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ABSTRACT: 

The popularity of using the Android operating system has increased the number of developers and intruders in this field. 

Many applications are developed in this area and perform malicious activities like ransomware attacks, installing 

backdoors, phishing, sending premium short message service, and stealing private data. These activities pose many 

threats to smartphone users. This study provides a review of the main strategies used in intrusion detection systems to 

detect malicious activities at the application and system levels. The study illustrates the advantages and disadvantages 

of each method and the significant features used to discriminate against malicious activities and highlights several open 

issues that warrant further investigation and improvement. It is a comprehensive review that may be useful for academic 

researchers interested in cybersecurity.  
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1. INTRODUCTION  

Smartphones play an essential role in our daily lives. They offer 

a variety of enticing features that allow mobile users to make 

use of a variety of high-quality customized services (Ribeiro, 

Saghezchi, Mantas, Rodriguez, & Abd-Alhameed, 2020). 

Some of the services provided by smartphones are voice and 

video communication, e-mail addresses, internet browsing, 

online shopping, banking, and many other functions 

(Radoglou-Grammatikis & Sarigiannidis, 2017). Many 

operating systems are available for smartphone devices. 

Among them, Android is the most widely used (Agrawal & 

Trivedi, 2019). The popularity of the Android system has 

opened the door for attackers to increase the number of threats 

to Android devices (da Costa et al., 2020). According to the 

McAfee Labs Threats’ report in the first quarter of 2020, 98% 

of attackers target Android devices (Bayazit, Sahingoz, & 

Dogan, 2020). 

Android is a Linux-based operating system that comes with a 

number of useful applications and middleware. Google allows 

third-party developers to build applications and release them to 

the Android Market in order to fully utilize and explore the 

capabilities of Android (Hein & Myo, 2018). The hacker takes 

advantage of Android application capabilities to compromise 

device security and privacy, posing a major risk of personal 

data leakage such as the user's location, contact information, 

accounts, images, and so on (R. Kumar et al., 2019). 

Many levels of security tools exist to protect against 

cyberattacks, like firewalls, anti-virus, and Intrusion Detection 

system (IDS) (Uğurlu & Doğru, 2019). Firewalls primarily 

control access between networks and do not produce any 

signals if an attack occurs internally (Alqahtani et al., 2020). 

Antivirus is effective for detecting known malware and 

ineffective for detecting unknown malware. It needs to 

constantly update its databases to be effective and detect new 

samples of malware. IDSs come in two main categories: 

signature-based and anomaly-based detection. Signature 

detection identifies suspicious behaviour by matching it to an 

attack signature that has already been saved in a database. This 

type is less effective for detecting malicious activities, 

especially for new attacks, because they need to constantly 

update their signature databases. Anomaly detection considers 

normal behaviour to be a model and attempts to detect any 

deviation from the model before deciding whether or not to 

create an alarm. An anomaly-based IDS is better suited for 

detecting new malware attacks (Elkhadir, Chougdali, & 

Benattou, 2016). The major aim of an IDS is to detect various 

types of malwares like botnets, Trojans, spyware, backdoors, 

worms, ransomware, and riskware as quickly as possible, 

which is unachievable with a regular firewall (Zachariah, 

Akash, Yousef, & Chacko, 2017; Khraisat, Gondal, Vamplew, 

& Kamruzzaman, 2019). 

Anomaly-based IDS employs three techniques to analyse and 

understand the behaviour of the malware, which are static, 

dynamic, and hybrid analysis. The static analysis technique 

decompiles an Android application package to obtain two main 

files (i.e., manifes.xml and classes. dex) and then starts to 

extract static features from these two files without executing 

them. Many features can be extracted from static analysis, such 

as permissions, intents, opcodes, used features, and API calls 

(Malik). The dynamic analysis technique is used to identify 

malicious behaviour when the application is running by 

extracting many features like system calls, network traffic, or 

hardware features utilization like CPU, memory, and battery. 

The hybrid technique combines the benefits of dynamic and 

static analysis (Bayazit et al., 2020; H. Zhou, Yang, Pan, & 

Guo, 2020). 

Machine learning techniques are commonly used to detect 

Android malware, whether using static, dynamic, or hybrid 

analysis methods. Machine learning-based malware detection 

has the capability to detect previously unseen kinds of malware 

and can provide better detection and efficiency than traditional 

methods, such as signature-based malware detection, which is 
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based on identifying the specific patterns of known malware 

(K. Liu et al., 2020).  

