ON THE ENERGY OF SOME COMPOSITE GRAPHS

Nechirvan Badal Ibrahim
Dept. of Mathematics, Faculty of Science University of Duhok, Kurdistan Region-Iraq.

(Accepted for publication: May 20, 2015)

Abstract

: Eigenvalues of a graph are the eigenvalues of its adjacency matrix. The energy of a graph is the sum of the absolute values of its eigenvalues, was studied by (Gutman 1978). This paper divided in to three parts, in part one spectra and nullity of graphs are defined (Brouwer and Haemers, 2012) and (Harary, 1969). In the second part graph products an their spectra is studied (Shibata and Kikuchi 2000) and (Balakrishnan and Ranganathan , 2012). In the last part, we proves the energy of some graph products including Cartesian, tensor, strong, skew and inverse skew which are applied of some graphs.

Keywords: Graph product, Spectra, Energy.

1. INTRODUCTION

Let G be a graph of p vertices with adjacency matrix A , then A is a real symmetric matrix and so the eigenvalues of A are real and hence can be ordered. The eigenvalues of $\mathrm{A}, \lambda_{1} \geq \lambda_{2} \geq \cdots \geq$ λ_{p} are called the eigenvalues of G and form the spectrum of G. The energy $E(G)$ of a graph G is defined as the sum of absolute values of its eigenvalues. That is $E(G)=\sum_{i=1}^{p}\left|\lambda_{i}\right|$.The study of properties of $\mathrm{E}(\mathrm{G})$ was initiated by (Gutman, 1978). All graphs considered in this paper are finite, simple and undirected.

In this part, we look at the properties of graphs from their eigenvalues. The set of eigenvalues of a graph G with its multiplicities is known as the spectrum of G and denoted by $S_{p}(G)$.

Definition 1.1: The adjacency matrix $A(G)$ or $A=\left[a_{i j}\right]$ of a labeled graph G with vertex set $V(G)$, $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{p}}\right\}$ is a $\mathrm{p} \times \mathrm{p}$ matrix in which $\mathrm{a}_{\mathrm{ij}}=1$ if v_{i} and v_{j} are adjacent, and 0 if they are not.

Adjacency matrices define graphs up to isomorphism. Moreover, the adjacency matrix of a graph G is a symmetric 0,1 matrix having zero entries along the main diagonal, and in which the sum of the entries in any row or column is equal to the degree of the corresponding vertex. Because of this correspondence between graphs and matrices, any graph theoretic concept is reflected in the adjacency matrix.

Definition 1.2: The characteristic polynomial of the adjacency matrix $A(G)$ of a graph G with p vertices is called the characteristic polynomial of G, denoted by $\varphi(G ; x)$ with the convention that the coefficient of the highest order term is positive:
$\varphi(\mathrm{G} ; \mathrm{x})=\operatorname{Det}\left(\mathrm{XI}_{\mathrm{p}}-\mathrm{A}(\mathrm{G})\right)=(-1)^{\mathrm{p}} \operatorname{Det}\left(\mathrm{A}(\mathrm{G})-\mathrm{xI}_{\mathrm{p}}\right)$.
Therefore, the characteristic polynomial of a graph G of order p is a polynomial of degree p :
$\varphi(G ; x)=a_{0} x^{p}+a_{1} x^{p-1}+\ldots+a_{p-1} x+a_{p}$.
It has two practical forms, explicitly as a polynomial in the variable x, or as product of linear factors. Thus,

$$
\varphi(\mathrm{G} ; \mathrm{x})=\sum_{\mathrm{i}=0}^{\mathrm{p}} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{p}-\mathrm{i}}=\prod_{\mathrm{i}=1}^{\mathrm{p}}\left(\mathrm{x}-\lambda_{\mathrm{i}}\right) .
$$

Definition 1.3: The eigenvalues of a graph G of order p are defined to be the eigenvalues of the adjacency matrix associated with the graph G. That is, if G has adjacency matrix $A(G)$, then the eigenvalues of G are those p (not necessarily distinct) numbers λ which satisfy the determinant equation $\operatorname{Det}\left(A(G)-\lambda I_{p}\right)=0$, viz each λ is a root of the polynomial equation $\left|A(G)-\lambda I_{p}\right|=0$.

Equivalently, a number λ is an eigenvalue of G if there exists a non-zero $p \times 1$ vector X (called an eigenvector of λ) such that $A(G) X=\lambda X$.

Since $A(G)$ is a real symmetric $(0,1)$ matrix, its eigenvalues $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right\}$ must be real by the next theorem and can be ordered as $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\mathrm{p}}$. See (Balakrishnan, 2004)

Theorem 1.4: The eigenvalues of a real symmetric matrix are real.
Theorem 1.5: The sum of the eigenvalues of any simple graph is zero.
Definition 1.6: Let G be a graph of order p and H is a subgraph of G of order $m, m \leq p$, then H is called a partial cover of G if every component of H is isomorphic with K_{2} or a cycle graph. If $\mathrm{m}=\mathrm{p}$, then H is called a spanning cover of G.

Theorem 1.7: (Sachs' Theorem) The coefficients a_{i} 's of $\varphi(\mathrm{G} ; \mathrm{x})$ are given by
$\mathrm{a}_{\mathrm{i}}=\sum_{H}(-1)^{k(H)} 2^{c(H)}$,
Where the summation extends over all partial covers H on i vertices of G, and where $k(H)$ and $c(H)$ denote respectively, the number of components and of cycles in H .

Definition 1.8: The spectrum $\mathrm{S}_{\mathrm{p}}(\mathrm{G})$ of a graph G is defined as the eigenvalues of its adjacency matrix, that is, another matrix of two rows, the first row consists of the eigenvalues of the graph G and the second row consists of the multiplicities of the corresponding eigenvalues. That is if the distinct eigenvalues of G are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ and their multiplicities are $m_{1}, m_{2}, \ldots, m_{k}$, respectively, then we write

$$
\mathrm{S}_{\mathrm{p}}(\mathrm{G})=\left(\begin{array}{cccc}
\lambda_{1} & \lambda_{2} & \ldots & \lambda_{\mathrm{k}} \\
\mathrm{~m}_{1} & \mathrm{~m}_{2} & \ldots & \mathrm{~m}_{\mathrm{k}}
\end{array}\right)
$$

Or just as $\lambda_{1}^{m_{1}}, \lambda_{2}^{m_{2}}, \ldots, \lambda_{\mathrm{k}}^{\mathrm{m}_{\mathrm{k}}}$.
If G is a disconnected graph with components $\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{\mathrm{k}}$, then the spectrum of G is the "union" of the eigenvalues of the components of G in some manner because of the fact that
$\varphi(\mathrm{G} ; \mathrm{x})=\prod_{\mathrm{i}=1}^{\mathrm{k}} \varphi\left(\mathrm{G}_{\mathrm{i}} ; \mathrm{x}\right)$.
Spectra of graphs can be obtained using the fact that the coefficients of the characteristic polynomial are integers. It follows that the sum of k -th powers of eigenvalues are integers too. Since the coefficient of the highest power term x^{p} of the characteristic polynomial $\varphi(\mathrm{G} ; \mathrm{x})$ is equal to 1 , hence any eigenvalue of G which is rational must be an integer, and for any square matrix with real entries, the sum of its eigenvalues is equal to its trace.

