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ABSTRACT:

Eigenvalues of a graph are the eigenvalues of its adjacency matrix. The energy of a graph isthe sum of
the absolute values of its eigenvalues, was studied by (Gutman 1978 ). This paper divided in to three
parts, in part one spectra and nullity of graphsaredefined ( Brouwer and Haemers, 2012) and (Harary,
1969). In the second part graph products an their spectra is studied (Shibata and Kikuchi 2000) and
(Balakrishnan and Ranganathan , 2012). In the last part, we proves the energy of some graph products
including Cartesian, tensor, strong, skew and inver se skew which are applied of some graphs.
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1. INTRODUCTION

Let G be a graph of p vertices with adjacency matrix A, then A is a real symmetric matrix and so
the eigenvalues of A are real and hence can be ordered. The eigenvalues of A, A, >, > -+ >
A, are called the eigenvalues of G and form the spectrum of G. The energy E(G) of a graph G is
defined as the sum of absolute values of its eigenvalues. That is E(G)= 2&1 |A;|.The study of
properties of E(G) was initiated by ( Gutman, 1978 ). All graphs considered in this paper are finite,
simple and undirected.

In this part, we look at the properties of graphs from their eigenvalues. The set of eigenvalues of a
graph G with its multiplicities is known as the spectrum of G and denoted by S,(G).

Definition 1.1: The adjacency matrix A(G) or A=[a;j] of a labeled graph G with vertex set V(G),
V(G)={vi, V2, ...., Vp} is @ pxp matrix in which a;=1 if v; and vjare adjacent, and 0 if they are not.

Adjacency matrices define graphs up to isomorphism. Moreover, the adjacency matrix of a
graph G is a symmetric 0, 1 matrix having zero entries along the main diagonal, and in which the sum
of the entries in any row or column is equal to the degree of the corresponding vertex. Because of this
correspondence between graphs and matrices, any graph theoretic concept is reflected in the adjacency
matrix.

Definition 1.2: The characteristic polynomial of the adjacency matrix A(G) of a graph G with p
vertices is called the characteristic polynomial of G, denoted by ¢(G; x) with the convention that the
coefficient of the highest order term is positive:

¢0(G;x)=Det(xI,-A(G))=(-1)"Det(A(G)-xI,).
Therefore, the characteristic polynomial of a graph G of order p is a polynomial of degree p:

o(G; x) =agx*+a;x” '+, +a, x+a,.

It has two practical forms, explicitly as a polynomial in the variable x, or as product of linear
factors. Thus,

(P(G, X):ZF=0 aixp_iznf;l(x - ;\'l)

Definition 1.3: The eigenvalues of a graph G of order p are defined to be the eigenvalues of the
adjacency matrix associated with the graph G. That is, if G has adjacency matrix A(G), then the
eigenvalues of G are those p (not necessarily distinct) numbers A which satisfy the determinant
equation Det(A(G)-Al,)=0, viz each A is a root of the polynomial equation | A(G)-M, | =o0.

Equivalently, a number A is an eigenvalue of G if there exists a non-zero px1 vector X (called an
eigenvector of A ) such that A(G)X = AX.

Since A(G) is a real symmetric ( 0, 1) matrix, its eigenvalues {A, A, ..., A,} must be real by the
next theorem and can be ordered as A; >, 2> ... > A,. See (Balakrishnan, 2004)
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Theorem 1.4: The eigenvalues of a real symmetric matrix are real. m
Theorem 1.5: The sum of the eigenvalues of any simple graph is zero. m

Definition 1.6: Let G be a graph of order p and H is a subgraph of G of order m, m < p, then H is
called a partial cover of G if every component of H is isomorphic with K, or a cycle graph. If m = p,
then H is called a spanning cover of G.

Theorem 1.7: (Sachs Theorem) The coefficients a;’s of @(G; x) are given by

a=y y(—1)kUD 26,

Where the summation extends over all partial covers H on i vertices of G, and where k(H) and c¢(H)
denote respectively, the number of components and of cycles in H.