This paper addresses the crucial issue of Android device 

security in the face of increasing threats and attacks. With 

smartphones playing an essential role in our daily lives and 

Android being the most widely used operating system, it has 

become a prime target for attackers. Anomaly-based IDSs offer 

a promising approach by considering normal behaviour as a 

model and detecting any deviations from it. This paper focuses 

on the analysis of malware behaviour using static, dynamic, 

and hybrid techniques and leverages machine learning to 

enhance malware detection. The findings of this study have the 

potential to enhance Android device security and mitigate the 

risks associated with personal data leakage and privacy 

breaches. 

The remaining sections of our paper are organized as follows. 

Section 2 provides background information about Intrusion 

Detection Systems (IDS). Section 3 presents literature review 

in the field. Section 4 contains a discussion and comparison of 

our findings, followed by Section 5 which explores the 

challenges and recommendations associated with the topic. 

Finally, in Section VI, the points of conclusion arrived at 

throughout the study are presented. 

2. INTRUSION DETECTION SYSTEM 

Intrusion detection systems (IDS) monitor and analyse network 

logs, file system activity, and real-time events in the local 

system to detect cyber-attacks (P. Liu, 2019). Another 

definition of IDS is a new type of security technology that 

monitors a system for harmful activity (Borkar, Donode, & 

Kumari, 2017). An IDS can usually perform a variety of tasks, 

such as information monitoring and recording, security officer 

notification, and report generation. In general, smartphones 

consist of hardware, an operating system, and applications. An 

IDS system can monitor either an event at the application level, 

the kernel level, the hardware level, or a hybrid of them. The 

IDS system can work to detect malicious activities generated 

by malware apps like damaging file systems, information 

leakage, or any other types of threats. There are many 

classifications for IDS based on topology, source, approach, 

and focus. The details of the classification are illustrated in 

Figure 1 (Georgios Kambourakis, 2018).  

 

 
Figure 1. IDS Classification 

2.1. Detection approach 

The detection method applied to identify intrusion detection 

systems (IDS) is classified to Signature-based and anomaly-

based detection approaches. The misuse (signature) detection 

method maintains a database of predefined patterns and uses 

that database to track the usage of those patterns (BalaGanesh, 

Chakrabarti, & Midhunchakkaravarthy, 2018). Signatures are 

hashes created by many algorithms like MD5 and SHA256 for 

previously seen malicious applications. These hash values are 

saved in a database and can be used for scanning applications. 

During the scanning process, if the hash of the scanned 

application is found in the database, this application is marked 

as malicious (Borek, 2017). The advantage of misuse-based 

IDS is that it is capable of effectively recognizing known 

attacks, but it fails to detect unknown attacks. In order to store 

the signature of each known attack, a database must be 

persistently updated (Istiaque, Khan, & Waheed, 2020). In the 

anomaly method, a basic profile of a regular network or system 

activity is generated and then every incoming packet or event 

which differs from the profile is treated as an intrusion. The 

advantage of this method is that it is capable of detecting new 

attacks (Shamshirband et al., 2020). The problem with this 

strategy is that if a normal application makes more system calls, 

it may be classified as malware; and compared to signature-

based IDS, anomaly-based IDSs are more computationally 

expensive (Chawla, Lee, Fallon, & Jacob, 2019). 

2.2. Detection topology 

Intrusion detection systems vary in design depending on the 

user's perspective. In general, they can be classified into host-

based IDS and network-based IDS. In Host IDS (HIDS), the 

software installed on the host device helps to prevent malicious 

cyber-attacks by systems. One strategy is to detect normal 

system behaviour based on system call sequences performed by 

system processes (Chawla et al., 2019). An IDS based on the 

network (NIDS) monitors network traffic for suspicious, 

abnormal, or unauthorized activities that may result in a cyber-

attack. Intrusion detection based on the network is based on the 

knowledge acquired. The methods for detecting such actions 

are based either on signatures (misuse detection) or behaviour-

based (anomaly detection). Systems based on signatures detect 

attacks that are programmed to notify, while systems based on 

behaviour detect deviations from the usual behaviour profile 

and are able to detect unauthenticated attacks (S. Kumar, 

Viinikainen, & Hamalainen, 2016). 