To specify the spectrum of a graph G with order p, the coefficients a_{i} s of the characteristic polynomial $\varphi(G ; x)=\sum_{i=0}^{p} a_{i} x^{p-i}$ are of important use. Thus, we seek the coefficients $a_{i}{ }^{\text {s }}$ first. Certainly $a_{0}=1$, and using Theorem 1.7, we can easily verify that $a_{1}=0,-a_{2}=q$ and $-a_{3}$ is twice the number of triangles in G. And to find the remaining coefficients apply Theorem 1.7.

Definition 1.9: A graph G is said to be a singular graph provided that its adjacency matrix $A(G)$ is a singular matrix. The algebraic multiplicity of the number zero in the spectrum of the graph G is called its nullity (degree of singularity), and is denoted by $\eta(\mathrm{G})$.

Lemma 1.10:

i) The eigenvalues of the cycle graph C_{p} are of the form $2 \cos \frac{2 \pi i}{p}, i=0, \ldots, p-1$, and

$$
\eta\left(C_{p}\right)=\left\{\begin{array}{rr}
2, & \text { if } p \equiv 0(\bmod 4) \\
0, & \text { otherwise }
\end{array}\right.
$$

ii) The eigenvalues of the path graph P_{p} are of the form $2 \cos \frac{\pi i}{p+1}, i=1, \ldots, p$, and

$$
\eta\left(P_{p}\right)=\left\{\begin{array}{l}
1, \text { if } p \text { is odd, } \\
0, \text { if } p \text { is even. }
\end{array}\right.
$$

iii) The spectrum of the complete graph $K_{p}, S_{p}\left(K_{p}\right)=\left(\begin{array}{cc}p-1 & -1 \\ 1 & p-1\end{array}\right)$,and $\eta\left(K_{p}\right)=\left\{\begin{array}{l}1 \text {, if } p=1 \text {, } \\ 0, \text { if } p>1 .\end{array}\right.$
iv) The spectrum of the complete bipartite graph $\mathrm{K}_{\mathrm{p} 1, \mathrm{p} 2}$, $\mathrm{S}_{\mathrm{p}}\left(\mathrm{K}_{\mathrm{p} 1, \mathrm{p} 2}\right)=\left(\begin{array}{ccc}\sqrt{\mathrm{p}_{1} \mathrm{p}_{2}} & 0 & -\sqrt{\mathrm{p}_{1} \mathrm{p}_{2}} \\ 1 & \mathrm{p}_{1}+\mathrm{p}_{2}-2 & 1\end{array}\right)$, and $\eta\left(\mathrm{K}_{\mathrm{p} 1, \mathrm{p} 2}\right)=\mathrm{p}_{1}+\mathrm{p}_{2}-2$, for all $\mathrm{p}_{1}, \mathrm{p}_{2}$.

2. Graph Products

In this part, we study some graph products and determine the spectra of some of them.
Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be vertex disjoint non-trivial graphs.
Definition 2.1: The Cartesian product $G_{1} \times G_{2}$ of the two graphs G_{1} and G_{2} is the graph with vertex set $V\left(G_{1} \times G_{2}\right)=V_{1} \times V_{2}$ and two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent in $G_{1} \times G_{2}$ if, and only if, $\left[u_{1} \equiv u_{2}\right.$ and $\left.\mathrm{v}_{1} \mathrm{v}_{2} \in \mathrm{E}\left(\mathrm{G}_{2}\right)\right]$ or $\left[\mathrm{u}_{1} \mathrm{u}_{2} \in \mathrm{E}\left(\mathrm{G}_{1}\right)\right.$ and $\left.\mathrm{v}_{1} \equiv \mathrm{v}_{2}\right]$.

It is clear that: $p\left(G_{1} \times G_{2}\right)=p\left(G_{1}\right) p\left(G_{2}\right)$ and $q\left(G_{1} \times G_{2}\right)=p\left(G_{1}\right) q\left(G_{2}\right)+q\left(G_{1}\right) p\left(G_{2}\right)$
Definition 2.2: The tensor product $G_{1} \otimes G_{2}$ of the two graphs G_{1} and G_{2} is the graph with vertex set $V\left(G_{1} \otimes G_{2}\right)=V_{1} \times V_{2}$ and two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent in $G_{1} \otimes G_{2}$ if, and only if, [$u_{1} u_{2}$ $\in E\left(G_{1}\right)$ and $\left.v_{1} v_{2} \in E\left(G_{2}\right)\right]$.

It is clear that: $p\left(G_{1} \otimes G_{2}\right)=p\left(G_{1}\right) p\left(G_{2}\right)$ and $q\left(G_{1} \otimes G_{2}\right)=2 q\left(G_{1}\right) q\left(G_{2}\right)$.
Definition 2.3: The strong product $G_{1} \boxtimes G_{2}$ of the two graphs G_{1} and G_{2} is the graph with vertex set $V\left(G_{1} \boxtimes G_{2}\right)=V_{1} \times V_{2}$ and two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent in $G_{1} \boxtimes G_{2}$ if, and only if, $\left[u_{1} \equiv u_{2}\right.$ and $\left.v_{1} v_{2} \in E\left(G_{2}\right)\right]$ or $\left[u_{1} u_{2} \in E\left(G_{1}\right)\right.$ and $\left.v_{1} \equiv v_{2}\right]$ or $\left[u_{1} u_{2} \in E\left(G_{1}\right)\right.$ and $\left.v_{1} v_{2} \in E\left(G_{2}\right)\right]$.

It is clear that: $p\left(G_{1} \boxtimes G_{2}\right)=p\left(G_{1}\right) p\left(G_{2}\right)$ and $q\left(G_{1} \boxtimes G_{2}\right)=p\left(G_{1}\right) q\left(G_{2}\right)+q\left(G_{1}\right) p\left(G_{2}\right)+2 q\left(G_{1}\right) q\left(G_{2}\right)$.
Definition 2.4: The skew product $G_{1} \diamond G_{2}$ of the two graphs G_{1} and G_{2} is the graph with vertex set $V\left(G_{1} \diamond G_{2}\right)=V_{1} \times V_{2}$ and where $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent in $G_{1} \diamond G_{2}$ if, and only if, $u_{1} \equiv u_{2}$ and $\left.v_{1} v_{2} \in E\left(G_{2}\right)\right]$ or $\left[u_{1} u_{2} \in E\left(G_{1}\right)\right.$ and $\left.v_{1} v_{2} \in E\left(G_{2}\right)\right]$.

It is clear that: $\mathrm{p}\left(\mathrm{G}_{1} \diamond \mathrm{G}_{2}\right)=\mathrm{p}\left(\mathrm{G}_{1}\right) \mathrm{p}\left(\mathrm{G}_{2}\right)$ and $\mathrm{q}\left(\mathrm{G}_{1} \diamond \mathrm{G}_{2}\right)=\mathrm{p}\left(\mathrm{G}_{1}\right) \mathrm{q}\left(\mathrm{G}_{2}\right)+2 \mathrm{q}\left(\mathrm{G}_{1}\right) \mathrm{q}\left(\mathrm{G}_{2}\right)$.
Definition 2.5: Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{1}, E_{1}\right)$ be vertex disjoint non-trivial graphs. The inverse
skew product $G_{1} \diamond G_{2}$ of the two graphs G_{1} and G_{2} is the graph with vertex set $V\left(G_{1} \diamond G_{2}\right)=V_{1} \times V_{2}$ and where $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent in $G_{1} \diamond G_{2}$ if, and only if, $\left[u_{1} u_{2} \in E\left(G_{1}\right)\right.$ and $v_{1} \equiv v_{2}$] or $\left[u_{1} u_{2} \in E\left(G_{1}\right)\right.$ and $\left.v_{1} v_{2} \in E\left(G_{2}\right)\right]$.