Definition 1.8: The spectrum S,(G) of a graph G is defined as the eigenvalues of its adjacency
matrix, that is, another matrix of two rows, the first row consists of the eigenvalues of the graph G
and the second row consists of the multiplicities of the corresponding eigenvalues. That is if the

distinct eigenvalues of G are A, Ay, ..., A and their multiplicities are m;, m,, ..., my, respectively,
then we write
Sp(G):(KSI 7;121 kn]; )
1 2 Kk
Orjustas A", Ay'2, ..., Ap k.
If G is a disconnected graph with components Gy, G, ..., Gy, then the spectrum of G is the “union”

of the eigenvalues of the components of G in some manner because of the fact that

®(G; x)=Ti; 0(Gi; ).

Spectra of graphs can be obtained using the fact that the coefficients of the characteristic
polynomial are integers. It follows that the sum of k-th powers of eigenvalues are integers too. Since
the coefficient of the highest power term x" of the characteristic polynomial @(G; x) is equal to 1,
hence any eigenvalue of G which is rational must be an integer, and for any square matrix with real
entries, the sum of its eigenvalues is equal to its trace.

To specify the spectrum of a graph G with order p, the coefficients aysof the characteristic
polynomial ¢(G; x)=2f:0 a;xP~1 are of important use. Thus, we seek the coefficients a;s first.
Certainly ay =1, and using Theorem 1.7, we can easily verify that a;=0, -a, = q and -a; is twice the
number of triangles in G. And to find the remaining coefficients apply Theorem 1.7.

Definition 1.9: A graph G is said to be a singular graph provided that its adjacency matrix A(G) is a
singular matrix. The algebraic multiplicity of the number zero in the spectrum of the graph G is called
its nullity (degree of singularity), and is denoted by n(G).

Lemma 1.10:
1) The eigenvalues of the cycle graph C, are of the form 2cos ? ,i=0,..,p—1,and

(2, ifp=0(mod4),
(&) { 0, otherwise. _
i) The eigenvalues of the path graph P, are of the form ZCOSﬁ ,i=1,..,p,and
(1, ifpisodd,
n(Pp)—{ 0, if p is even.
(p—1 -1 ) :{ 1,ifp=1,
iii) The spectrum of the complete graph K,,, S,(K,) ( 1 p—1 ,and n(K,) 0,ifp > 1.
iv) The spectrum of the complete bipartite graph Kopip2,

Sp(Kpip2) = ( p11p2 pitp, — 2 F1’1p2 >, and (K1 p2)=pi+p2-2, for all py, pa.
1TP2

2. Graph Products
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In this part, we study some graph products and determine the spectra of some of them.

Let G, =(V,, E1) and G,=(V,, E,) be vertex disjoint non-trivial graphs.
Definition 2.1: The Cartesian product G;xG, of the two graphs G; and G; is the graph with vertex
set V(G1xG,)=VxV,and two vertices (u, v;) and (uy, v,) are adjacent in G;xG, if, and only if, [u; = u,
and vv,€E(G,)] or [uju,€E(Gy) and v, = v,].

It is clear that: p(G1xG,)=p(G1)p(G,) and q(G;xG,)=p(G1)q(G2)+q(G) p(G»)

Definition 2.2: The tensor product G;®G, of the two graphs G, and G, is the graph with vertex set
V(G,®G,)=VxV; and two vertices (u;, v;) and (u,, v,) are adjacent in G;® G, if, and only if, [u; u,
€E(G) and vv,€E(Gy)].

It is clear that: p(G1®G,)=p(G)p(G,) and q(G®G,)=2q(G,) q(Gy).

