-2+p1p2-p1-2p2+2+p1p2-p2-2p1+2+2p1p2-2p1-2p2+2 
                     = 4(p1p2-p1-p2+1).  
Therefore, Kp1Kp2 is singular, if and only if p1=p2=1, this gives the case K1K1=K1. ■ 

 
Proposition 3.7: The energy of the Cartesian product of Kp and Kp1,p2  is  

E(KpKp1,p2 )= 2(p-1)( p1+p2+ p p  -1). 
 
Proof: By Lemma 1.10 and Corollary 2.7 it follows that the spectrum of KpKp1,p2 is 

    p − 1 −11 p − 1 + p p 0 − p p1 p + p − 2 1 =	 p + p p − 1 p − 1 p − p p − 1 p p − 1 −1 −( p p + 1)1 p + p − 2 1 p − 1 (p − 1)(p + p − 2) p − 1  

 
Thus, by Definition 3.1, we have: 

E(KpKp1,p2)=(p + p p − 1) + (pp + pp − 2p − p − p + 2) + (p − p p − 1) +( p p 	p − p p − p + 1) + (pp + pp − 2p − p − p + 2) + ( p p 	p − p p + p −1)=2pp1+2pp2+2 p p  p - 2p -2p -2p +2-2 p p   

=2p(p1+p2+ p p  -1) -2(p1+p2+ p p   -1)= 2 (p-1)( p1+p2+ p p   -1). ■ 

Moreover, if p≠ p p  +1≤ 0 , so  
i) If p1=p2=1, then KpK1,1 is (p -1) singular. 
ii) If either p1 or p2 is not 1 while p= p p + 1 , then KpKp1,p2 is 1- singular. 
 
Lemma 3.8: The energy of the Cartesian product of Kp1 and Kp2,p2  is  

E(Kp1Kp2,p2)=(p − 1)(6p − 2). 
 
Proof: Put p1=p2 in Proposition 3.7, we get the result. ■ 
 
Proposition 3.9: The energy of the Cartesian product of Kp1,p2 and Kp1,p2  is  

E(Kp1,p2Kp1,p2 )=	4 p p (p + p − 1). 
 
Proof: By Corollary 2.7, we have  p p 0 − p p1 p + p − 2 1 + p p 0 − p p1 p + p − 2 1= 2 p p p p 0 p p 0 − p p 0 − p p −2 p p1 p + p − 2 1 p + p − 2 2p + 2p − 4 p + p − 2 1 p + p − 2 1= 2 p p p p 0 − p p −2 p p1 2p + 2p − 4 2p + 2p − 2 2p + 2p − 4 1  

 
Thus, by Definition 3.1, we have: = 2 p p + 2p p p + 2p p p − 4 p p + 2p p p + 2p p p − 4 p p + 2 p p  

E(Kp1,p2Kp1,p2 )= 4p p p + 4p p p − 4 p p = 4 p p 	(p + p − 1). ■  
Moreover, the nullity of Kp1,p2Kp1,p2  is 2p1+2p2-2.  
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Lemma 3.10: The energy of the Cartesian product of Kp1,p1 and Kp2,p2  is  
E(Kp1,p1Kp2,p2 )=	2(4p p − p − p ). 

 
Proof:     By Corollary 2.7, we have:      p 	 0 −p 	1 2p − 2 1 + 	p 0 −	p1 2p − 2 1 =p +	p p 	 p − p 	p 0 −	p p − p −p 	 −(p + p )1 2p − 2 1 2p − 2 (2p − 2)(2p − 2) 2p − 2 1 2p − 2 1   

 
Thus, by Definition 3.1, we get: 

E(Kp1,p1Kp2,p2 ) = 8p p − 2p − 2p = 2(4p p − p − p ). ■ 
Moreover, the nullity of Kp1,p1Kp2,p2 is (2p1-2)(2p2-2), provided that neither p1 nor p2 is 1. If 

p1=p2=1, then the nullity of K1,1K1, 1 is 2.  
 
Proposition 3.11: Let G1and G2 be two graphs on p1 and p2 vertices, respectively. Then E(G1 G2  ) ≤ 
p2 E(G1 )+p1E(G2  ). 
 
Proof: Let λ1, λ2, …, λp1 and μ , μ , … , μ  be the eigenvalues of G1 and G2; respectively.  Then  

E(G1G2)= ∑ ∑ [ λ + μ ] ≤ ∑ ∑ |λ | + |μ |≤ ∑ ∑ |λ | + ∑ ∑ |μ |  
                                                  ≤ p2 E(G1 )+p1E(G2  ). ■ 

 
Proposition 3.12: The energy of the tensor product Kp1Kp2 is given by:  

E(Kp1Kp2  ) = 4(p1-1) ( p2-1). 
 