It is clear that: $\mathrm{p}\left(\mathrm{G}_{1} \diamond \mathrm{G}_{2}\right)=\mathrm{p}\left(\mathrm{G}_{1}\right) \mathrm{p}\left(\mathrm{G}_{2}\right)$ and $\mathrm{q}(\mathrm{G})=\mathrm{q}\left(\mathrm{G}_{1}\right) \mathrm{p}\left(\mathrm{G}_{2}\right)+2 \mathrm{q}\left(\mathrm{G}_{1}\right) \mathrm{q}\left(\mathrm{G}_{2}\right)$.
Lemma 2.6: (Shibata and Kikuchi, 2000) Let G_{1} and G_{2} be two graphs with orders p_{1} and p_{2}, respectively. Then
i) $\mathrm{A}\left(\mathrm{G}_{1} \diamond \mathrm{G} 2\right)=\left(\mathrm{I}_{\mathrm{p} 1} * \mathrm{~A}_{2}\right)+\left(\mathrm{A}_{1} * \mathrm{~A}_{2}\right)$.
ii) $\mathrm{A}\left(\mathrm{G}_{1} \diamond \mathrm{G}_{2}\right)=\left(\mathrm{A}_{1} * \mathrm{I}_{\mathrm{p} 2}\right)+\left(\mathrm{A}_{1} * \mathrm{~A}_{2}\right)$.

Corollary 2.7: Let $\mathrm{S}_{\mathrm{p}}\left(\mathrm{G}_{1}\right)=\left\{\lambda_{1}, \ldots, \lambda_{\mathrm{p} 1}\right\}$ and $\mathrm{S}_{\mathrm{p}}\left(\mathrm{G}_{2}\right)=\left\{\mu_{1}, \ldots, \mu_{\mathrm{p} 2}\right\}$, and let A_{1} and A_{2} be the adjacency matrices of G_{1} and G_{2}; respectively. Then
(i) $\mathrm{A}\left(\mathrm{G}_{1} \times \mathrm{G}_{2}\right)=\left(\mathrm{I}_{\mathrm{p} 1} * \mathrm{~A}_{2}\right)+\left(\mathrm{A}_{1} * \mathrm{I}_{\mathrm{p} 2}\right)$ and $\mathrm{S}_{\mathrm{p}}\left(\mathrm{G}_{1} \times \mathrm{G}_{2}\right)=\left\{\lambda_{\mathrm{i}}+\mu_{\mathrm{j}}: 1 \leq \mathrm{i} \leq \mathrm{p}_{1} ; 1 \leq \mathrm{j} \leq \mathrm{p}_{2}\right\}$.
(ii) $\mathrm{A}\left(\mathrm{G}_{1} \otimes \mathrm{G}_{2}\right)=\left(\mathrm{A}_{1} * \mathrm{~A}_{2}\right)$ and $\mathrm{S}_{\mathrm{p}}\left(\mathrm{G}_{1} \otimes \mathrm{G}_{2}\right)=\left\{\lambda_{\mathrm{i}} \mu_{\mathrm{j}}: 1 \leq \mathrm{i} \leq \mathrm{p}_{1} ; 1 \leq \mathrm{j} \leq \mathrm{p}_{2}\right\}$.
(iii) $A\left(\mathrm{G}_{1} \boxtimes \mathrm{G}_{2}\right)=\left(\mathrm{A}_{1} * \mathrm{~A}_{2}\right)+\left(\mathrm{I}_{\mathrm{p} 1} * \mathrm{~A}_{2}\right)+\left(\mathrm{A}_{1} * \mathrm{I}_{\mathrm{p} 2}\right)$ and $\mathrm{S}_{\mathrm{p}}\left(\mathrm{G}_{1} \boxtimes \mathrm{G}_{2}\right)=\left\{\lambda_{\mathrm{i}} \mu_{\mathrm{j}}+\lambda_{\mathrm{i}}+\mu_{\mathrm{j}}: 1 \leq \mathrm{i} \leq \mathrm{p}_{1} ; 1 \leq \mathrm{j} \leq \mathrm{p}_{2}\right\}$.

3. Energy of a Product Graphs

In this part, we discuss another application of eigenvalues of graphs. The energy $\mathrm{E}(\mathrm{G})$ of a graph G is defined as follows:

Definition 3.1: Let G be a graph on p vertices, and let its ordinary spectrum (i. e., the spectrum of its adjacency matrix) consist of the numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$. Then, The energy $E(G)$ of a graph G is defined as follows:

$$
\mathrm{E}(\mathrm{G})=\sum_{\mathrm{i}=1}^{\mathrm{p}}\left|\lambda_{\mathrm{i}}\right| .
$$

In the next proposition, the energy of some special graphs is studied by (Balakrishnan, 2004) and (Li, Shi, and Gutman, 2012).

Proposition 3.2: The energy of some special graphs is defined as follows:

1) $E\left(K_{p}\right)=2 p-2$.
2) $\mathrm{E}\left(\mathrm{K}_{\mathrm{p} 1, \mathrm{p} 2}\right)=2 \sqrt{\mathrm{p}_{1} \mathrm{p}_{2}}$.
3) $\mathrm{E}\left(\mathrm{P}_{\mathrm{p}}\right)=\left\{\begin{array}{l}\frac{2}{\sin \left(\frac{\pi}{2(\mathrm{p}+1)}\right)}-2, \text { if } \mathrm{p}=0(\bmod 2) \text {, } \\ \frac{2 \cos \left(\frac{\pi}{2(\mathrm{p}+1)}\right)}{\sin \left(\frac{\pi}{2(\mathrm{p}+1)}\right)}-2, \text { if } \mathrm{p}=1(\bmod 2) .\end{array}\right.$
4) $E\left(C_{p}\right)=\left\{\begin{array}{l}\frac{4 \cos \left(\frac{\pi}{p}\right)}{\sin \left(\frac{\pi}{p}\right)}, \text { if } p=0(\bmod 4), \\ \frac{4}{\sin \left(\frac{\pi}{p}\right)}, \text { if } p=2(\bmod 4), \\ \frac{2}{\sin \left(\frac{\pi}{2 p}\right)}, \text { if } p=1(\bmod 2) .\end{array}\right.$

In the following, we determine the spectra of skew and inverse skew products.
Let A_{1} and A_{2} be the $p_{1} \times p_{1}$ and $p_{2} \times p_{2}$ adjacency matrices of G_{1} and G_{2} have eigenvalues $\lambda_{i}, 1 \leq i \leq p_{1}$ and $\mu_{\mathrm{j}}, 1 \leq \mathrm{j} \leq \mathrm{p}_{2}$, respectively.