Definition 2.3: The strong product G;XIG, of the two graphs G, and G, is the graph with vertex set
V(GXG,)=VxV,and two vertices (u, vi) and (up, v») are adjacent in G;XIG; if, and only if, [u; = u,
and v1v,€E(Gy)] or [ujup€E(Gy) and v, = v,] or [u; u; € E(G)) and v v,€E(Gy)].

It is clear that: p(G1XIG2)=p(G)p(Gz) and q(GXIG,)=p(G1)q(G2)+q(Gy) p(G2)+2q(Gy) q(Gy).

Definition 2.4: The skew product G, G, of the two graphs G; and G is the graph with vertex set
V(G, ¢G,) = VxV, and where (uy, vi) and (u,, v,) are adjacent in G, ¢ G, if, and only if, [u; =u, and
vivo€E(Gy)] or [uju,€E(G)) and v v,€E(Gy)].

It is clear that: p(G; ¢ G>) = p(G1)p(Gz) and q(G ¢ G>) = p(G1)q(G2)*+2q(G1)q(Gy).

Definition 2.5: Let G, = (Vy, E;) and G, = (V, E;) be vertex disjoint non-trivial graphs. The inverse

skew product G0 G, of the two graphs G; and G, is the graph with vertex set V(G0 G;) = V| xV,and
where (u;, v;) and (uy, v,) are adjacent in G,;0G, if, and only if, [uju, €E(G))and v, = v;] or
[uju,€E(Gy) and viv,€E(Gy)].

It is clear that: p(G10 G,) = p(G))p(G) and q(G) = q(G1)p(G2)+2q(G1)q(G»).

Lemma 2.6: (Shibata and Kikuchi, 2000) Let G; and G, be two graphs with orders p; and p,,
respectively. Then

1) A(G¢G2) = (Ip1 *A2)HA*A).

i) A(Gi0G;) = (A*)H(A1*A). m

Corollary 2.7: Let Sy(G1)={ A1, ..., Ay} and Sp(Go)={p1,..., W2}, and let A; and A, be the adjacency
matrices of G| and G; respectively. Then

(1) A(G1XG2):( Ip1 *A2)+(A1*Ip2) and Sp(Glez): {7\.1"‘]%: I<i< pis 15_] < pz}

(11) A(G]@Gz):(Al*Az) and Sp(G1®G2): {kiuj 1<i< Pis ISJ < pz}

(i) A(G) X G) =(A1*Ar)+(I,1*Ar) (A *]n) and S (G X Go)= { Ay + At c 1Si<py; 1Sj<p,}.m

3. Energy of a Product Graphs
In this part, we discuss another application of eigenvalues of graphs. The energy E(G) of a graph G
is defined as follows:

Definition 3.1: Let G be a graph on p vertices, and let its ordinary spectrum (i. e., the spectrum of its
adjacency matrix) consist of the numbers A, A, ..., A,. Then, The energy E(G) of a graph G is defined
as follows:

EG) = 52, A/l

In the next proposition, the energy of some special graphs is studied by (Balakrishnan, 2004) and
(Li, Shi, and Gutman, 2012).

Proposition 3.2: The energy of some special graphs is defined as follows:
1) E(K,)=2p-2.
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2) E(Kpl,pZ)ZZ\/ P1P2 -
(2 _ 2,if p = 0(mod 2),

3) E(P Sin(ﬁ)
Sin(m)
4cos(m)

L ifp = 0(mod 4),

sin(g)

4 .
4 EC)= 4 ifp = 2(mod 4),
I

L 2 ,if p = 1(mod 2).

sin(%)
In the following, we determine the spectra of skew and inverse skew products.
Let A and A, be the p;xp; and p,Xp, adjacency matrices of G; and G, have eigenvalues A;,1<1 < p;
and p;, 1<j < p,, respectively.