Proof: By Lemma 1.10 and Corollary 2.7, we have:  p − 1 −11 p − 1 p − 1 −11 p − 1 	= (p − 1)(p − 1) −p + 1 −p + 1 11 p − 1 p − 1 (p − 1)(p − 1)  

Thus, by Definition 3.1, we get: 
E(Kp1Kp2  ) = p1p2-p1-p2+1+p1p2-p2-p1+1+ p1p2-p2-p1+1+p1p2-p1-p2+1 
                    = 4(p1p2-p1-p2+1) = 4(p1-1) (p2-1). ■ 

 
Proposition 3.13: The energy of the tensor product Kp1,p2Kp1,p2  is given by:  

E(Kp1,p2  Kp1,p2 )=	4p p . 
 
Proof: By Corollary 2.7, we have: p p 0 − p p1 p +p − 2 1 p p 0 − p p1 p +p − 2 1 =p p 0	 −p p 0 0 0 −p p 0 p p1 p +p − 2 1 p + p − 2 (p + p − 2) p + p − 2 1 p + p − 2 1
Sp((Kp1,p2  Kp1,p2 )	= p p 0 −p p2 4(p + p − 2) + (p + p − 2) 2 . 

Then, by Definition 3.1, we get: 
E(Kp1,p2  Kp1,p2 )=4p p . 
And the nullity of Kp1,p2 Kp1,p2 is	4(p + p − 2) + (p + p − 2) . ■ 

 
Proposition 4.14: (Balakrishnan 2004) Let G1and G2 be two graphs on p1 and p2 vertices, respectively. 
Then E(G1G2 )= E(G1) E(G2).  
 
Proof: By Definition 3.1, we have: 

E(G1  G2  )= ∑ ∑ |λ μ | = ∑ ∑ |λ ||μ |= ∑ |λ |		∑ |μ |= E(G1 ) E(G2  ). ■ 
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Proposition 3.15: The energy of the strong product of two graphs is the sum of energy of their 
Cartesian and tensor products. ■ 
 
Proposition 3.16: The energy of the skew product of two graphs G1 and G2 is related as: 

 E(G1  G2  ) ≤ p1 E(G2 )+ E(G1 ) E(G2  ). 
 
Proof: Let the spectra of G1and G2 be {λ1, ..., λp1} and {µ1, ..., µp2}; respectively.  

Then E(G1G2)=	∑ ∑ [|μ + λ μ |] ≤ 	∑ ∑ μ + λ μ 	≤ 	∑ ∑ |μ | +∑ ∑ |λ μ |  ≤ p1 E(G2 )+ E(G1 ) E(G2  ). ■ 

 
Example 3.17: Let G1=K2 and G2=P3, then the skew product of K2 and P3 is given by:  

Sp(K2)= 1 −11 1  and Sp(P3)=	 √2 0 −√21 1 1  

For j=1 and i=1, 2, we have: μ + λ μ = 2√2, μ + λ μ = 0. 
For j=2 and i=1, 2, we have: μ + λ μ = 0, μ + λ μ = 0	. 
For j=3 and i=1, 2, we have:  μ + λ μ = −2√2	, μ + λ μ = 0. 
Then, E(K2P3)=4√2. 
And by Proposition 3.16, we have E(K2P3)	≤ 2 ∗ 2√2 + 2 ∗ 2√2 = 8√2. 
Moreover, equality does not hold for any pair of non-empty simple graphs. 

 
Proposition 3.18: The energy of the inverse skew product is given by 

 E(G1  G2  ) ≤ p2 E(G1 )+ E(G1 ) E(G2  ). 
 
Proof: Let the spectra of G1 and G2 be {λ1, ..., λp1} and {µ1, ..., µp2}, respectively.  

Then E(G1  G2)=∑ ∑ λ + λ μ ≤ 	∑ ∑ [ μ + λ μ ]	≤	∑ ∑ |λ | +∑ ∑ |λ μ | ≤ p2 E(G1 )+ E(G1 ) E(G2  ). ■ 

 
Example 3.19: Let G1=K2 and G2=P3, then the inverse skew product of K2 and P3 is given by  

Sp(K2)= 1 −11 1  and Sp(P3)=	 √2 0 −√21 1 1  

For i=1 and j=1, 2, 3, we have: λ + λ μ = 1 + √2	, λ + λ μ = 1, λ + λ μ 	= 1 − √2. 
For i=2 and j=1, 2, 3, we have: λ + λ μ = −1 − √2, 	λ + λ μ = −1, 	λ + λ μ 	= −1 + √2. 
Then, E(K2 P3)= 2+4√2. 
And by Proposition 3.18, we have E(K2  P3)	≤ 3 ∗ 2 + 2 ∗ 2√2 = 6 + 4√2. 
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