Theorem 3.3: The $\mathrm{p}_{1} \mathrm{p}_{2}$ eigenvalues of the skew product $\mathrm{G}_{1} \diamond \mathrm{G}_{2}$ are $\mu_{\mathrm{j}}+\lambda_{\mathrm{i}} \mu_{\mathrm{j}}, \forall \mathrm{i}, \mathrm{j}, 1 \leq \mathrm{i} \geq \mathrm{p}_{1} ; 1 \leq \mathrm{j} \geq$ p_{2}.

Moreover, if $X_{1}, \ldots, X_{p 1}$ are the eigenvectors of A_{1} corresponding to $\lambda_{1}, \ldots, \lambda_{p 1}$, and $Y_{1}, \ldots, Y_{p 2}$ are the eigenvectors of A_{2} corresponding to $\mu_{1}, \ldots, \mu_{p 2}$, then $X_{i} * Y_{j}$ are the eigenvectors of $G_{1} \diamond G_{2}$ corresponding to $\mu_{\mathrm{j}}+\lambda_{\mathrm{i}} \mu_{\mathrm{j}}, 1 \leq \mathrm{i} \leq \mathrm{p}_{1} ; 1 \leq \mathrm{j} \leq \mathrm{p}_{2}$.

Proof: By Lemma 2.6, we have:

$$
\mathrm{A}\left(\mathrm{G}_{1} * \mathrm{G}_{2}\right)=\left[\left(\mathrm{I}_{\mathrm{p} 1} * \mathrm{~A}_{2}\right)+\left(\mathrm{A}_{1} * \mathrm{~A}_{2}\right)\right]
$$

Assume that $\mathrm{X}(\mathrm{Y})$ is an eigenvector of $\mathrm{G}_{1}\left(\mathrm{G}_{2}\right)$ corresponding to the eigenvalue $\lambda(\mu)$. Then

$$
\begin{aligned}
\mathrm{A}\left(\mathrm{G}_{1} * \mathrm{G}_{2}\right)(\mathrm{X} * \mathrm{Y}) & =\left[\left(\mathrm{I}_{\mathrm{p} 1} * \mathrm{~A}_{2}\right)+\left(\mathrm{A}_{1} * \mathrm{~A}_{2}\right)\right](\mathrm{X} * \mathrm{Y}) \\
& =\left(\mathrm{X} * \mathrm{~A}_{2} \mathrm{Y}\right)+\left(\mathrm{A}_{1} \mathrm{X} * \mathrm{~A}_{2} \mathrm{Y}\right) \\
& =(\mathrm{X} * \mu \mathrm{Y})+(\lambda \mathrm{X} * \mu \mathrm{Y}) \\
& =(\mu+\lambda \mu)(\mathrm{X} * \mathrm{Y}) .
\end{aligned}
$$

Theorem 3.4: The $p_{1} p_{2}$ eigenvalues of the inverse skew product $G_{1} \diamond G_{2}$ are $\lambda_{i}+\lambda_{i} \mu_{j}$, for all $1 \leq i \leq p_{1}$; $1 \leq \mathrm{j} \leq \mathrm{p}_{2}$.

Moreover, if $X_{1}, \ldots, X_{p 1}$ are the eigenvectors of A_{1} corresponding to $\lambda_{1}, \ldots, \lambda_{p 1}$, and $Y_{1}, \ldots, Y_{p 2}$ are the eigenvectors of A_{2} corresponding to $\mu_{1}, \ldots, \mu_{\mathrm{p} 2}$, then $\mathrm{X}_{\mathrm{i}} * Y_{j}$ are the eigenvectors of $\mathrm{G}_{1} \diamond \mathrm{G}_{2}$ corresponding to $\lambda_{\mathrm{i}}+\lambda_{\mathrm{i}} \mu_{\mathrm{j}}, 1 \leq \mathrm{i} \leq \mathrm{p}_{1} ; 1 \leq \mathrm{j} \leq \mathrm{p}_{2}$.

Proof: By Lemma 2.6, we have:
$\mathrm{A}\left(\mathrm{G}_{1} \diamond \mathrm{G}_{2}\right)=\left[\left(\mathrm{A}_{1} * \mathrm{I}_{\mathrm{p} 2}\right)+\left(\mathrm{A}_{1} * \mathrm{~A}_{2}\right)\right]$
Also, assume that $X(Y)$ is an eigen vector of $G_{1}\left(G_{2}\right)$ corresponding to the eigen value $\lambda(\mu)$. Then
$\mathrm{A}\left(\mathrm{G}_{1} \diamond \mathrm{G}_{2}\right)(\mathrm{X} * \mathrm{Y})=\left[\left(\mathrm{A}_{1} * \mathrm{I}_{\mathrm{p} 2}\right)+\left(\mathrm{A}_{1} * \mathrm{~A}_{2}\right)\right](\mathrm{X} * \mathrm{Y})$

$$
\begin{aligned}
& =\left(\mathrm{A}_{1} \mathrm{X} * \mathrm{Y}\right)+\left(\mathrm{A}_{1} \mathrm{X} * \mathrm{~A}_{2} \mathrm{Y}\right) \\
& =(\lambda \mathrm{X} * \mathrm{Y})+(\lambda \mathrm{X} * \mu \mathrm{Y}) \\
& =(\lambda+\lambda \mu)(\mathrm{X} * \mathrm{Y}) .
\end{aligned}
$$

Thus, as a result for the spectra of the above two products we have:
Corollary 3.5: Let $\mathrm{S}_{\mathrm{p}}\left(\mathrm{G}_{1}\right)=\left\{\lambda_{1}, \ldots, \lambda_{\mathrm{p} 1}\right\}$ and $\mathrm{S}_{\mathrm{p}}\left(\mathrm{G}_{2}\right)=\left\{\mu_{1}, \ldots, \mu_{\mathrm{p} 2}\right\}$. Then
(i) $\mathrm{S}_{\mathrm{p}}\left(\mathrm{G}_{1} \leqslant \mathrm{G}_{2}\right)=\left\{\mu_{\mathrm{j}}+\lambda_{\mathrm{i}} \mu_{\mathrm{j}}: 1 \leq \mathrm{i} \leq \mathrm{p}_{1} ; 1 \leq \mathrm{j} \leq \mathrm{p}_{2}\right\}$.
(ii) $\mathrm{S}_{\mathrm{p}}\left(\mathrm{G}_{1} \diamond \mathrm{G}_{2}\right)=\left\{\lambda_{\mathrm{i}}+\lambda_{\mathrm{i}} \mu_{\mathrm{j}}: 1 \leq \mathrm{i} \leq \mathrm{p}_{1} ; 1 \leq \mathrm{j} \leq \mathrm{p}_{2}\right\}$.

Proposition 3.6: The energy of the Cartesian product of $K p_{1}$ and $K p_{2}$ where $p_{1}, p_{2}>1$, is given by $\mathrm{E}\left(\mathrm{Kp}_{1} \times \mathrm{Kp}_{2}\right)=4\left(\mathrm{p}_{1} \mathrm{p}_{2}-\mathrm{p}_{1}-\mathrm{p}_{2}+1\right)$.