Theorem 3.3: The pp; eigenvalues of the skew product G, ¢ G, are pi+hip, Vi, j; 1 <i=>p;;1<j=>
P2

Moreover, if X, ..., X, are the eigenvectors of A; corresponding to A4, ..., A1, and Yy, ...,Y are
the eigenvectors of A, corresponding top,...H,, then Xp*Y; are the eigenvectors of G, ¢G;
corresponding to pi+Aip;, 151 <py; 1<) <p,.

Proof: By Lemma 2.6, we have:
A(G ¢ Go)=[(I1*Ar)H(A*A,)]
Assume that X(Y) is an eigenvector of G1(G,) corresponding to the eigenvalue A(p). Then
A(G1 ¢ Gy) (X*Y)=[(I,1*A2)H(A1*A,) ] (X*Y)
=(X*A2Y)H( A1X*AsY)
—(CFUY JH AXpY)
=(ptAp)(X*Y). m

Theorem 3.4: The p;p, eigenvalues of the inverse skew product G, G, are A i+Aip;, for all 1<i<p;;

1I<j<p».
Moreover, if X, ..., X, are the eigenvectors of A; corresponding to A4, ..., A1, and Yy, ...,Y are
the eigenvectors of A, corresponding to py, ..., By, then X;*Y; are the eigenvectors of G; ¢ G,

corresponding to Ai+Aip;, 1<1<py; 1<j<p..

Proof: By Lemma 2.6, we have:
A(G10 G)F[(Ar L) H(A1*A,)]
Also, assume that X(Y) is an eigen vector of G;(G;) corresponding to the eigen value A(p). Then
A(G10 G) (X*Y)=[( Ar* ) H(A1*AL)] (X*Y)
=(A; X*Y)+H A X*A,Y)
=(AX*Y)+HAX*uY)
=AM A)(X*Y). m
Thus, as a result for the spectra of the above two products we have:

CorOIIary 3.5 Let Sp(Gl):{ My eny 7\.p1} and Sp(Gz):{jJ.l, . l.lpz}. Then
(1) Sp(G1 ¢ Go)= {pjthiy; : 1IS1<p;; 1<) <pa}.
(ii) Sp(G10 Go)= {Ait Aipy: 1Si<py; 1Sj<p,}.m

Proposition 3.6: The energy of the Cartesian product of Kp; and Kp, where p;, p, >1, is given by
E(KpxKp, )= 4(pip2-pr-pat1).

Proof: By Corollary 2.7, we have:
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Sp(Kp;xKp>)
:(pl—l -1 >+(pz—1 -1 )_(p1+p2—2 P1—2 pp—2 —2 )

1 pi—1 1 p,—1) " 1 p2—1 p1—1 pipa—p1—p2+1

Thus, by Definition 3.1, we get:
E(KpxKp, ) =p1+p2-2+p1p2-p1-2p2+2+p1p2-p2-2p1+2+2p1pa-2p1-2p2+2
= 4(p1p2-p1-p2t1D).
Therefore, Kp;xKp, is singular, if and only if p;=p,=1, this gives the case K;xK;=K,. =

Proposition 3.7: The energy of the Cartesian product of K, and Ky, ;,, is
E(KpxKpi2)= 2(p-1)( prtp2ty/P1P2 -1)-

Proof: By Lemma 1.10 and Corollary 2.7 it follows that the spectrum of K,xK,; > is

(p—l —1)+<\/ﬁ 0 - p1p2>:

1 p-1 1 py+p, —2 1
<p+ pipo—1 p—-1  p—ypipa—1 pipo—1 -1 —(\/p1p2+1)>
1 p1+pz—2 1 p—1 (P—D(p1+p2—2) p—1

Thus, by Definition 3.1, we have:

E(KpxKp12)=(p +y/P1P2 = 1) + (PP1 + PPz — 2P — p1 — P2 +2) + (p = /p1p2 — 1) +
(/P1P2 P —+/P1P2 =P+ 1) + (pp1 + PPz — 2P — P1 — P2 +2) + (/P1P2 P —y/P1P2 + P —
1)=2ppi+2pp>+2y/p1P2 P - 2P -2p1-2p2+2-2,/p1P2

:2P(P1+p2+m -1) '2(P1+P2+\/E -1)=2 (p-1)( Plﬂhﬂ/ﬁ -1). m

Moreover, if p# \/ﬁ +1< 0,50
i) If pj=p,=1, then K, xK, ; is (p -1) singular.
i) If either p; or p; is not 1 while pﬁ/ﬁ + 1, then K,xK; ;» is 1- singular.