Proof: By Corollary 2.7, we have:

$$
=\left(\begin{array}{cc}
\mathrm{S}_{\mathrm{p}}\left(\mathrm{Kp}_{1} \times \mathrm{p}_{2}\right) \\
\mathrm{p}_{1}-1 & -1 \\
1 & \mathrm{p}_{1}-1
\end{array}\right)+\left(\begin{array}{cc}
\mathrm{p}_{2}-1 & -1 \\
1 & \mathrm{p}_{2}-1
\end{array}\right)=\left(\begin{array}{cccc}
\mathrm{p}_{1}+\mathrm{p}_{2}-2 & \mathrm{p}_{1}-2 & \mathrm{p}_{2}-2 & -2 \\
1 & \mathrm{p}_{2}-1 & \mathrm{p}_{1}-1 & \mathrm{p}_{1} \mathrm{p}_{2}-\mathrm{p}_{1}-\mathrm{p}_{2}+1
\end{array}\right)
$$

Thus, by Definition 3.1, we get:

$$
\begin{aligned}
\mathrm{E}\left(\mathrm{Kp}_{1} \times \mathrm{Kp}_{2}\right) & =\mathrm{p}_{1}+\mathrm{p}_{2}-2+\mathrm{p}_{1} \mathrm{p}_{2}-\mathrm{p}_{1}-2 \mathrm{p}_{2}+2+\mathrm{p}_{1} \mathrm{p}_{2}-\mathrm{p}_{2}-2 \mathrm{p}_{1}+2+2 \mathrm{p}_{1} \mathrm{p}_{2}-2 \mathrm{p}_{1}-2 \mathrm{p}_{2}+2 \\
& =4\left(\mathrm{p}_{1} \mathrm{p}_{2}-\mathrm{p}_{1}-\mathrm{p}_{2}+1\right) .
\end{aligned}
$$

Therefore, $\mathrm{Kp}_{1} \times \mathrm{Kp}_{2}$ is singular, if and only if $\mathrm{p}_{1}=\mathrm{p}_{2}=1$, this gives the case $\mathrm{K}_{1} \times \mathrm{K}_{1}=\mathrm{K}_{1}$.
Proposition 3.7: The energy of the Cartesian product of K_{p} and $\mathrm{K}_{\mathrm{p} 1, \mathrm{p} 2}$ is

$$
E\left(K_{p} \times K_{p 1, p 2}\right)=2(p-1)\left(p_{1}+p_{2}+\sqrt{p_{1} p_{2}}-1\right) .
$$

Proof: By Lemma 1.10 and Corollary 2.7 it follows that the spectrum of $\mathrm{K}_{\mathrm{p}} \times \mathrm{K}_{\mathrm{p} 1, \mathrm{p} 2}$ is

$$
\begin{aligned}
& \left(\begin{array}{cc}
\mathrm{p}-1 & -1 \\
1 & \mathrm{p}-1
\end{array}\right)+\left(\begin{array}{ccc}
\sqrt{\mathrm{p}_{1} \mathrm{p}_{2}} & 0 & -\sqrt{\mathrm{p}_{1} \mathrm{p}_{2}} \\
1 & \mathrm{p}_{1}+\mathrm{p}_{2}-2 & 1
\end{array}\right)= \\
& \left(\begin{array}{ccccc}
\mathrm{p}+\sqrt{\mathrm{p}_{1} \mathrm{p}_{2}}-1 & \mathrm{p}-1 & \mathrm{p}-\sqrt{\mathrm{p}_{1} \mathrm{p}_{2}}-1 & \sqrt{\mathrm{p}_{1} \mathrm{p}_{2}}-1 & -1 \\
1 & \mathrm{p}_{1}+\mathrm{p}_{2}-2 & 1 & \mathrm{p}-1 & (\mathrm{p}-1)\left(\mathrm{p}_{1}+\mathrm{p}_{2}-2\right)
\end{array}\right. \\
& 1
\end{aligned}
$$

Thus, by Definition 3.1, we have:

$$
E\left(K_{\mathrm{p}} \times \mathrm{K}_{\mathrm{p} 1, \mathrm{p} 2}\right)=\left(\mathrm{p}+\sqrt{\mathrm{p}_{1} \mathrm{p}_{2}}-1\right)+\left(\mathrm{pp}_{1}+\mathrm{pp}_{2}-2 \mathrm{p}-\mathrm{p}_{1}-\mathrm{p}_{2}+2\right)+\left(\mathrm{p}-\sqrt{\mathrm{p}_{1} \mathrm{p}_{2}}-1\right)+
$$

$$
\left(\sqrt{\mathrm{p}_{1} \mathrm{p}_{2}} p-\sqrt{\mathrm{p}_{1} \mathrm{p}_{2}}-\mathrm{p}+1\right)+\left(\mathrm{pp}_{1}+\mathrm{pp}_{2}-2 \mathrm{p}-\mathrm{p}_{1}-\mathrm{p}_{2}+2\right)+\left(\sqrt{\mathrm{p}_{1} \mathrm{p}_{2}} p-\sqrt{\mathrm{p}_{1} \mathrm{p}_{2}}+\mathrm{p}-\right.
$$

1) $=2 \mathrm{pp}_{1}+2 \mathrm{pp}_{2}+2 \sqrt{\mathrm{p}_{1} \mathrm{p}_{2}} p-2 \mathrm{p}-2 \mathrm{p}_{1}-2 \mathrm{p}_{2}+2-2 \sqrt{\mathrm{p}_{1} \mathrm{p}_{2}}$ $=2 p\left(p_{1}+p_{2}+\sqrt{p_{1} p_{2}}-1\right)-2\left(p_{1}+p_{2}+\sqrt{p_{1} p_{2}}-1\right)=2(p-1)\left(p_{1}+p_{2}+\sqrt{p_{1} p_{2}}-1\right)$. Moreover, if $\mathrm{p} \neq \sqrt{\mathrm{p}_{1} \mathrm{p}_{2}}+1 \leq 0$, so
i) If $p_{1}=p_{2}=1$, then $K_{p} \times K_{1,1}$ is $(p-1)$ singular.
ii) If either p_{1} or p_{2} is not 1 while $p=\sqrt{p_{1} p_{2}}+1$, then $K_{p} \times K_{p 1, p 2}$ is 1 - singular.

Lemma 3.8: The energy of the Cartesian product of Kp_{1} and $\mathrm{K}_{\mathrm{p} 2, \mathrm{p} 2}$ is

$$
\mathrm{E}\left(\mathrm{Kp}_{1} \times \mathrm{K}_{\mathrm{p} 2, \mathrm{p} 2}\right)=\left(\mathrm{p}_{1}-1\right)\left(6 \mathrm{p}_{2}-2\right) .
$$

Proof: Put $\mathrm{p}_{1}=\mathrm{p}_{2}$ in Proposition 3.7, we get the result.
Proposition 3.9: The energy of the Cartesian product of $\mathrm{K}_{\mathrm{pl}, \mathrm{p} 2}$ and $\mathrm{K}_{\mathrm{p} 1, \mathrm{p}_{2}}$ is
$E\left(K_{p 1, p 2} \times K_{p 1, p 2}\right)=4 \sqrt{p_{1} p_{2}}\left(p_{1}+p_{2}-1\right)$.
Proof: By Corollary 2.7, we have
$\left(\begin{array}{ccccccc}\sqrt{p_{1} p_{2}} & 0 & -\sqrt{p_{1} p_{2}} \\ 1 & p_{1}+p_{2}-2 & 1\end{array}\right)+\left(\begin{array}{cccccc}\sqrt{p_{1} p_{2}} & 0 & -\sqrt{p_{1} p_{2}} \\ 1 & p_{1}+p_{2}-2 & 1\end{array}\right)$
$=\left(\begin{array}{ccccccc}2 \sqrt{p_{1} p_{2}} & \sqrt{p_{1} p_{2}} & 0 & \sqrt{p_{1} p_{2}} & 0 & -\sqrt{p_{1} p_{2}} & 0 \\ 1 & p_{1}+p_{2}-2 & 1 & p_{1}+p_{2}-2 & 2 p_{1}+2 p_{2}-4 & p_{1}+p_{2}-2 & 1 \\ p_{1}+p_{2}-2 & 1\end{array}\right)$
$=\left(\begin{array}{ccccc}2 \sqrt{p_{1} p_{2}} & \sqrt{p_{1} p_{2}} & 0 & -\sqrt{p_{1} p_{2}} & -2 \sqrt{p_{1} p_{2}} \\ 1 & 2 p_{1}+2 p_{2}-4 & 2 p_{1}+2 p_{2}-2 & 2 p_{1}+2 p_{2}-4 & 1\end{array}\right)$
Thus, by Definition 3.1, we have:

$$
\begin{aligned}
& =2 \sqrt{\mathrm{p}_{1} \mathrm{p}_{2}}+2 \mathrm{p}_{1} \sqrt{\mathrm{p}_{1} \mathrm{p}_{2}}+2 \mathrm{p}_{2} \sqrt{\mathrm{p}_{1} \mathrm{p}_{2}}-4 \sqrt{\mathrm{p}_{1} \mathrm{p}_{2}}+2 \mathrm{p}_{1} \sqrt{\mathrm{p}_{1} \mathrm{p}_{2}}+2 \mathrm{p}_{2} \sqrt{\mathrm{p}_{1} \mathrm{p}_{2}}-4 \sqrt{\mathrm{p}_{1} \mathrm{p}_{2}}+2 \sqrt{\mathrm{p}_{1} \mathrm{p}_{2}} \\
& E\left(\mathrm{~K}_{\mathrm{p} 1, \mathrm{p}_{2} \times K_{\mathrm{pl} 1, \mathrm{p} 2}}\right)=4 \mathrm{p}_{1} \sqrt{\mathrm{p}_{1} \mathrm{p}_{2}}+4 \mathrm{p}_{2} \sqrt{\mathrm{p}_{1} \mathrm{p}_{2}}-4 \sqrt{\mathrm{p}_{1} \mathrm{p}_{2}}=4 \sqrt{\mathrm{p}_{1} \mathrm{p}_{2}}\left(\mathrm{p}_{1}+\mathrm{p}_{2}-1\right) .
\end{aligned}
$$

Moreover, the nullity of $\mathrm{K}_{\mathrm{p} 1, \mathrm{p}_{2}} \times \mathrm{K}_{\mathrm{p} 1, \mathrm{p}_{2}}$ is $2 \mathrm{p}_{1}+2 \mathrm{p}_{2}-2$.

Lemma 3.10: The energy of the Cartesian product of $K_{p 1, p 1}$ and $K_{p 2, p 2}$ is $E\left(K_{p 1, p 1} \times K_{p 2, p 2}\right)=2\left(4 p_{1} p_{2}-p_{1}-p_{2}\right)$.

Proof: By Corollary 2.7, we have:
$\left(\begin{array}{ccc}p_{1} & 0 & -p_{1} \\ 1 & 2 p_{1}-2 & 1\end{array}\right)+\left(\begin{array}{ccc}p_{2} & 0 & -p_{2} \\ 1 & 2 p_{2}-2 & 1\end{array}\right)=$
$\left(\begin{array}{ccccccccc}\mathrm{p}_{1}+\mathrm{p}_{2} & \mathrm{p}_{1} & \mathrm{p}_{1}-\mathrm{p}_{2} & \mathrm{p}_{2} & 0 & -\mathrm{p}_{2} & \mathrm{p}_{2}-\mathrm{p}_{1} & -\mathrm{p}_{1} & -\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right) \\ 1 & 2 \mathrm{p}_{2}-2 & 1 & 2 \mathrm{p}_{1}-2 & \left(2 \mathrm{p}_{1}-2\right)\left(2 \mathrm{p}_{2}-2\right) & 2 \mathrm{p}_{1}-2 & 1 & 2 \mathrm{p}_{2}-2 & 1\end{array}\right)$
Thus, by Definition 3.1, we get:
$\mathrm{E}\left(\mathrm{K}_{\mathrm{p} 1, \mathrm{p} 1} \times \mathrm{K}_{\mathrm{p} 2, \mathrm{p} 2}\right)=8 \mathrm{p}_{1} \mathrm{p}_{2}-2 \mathrm{p}_{1}-2 \mathrm{p}_{2}=2\left(4 \mathrm{p}_{1} \mathrm{p}_{2}-\mathrm{p}_{1}-\mathrm{p}_{2}\right)$.
Moreover, the nullity of $\mathrm{K}_{\mathrm{p} 1, \mathrm{p} 1} \times \mathrm{K}_{\mathrm{p} 2, \mathrm{p} 2}$ is $\left(2 \mathrm{p}_{1}-2\right)\left(2 \mathrm{p}_{2}-2\right)$, provided that neither p_{1} nor p_{2} is 1 . If $\mathrm{p}_{1}=\mathrm{p}_{2}=1$, then the nullity of $\mathrm{K}_{1,1} \times \mathrm{K}_{1,1}$ is 2 .

Proposition 3.11: Let G_{1} and G_{2} be two graphs on p_{1} and p_{2} vertices, respectively. Then $E\left(G_{1} \times G_{2}\right) \leq$ $\mathrm{p}_{2} \mathrm{E}\left(\mathrm{G}_{1}\right)+\mathrm{p}_{1} \mathrm{E}\left(\mathrm{G}_{2}\right)$.

Proof: Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{p} 1}$ and $\mu_{1}, \mu_{2}, \ldots, \mu_{\mathrm{p} 2}$ be the eigenvalues of G_{1} and G_{2}; respectively. Then

$$
\begin{gathered}
\mathrm{E}\left(\mathrm{G}_{1} \times \mathrm{G}_{2}\right)=\sum_{\mathrm{i}=1}^{\mathrm{p}_{1}} \sum_{\mathrm{j}=1}^{\mathrm{p}_{2}}\left[\left|\lambda_{\mathrm{i}}+\mu_{\mathrm{j}}\right|\right] \leq \sum_{\mathrm{i}=1}^{\mathrm{p}_{1}} \sum_{\mathrm{j}=1}^{\mathrm{p}_{2}}\left|\lambda_{\mathrm{i}}\right|+\left|\mu_{\mathrm{j}}\right| \leq \sum_{\mathrm{i}=1}^{\mathrm{p}_{1}} \sum_{\mathrm{j}=1}^{\mathrm{p}_{2}}\left|\lambda_{\mathrm{i}}\right|+\sum_{\mathrm{i}=1}^{\mathrm{p}_{1}} \sum_{\mathrm{j}=1}^{\mathrm{p}_{2}}\left|\mu_{\mathrm{j}}\right| \\
\leq \mathrm{p}_{2} \mathrm{E}\left(\mathrm{G}_{1}\right)+\mathrm{p}_{1} \mathrm{E}\left(\mathrm{G}_{2}\right) . ■
\end{gathered}
$$