Lemma 3.8: The energy of the Cartesian product of Kp, and Ky, is
E(KpixKp p2)=(p1 — 1) (6p2 — 2).

Proof: Put p;=p, in Proposition 3.7, we get the result. m

Proposition 3.9: The energy of the Cartesian product of K, and K,y 5 18
E(Kpl,pZXKpl,pZ ): 4\/ p1p2(p1 + p2 — 1)

Proof: By Corollary 2.7, we have

A UL,

1 p1+pz—2 1 1 p1+pz— 2 1

— (2\/p1p2 v/ P1P2 0 v P1P2 0 —+VP1P2 0 —/P1P2 —2 p1pz>
1 pi+p2—2 1 pi+p,—2 2py+2p,—4 py+p2—2 1 py+p,—2 1

_ <2\/ PPz /Pip2 0 —Jpipz 2 plpz>
1 2p1 +2p,—4 2py+2p,—2 2p,+2p,—4 1

Thus, by Definition 3.1, we have:

= 2,/p1P2 + 2P1+/P1P2 + 2DP24/P1P2 — 4y/P1P2 + 2P14/P1D2 + 2DP24/P1P2 — 4y/P1P2 + 24/ P1D2

E(Kp1 p2xKp1p2)= 4p1+4/P1P2 + 4P24/P1P2 — 44/P1P2 = 44/P1p2 (P1 + P2 — 1). m
Moreover, the nullity of Ky poxKpi po is 2p1+2p,-2.
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Lemma 3.10: The energy of the Cartesian product of K, ,; and K, > is
E(Kp1p1xKp2p2)= 2(4P1P2 =~ P1 ~ P2)-

Proof: By Corollary 2.7, we have:

(pl 0 —P1 ) n (pz 0 - pz) _
1 2p;—2 1 1 2p,—2 1

(p1+ P2 P1 pP1 — P2 p2 0 —pP2 P2—P1  —P1 —(p1 +p2)

1 2p, — 2 1 2p1—2 (2p1—2)(2p,—2) 2p;—2 1 2p, — 2 1

Thus, by Definition 3.1, we get:

E(Kp1pixKp2p2) = 8p1p2 — 2p; — 2p; = 2(4p1p2 —P1 — P2)- m

Moreover, the nullity of Ky, xKpp 1 (2pi-2)(2p,-2), provided that neither p; nor p, is 1. If
p1=p>=1, then the nullity of K; ;xK; ;is 2.

Proposition 3.11: Let Gjand G, be two graphs on p; and p, vertices, respectively. Then E(G; xG, ) <
p2 E(G1)+p:E(G2 ).

Proof: Let A, Ay, ..., Aprand pq, Yy, ..., Hp2 be the eigenvalues of G, and G,; respectively. Then
< P2 E(G] )+p1E(G2 ) [ ]

Proposition 3.12: The energy of the tensor product Kp;®Kp, is given by:
E(Kp:®Kp, ) = 4(pi-1) (p2-1).