Proposition 3.12: The energy of the tensor product $K p_{1} \otimes \mathrm{Kp}_{2}$ is given by:

$$
\mathrm{E}\left(\mathrm{Kp}_{1} \otimes \mathrm{~K} \mathrm{p}_{2}\right)=4\left(\mathrm{p}_{1}-1\right)\left(\mathrm{p}_{2}-1\right)
$$

Proof: By Lemma 1.10 and Corollary 2.7, we have:

$$
\begin{aligned}
& \left(\begin{array}{cc}
\mathrm{p}_{1}-1 & -1 \\
1 & \mathrm{p}_{1}-1
\end{array}\right)\left(\begin{array}{cccc}
\mathrm{p}_{2}-1 & -1 \\
1 & \mathrm{p}_{2}-1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\left(\mathrm{p}_{1}-1\right)\left(\mathrm{p}_{2}-1\right) & -\mathrm{p}_{1}+1 & -\mathrm{p}_{2}+1 & 1 \\
1 & \mathrm{p}_{2}-1 & \mathrm{p}_{1}-1 & \left(\mathrm{p}_{1}-1\right)\left(\mathrm{p}_{2}-1\right)
\end{array}\right)
\end{aligned}
$$

Thus, by Definition 3.1, we get:

$$
\begin{aligned}
\mathrm{E}\left(\mathrm{Kp}_{1} \times \mathrm{K} \mathrm{p}_{2}\right) & =\mathrm{p}_{1} \mathrm{p}_{2}-\mathrm{p}_{1}-\mathrm{p}_{2}+1+\mathrm{p}_{1} \mathrm{p}_{2}-\mathrm{p}_{2}-\mathrm{p}_{1}+1+\mathrm{p}_{1} \mathrm{p}_{2}-\mathrm{p}_{2}-\mathrm{p}_{1}+1+\mathrm{p}_{1} \mathrm{p}_{2}-\mathrm{p}_{1}-\mathrm{p}_{2}+1 \\
& =4\left(\mathrm{p}_{1} \mathrm{p}_{2}-\mathrm{p}_{1}-\mathrm{p}_{2}+1\right)=4\left(\mathrm{p}_{1}-1\right)\left(\mathrm{p}_{2}-1\right) .
\end{aligned}
$$

Proposition 3.13: The energy of the tensor product $\mathrm{K}_{\mathrm{p} 1, \mathrm{p} 2} \otimes \mathrm{~K}_{\mathrm{p} 1, \mathrm{p} 2}$ is given by:

$$
\mathrm{E}\left(\mathrm{~K}_{\mathrm{p} 1, \mathrm{p} 2} \otimes \mathrm{~K}_{\mathrm{p} 1, \mathrm{p} 2}\right)=4 \mathrm{p}_{1} \mathrm{p}_{2} .
$$

Proof: By Corollary 2.7, we have:

Then, by Definition 3.1, we get:
$\mathrm{E}\left(\mathrm{K}_{\mathrm{p} 1, \mathrm{p} 2} \otimes \mathrm{~K}_{\mathrm{p} 1, \mathrm{p} 2}\right)=4 \mathrm{p}_{1} \mathrm{p}_{2}$ 。
And the nullity of $\mathrm{K}_{\mathrm{p} 1, \mathrm{p} 2} \otimes \mathrm{~K}_{\mathrm{p} 1, \mathrm{p} 2}$ is $4\left(\mathrm{p}_{1}+\mathrm{p}_{2}-2\right)+\left(\mathrm{p}_{1}+\mathrm{p}_{2}-2\right)^{2}$.
Proposition 4.14: (Balakrishnan 2004) Let G_{1} and G_{2} be two graphs on p_{1} and p_{2} vertices, respectively. Then $E\left(G_{1} \otimes G_{2}\right)=E\left(G_{1}\right) E\left(G_{2}\right)$.

Proof: By Definition 3.1, we have:

$$
\mathrm{E}\left(\mathrm{G}_{1} \otimes \mathrm{G}_{2}\right)=\sum_{\mathrm{i}=1}^{\mathrm{p}_{1}} \sum_{\mathrm{j}=1}^{\mathrm{p}_{2}}\left|\lambda_{\mathrm{i}} \mu_{\mathrm{j}}\right|=\sum_{\mathrm{i}=1}^{\mathrm{p}_{1}} \sum_{\mathrm{j}=1}^{\mathrm{p}_{2}}\left|\lambda_{\mathrm{i}}\right|\left|\mu_{\mathrm{j}}\right|=\sum_{\mathrm{j}=1}^{\mathrm{p}_{2}}\left|\lambda_{\mathrm{i}}\right| \quad \sum_{\mathrm{j}=1}^{\mathrm{p}_{2}}\left|\mu_{\mathrm{j}}\right|=\mathrm{E}\left(\mathrm{G}_{1}\right) \mathrm{E}\left(\mathrm{G}_{2}\right) .
$$

Proposition 3.15: The energy of the strong product of two graphs is the sum of energy of their Cartesian and tensor products.

Proposition 3.16: The energy of the skew product of two graphs G_{1} and G_{2} is related as:
$\mathrm{E}\left(\mathrm{G}_{1} \bullet \mathrm{G}_{2}\right) \leq \mathrm{p}_{1} \mathrm{E}\left(\mathrm{G}_{2}\right)+\mathrm{E}\left(\mathrm{G}_{1}\right) \mathrm{E}\left(\mathrm{G}_{2}\right)$.
Proof: Let the spectra of G_{1} and G_{2} be $\left\{\lambda_{1}, \ldots, \lambda_{\mathrm{p} 1}\right\}$ and $\left\{\mu_{1}, \ldots, \mu_{\mathrm{p} 2}\right\}$; respectively.
Then $\quad E\left(\mathrm{G}_{1} * \mathrm{G}_{2}\right)=\sum_{\mathrm{i}=1}^{\mathrm{p}_{1}} \sum_{\mathrm{j}=1}^{\mathrm{p}_{2}}\left[\left|\mu_{\mathrm{j}}+\lambda_{\mathrm{i}} \mu_{\mathrm{j}}\right|\right] \leq \sum_{\mathrm{i}=1}^{\mathrm{p}_{1}} \sum_{\mathrm{j}=1}^{\mathrm{p}_{2}}\left[\left|\mu_{\mathrm{j}}\right|+\left|\lambda_{\mathrm{i}} \mu_{\mathrm{j}}\right|\right] \leq \sum_{\mathrm{i}=1}^{\mathrm{p}_{1}} \sum_{\mathrm{j}=1}^{\mathrm{p}_{2}}\left|\mu_{\mathrm{j}}\right|+$ $\sum_{\mathrm{i}=1}^{\mathrm{p}_{1}} \sum_{\mathrm{j}=1}^{\mathrm{p}_{2}}\left|\lambda_{\mathrm{i}} \mu_{\mathrm{j}}\right| \leq \mathrm{p}_{1} \mathrm{E}\left(\mathrm{G}_{2}\right)+\mathrm{E}\left(\mathrm{G}_{1}\right) \mathrm{E}\left(\mathrm{G}_{2}\right)$.

Example 3.17: Let $G_{1}=K_{2}$ and $G_{2}=P_{3}$, then the skew product of K_{2} and P_{3} is given by:
$S_{p}\left(\mathrm{~K}_{2}\right)=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$ and $\mathrm{S}_{\mathrm{p}}\left(\mathrm{P}_{3}\right)=\left(\begin{array}{ccc}\sqrt{2} & 0 & -\sqrt{2} \\ 1 & 1 & 1\end{array}\right)$
For $j=1$ and $i=1,2$, we have: $\mu_{1}+\lambda_{1} \mu_{1}=2 \sqrt{2}, \mu_{1}+\lambda_{2} \mu_{1}=0$.
For $\mathrm{j}=2$ and $\mathrm{i}=1,2$, we have: $\mu_{2}+\lambda_{1} \mu_{2}=0, \mu_{2}+\lambda_{2} \mu_{2}=0$.
For $j=3$ and $i=1$, 2 , we have: $\mu_{3}+\lambda_{1} \mu_{3}=-2 \sqrt{2}, \mu_{3}+\lambda_{2} \mu_{3}=0$.
Then, $E\left(\mathrm{~K}_{2} \diamond \mathrm{P}_{3}\right)=4 \sqrt{2}$.
And by Proposition 3.16, we have $\mathrm{E}\left(\mathrm{K}_{2} \diamond \mathrm{P}_{3}\right) \leq 2 * 2 \sqrt{2}+2 * 2 \sqrt{2}=8 \sqrt{2}$.
Moreover, equality does not hold for any pair of non-empty simple graphs.
Proposition 3.18: The energy of the inverse skew product is given by
$\mathrm{E}\left(\mathrm{G}_{1} \diamond \mathrm{G}_{2}\right) \leq \mathrm{p}_{2} \mathrm{E}\left(\mathrm{G}_{1}\right)+\mathrm{E}\left(\mathrm{G}_{1}\right) \mathrm{E}\left(\mathrm{G}_{2}\right)$.
Proof: Let the spectra of G_{1} and G_{2} be $\left\{\lambda_{1}, \ldots, \lambda_{\mathrm{p} 1}\right\}$ and $\left\{\mu_{1}, \ldots, \mu_{\mathrm{p} 2}\right\}$, respectively.
Then $\quad \mathrm{E}\left(\mathrm{G}_{1} \quad \diamond \quad \mathrm{G}_{2}\right)=\sum_{\mathrm{i}=1}^{\mathrm{p}_{1}} \sum_{\mathrm{j}=1}^{\mathrm{p}_{2}}\left[\left|\lambda_{\mathrm{i}}+\lambda_{\mathrm{i}} \mu_{\mathrm{j}}\right|\right] \leq \sum_{\mathrm{i}=1}^{\mathrm{p}_{1}} \sum_{\mathrm{j}=1}^{\mathrm{p}_{2}}\left[\left|\mu_{\mathrm{j}}\right|+\left|\lambda_{\mathrm{i}} \mu_{\mathrm{j}}\right|\right] \leq \sum_{\mathrm{i}=1}^{\mathrm{p}_{1}} \sum_{\mathrm{j}=1}^{\mathrm{p}_{2}}\left|\lambda_{\mathrm{i}}\right|+$ $\sum_{\mathrm{i}=1}^{\mathrm{p}_{1}} \sum_{\mathrm{j}=1}^{\mathrm{p}_{2}}\left|\lambda_{\mathrm{i}} \mu_{\mathrm{j}}\right| \leq \mathrm{p}_{2} \mathrm{E}\left(\mathrm{G}_{1}\right)+\mathrm{E}\left(\mathrm{G}_{1}\right) \mathrm{E}\left(\mathrm{G}_{2}\right)$.

Example 3.19: Let $G_{1}=K_{2}$ and $G_{2}=P_{3}$, then the inverse skew product of K_{2} and P_{3} is given by
$\mathrm{S}_{\mathrm{p}}\left(\mathrm{K}_{2}\right)=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$ and $\mathrm{S}_{\mathrm{p}}\left(\mathrm{P}_{3}\right)=\left(\begin{array}{ccc}\sqrt{2} & 0 & -\sqrt{2} \\ 1 & 1 & 1\end{array}\right)$
For $\mathrm{i}=1$ and $\mathrm{j}=1,2$, 3, we have: $\lambda_{1}+\lambda_{1} \mu_{1}=1+\sqrt{2}, \lambda_{1}+\lambda_{1} \mu_{2}=1, \lambda_{1}+\lambda_{1} \mu_{3}=1-\sqrt{2}$.
For $\mathrm{i}=2$ and $\mathrm{j}=1,2,3$, we have: $\lambda_{2}+\lambda_{2} \mu_{1}=-1-\sqrt{2}, \lambda_{2}+\lambda_{2} \mu_{2}=-1, \lambda_{2}+\lambda_{2} \mu_{3}=-1+\sqrt{2}$.
Then, $E\left(K_{2} \diamond P_{3}\right)=2+4 \sqrt{2}$.
And by Proposition 3.18, we have $\mathrm{E}\left(\mathrm{K}_{2} \diamond \mathrm{P}_{3}\right) \leq 3 * 2+2 * 2 \sqrt{2}=6+4 \sqrt{2}$.

REFERENCES

- A.E. Brouwer and W.H. Haemers; (2012), Spectra of Graphs, Springer, NewYork.
- F. Harary, ;(1969), Graph Theory, Addison-Wesley, Reading, MA. Fundamentals, Vol. E83-A, No. 3, pp.459464.
- I.Gutman; (1978), The Energy of a Graph, Ber. Math. Statist. Sekt. For schungszenturm Graz. 1031-22.
- R. Balakrishnan, and K. Ranganathan; (2012), A Textbook of Graph Theory, Springer, New York.
- R. Balakrishnan; (2004), The energy of a graph, Linear Algebra and its Applications 387, pp.287-295.
- X. Li, Y. Shi, and I. Gutman; (2012), Graph Energy, Springer. http://books.google.iq/books?id=90U4suPlWS4C\&printsec=frontcover\&hl=ar\#v=onepage\&q\&f=false.
- Y. Shibata, and Y. Kikuchi,; (2000), Graph products based on the distance in graphs, IEICE Trans.

حول الطاقة لبعض البيانات المركبة

الحلاصة
القيم الذاتية للبيان هي القيم الذاتية لمصفوفة التجاور له. الطاقة للبيان هو بجموع القيم المطلقة للقيم الذاتية له و التي تح دراستها من قبل(Gutman 19VA). هذا البحث قُسم على ثلاثة اجزاء، في الجزء الاول نعرف ألاطياف و البطلان للبيانات (Brouwer and Haemers 2012)و (Harary1969)). في الجزء الثاني تح دراسة جداء البيانات and Ranganathan (Balakrishnan و (Shibata and Kikuchi 2000) واطياف جداءاتها 2012) . في الجزء الاخير أثبت أطياف الانخراف الضربي و المعكوس الانخراف الضربي والطاقة لبعض المضروبات بما في ذلك الجداء الديكارتي، والجداء تينسري، والجداء قوي و الجداء الانخراف والانخراف المعكوس.

ل دوزر هيزا ههندهك گرافيّن ئاويته

كورتى:

 و(and Ranganathan 2012 Balakrishnan). د پشكا دوماهييدا سيبهرا ليَّكدانا خوار (skew) و ليّكدانا خوار يا زڤرى (inverse skew) مه سهلماندن و هيزّا هdندهك گرافيّن ئاويّته مه دياركر ل سهر هdندهك ليكدانيّن گرافا.