Proof: By Lemma 1.10 and Corollary 2.7, we have:
p1—1 -1 p,—1 -1
( 1 p1—1)( 1 pz—l)
_ ((pl—l)(pz—l) —p1+1 —pp+1 1 )
1 p2—1 p1—1 (P1=Dp2—-1
Thus, by Definition 3.1, we get:

E(KpixKp, ) = pip2-pi-p2t1+pip2-p2-p1+1+ pip2-po-pi+1+pip2-pi-pa+1
= 4(pip2-p1-p2t1) = 4(pi-1) (p2-1). m

Proposition 3.13: The energy of the tensor product K,,; o, ®K, 2 is given by:
E(Kp1p2® Kpi 2 )= 4p1 D2

Proof: By Corollary 2.7, we have:

VP2 0 =fppe (WP 0 = pipe)
( I )

1 p1tpy — 2 1 1 p1tpy — 2 1

(plpz 0 —p1P2 0 0 0 —Pp1P2 0 p1p2>
1 p1+pz — 2 1 p1+p2—2 (p1+p;—2)* pi+p,—2 1 p1+pz—2 1
p1P2 0

_ —P1P2
SR @K = (07 4 o 2 )
Then, by Definition 3.1, we get:
E(Kp1p2® Kpip2 )=4p1 D2
And the nullity of Ky ;n® K1 pois 4(p; + p2 —2) + (p1 + p2 — 2)%. =

Proposition 4.14: (Balakrishnan 2004) Let G,and G, be two graphs on p; and p, vertices, respectively.
Then E(G1®G2 ): E(Gl) E(Gz)

Proof: By Definition 3.1, we have:
EGI® Gy )= X722, B2 Iyl = T2, 202 Il 1= 292, 0 2525 [wyl= E(G) E(G, ). =
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Proposition 3.15: The energy of the strong product of two graphs is the sum of energy of their
Cartesian and tensor products. m

Proposition 3.16: The energy of the skew product of two graphs G, and G, is related as:
E(G] * G ) <pi E(G2 )+ E(G] ) E(G2 )

Proof: Let the spectra of Gjand Gy be {Ay, ..., Ay} and {py, ..., pp}; respectively.
Then E(G, ¢Gy)= Z?;lzfjl[lu,- + Al < 20 Z]pil“llﬂ + [Awl] < 2212]&21 [yl +
PN Z]pil Ay <p1 E(G2)+ E(Gy) E(G, ). m

Example 3.17: Let G;=K; and G,=P;, then the skew product of K, and P; is given by:
o (L misr (78 )
For j=1 and i=1, 2, we have: p; + A iy = 2vV2, 1y + A, = 0.
For j=2 and i=1, 2, we have: g, + A, = 0,y + 2,0, = 0.
For j=3 and i=1, 2, we have: {3 + Apz = —2v2, 13 + A, = 0.
Then, E(K, ¢ P3)=4+/2.
And by Proposition 3.16, we have E(K, ¢ P;) < 2 * 2v2 + 2 * 24/2 = 8V2.
Moreover, equality does not hold for any pair of non-empty simple graphs.

Proposition 3.18: The energy of the inverse skew product is given by
E(G1 0 G2 ) < P2 E(G1 )+ E(Gl ) E(Gz )

Proof: Let the spectra of G, and G, be {A4, ..., Ay} and {p,, ..., Uy}, respectively.
Then  E(G, O  Gy)=Xii, 2;21”7\1 +aml] < TPy Zf§1[|uj| + |1 <202, Z]pﬁl |Ai] +
Zip=11 Z]P=21 [Aikj] < p2 E(Gi )+ E(G1) E(G, ). m

Example 3.19: Let G;=K; and G,=P;, then the inverse skew product of K, and P; is given by
o (Do (20 2
Fori=1 andj=1, 2,3, we have: Ay + Ay = 14+ V2,0 + Ay = LA, + A3 = 1 —+/2.
Fori=2 and j=1, 2, 3, we have: A, + Ay = =1 — V2, A, + Ap, = —1, A, + A,p3 = —1 ++/2.
Then, E(K,0 P3)=2+4+/2.
And by Proposition 3.18, we have E(K, 0 P3) < 3 %2 4 2 % 2v/2 = 6 + 4/2.
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