3. LITERATURE REVIEW 

In 2011, smartphone manufacturers distributed around 450 

million devices. In the same period, mobile malware spread 

quickly, leading to the development of many IDSs with the 

purpose of performing malware detection (Georgios 

Kambourakis, 2018). In this study, focus is on the intrusion 

detection framework related to the smartphone-based Android 

operating system at the application and system level and the 

analysis method used by researchers. 

3.1. Malware IDS-based static features 

Static analysis is used to detect malicious applications without 

requiring them to be run or executed on smartphones (Gyamfi 

& Owusu, 2018; Khariwal, Singh, & Arora, 2020). Static 

analysis is primarily concerned with analyzing the basic files 

of an Android application instead of executing them, which 

allows them to execute relatively quickly. The 

"AndroidManifest.xml" and "classes.dex" files are the two 

most common files in the static analysis process, from which 

representative features like permissions, intents, opcodes, API 

calls, and functional call graphs can be extracted, respectively 

(Jannat, Hasnayeen, Shuhan, & Ferdous, 2019; Lei, Qin, Wang, 

Li, & Ye, 2019). The process of static analysis is illustrated in 

Figure 2. 
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Figure 2. Process of static analysis 

3.2. Manifest features 

Analysing the Android manifest file is a common technique 

used in Android malware detection. The Android manifest file 

is an essential component of an Android application that 

contains important information about its functionalities and 

permissions. By examining this file, researchers can gain 

insights into the behaviour and potential risks associated with 

an app. The analysis of the Android manifest file involves 

extracting and inspecting various elements, such as 

permissions requested by the app, declared components 

(activities, services, and receivers), intent filters, and other 

metadata. This information helps in understanding the app's 

intended functionality and potential interactions with the 

device and other apps. Some malicious apps exploit these 

features to engage in unauthorized or harmful activities. The 

researchers built many machine learning and deep learning 

models for the purpose of detecting malicious activities 

resulting from mobile applications. In their studies, they 

employed single-feature category and multi-feature categories. 

Khatter (2018) presented an intrusion detection system for 

classifying malicious applications based on permission 

analysis. Their system involves feature extraction, machine 

learning training, and model performance evaluation using a 

testing dataset. The study evaluates different machine learning 

algorithms, with kernel logistic regression achieving 98.2% 

accuracy for malware detection and LibLinear achieving 

87.83% accuracy for classifying 81 malware families.  

Sirisha and Anuradha (2019) introduced a sequential neural 

network model for predicting the presence of malware in 

Android APK files obtained from the web and Play Store. The 

model was trained on a dataset of 398 APK files with 331 

features, and during testing, it was evaluated using data from 

the Play Store and malicious sites like Droidbench, which 

contained both malicious and benign APK files. The proposed 

method achieved an accuracy of over 85% in real-time 

detection of malicious applications based on permission 

extraction from the APK. 

The researchers Kapoor, Kushwaha and Gandotra (2019), 

Alsoghyer and Almomani (2020), and Mathur, Podila, 

Kulkarni, Niyaz, and Javaid (2021) built and trained many 

machine-learning models based on permissions for detecting 

malware apps on Android devices, and all studies achieved 

accuracy above 96%. The researcher (Sandeep, 2019) presents 

a novel approach by developing a fully connected deep learning 

model for the detection of malicious applications, utilizing 

permission features. One distinguishing aspect of this study is 

the inclusion of additional details, such as application name and 

version, during the malware detection process. 

Dharmalingam and Palanisamy (2021) proposed the 

Permission Grading System (PGS) to extract requested 

permissions from applications and detect the permissions that 

are special to malware and benign apps, with the contribution 

of each permission calculated. The presented model is effective 

only when malware and benign applications have different sets 

of permission. 

Amer (2021) introduced a mechanism for analysing Android 

applications based on permission combinations indexed within 

the app. To improve the performance of the proposed model, 

multiple machine-learning algorithms were combined to create 

an ensemble model. 

Analysing the intent filters declared by an app can help identify 

potential misuse. Malware authors may register intent filters to 

capture sensitive intents or intercept system-level events for 

malicious purposes. For instance, Sewak, Sahay and Rathore 

(2020) developed a method named Deep-Intent, which is an 

online Intrusion Detection System (IDS) that uses an E2E DL 

implementation for both supervised learning and unsupervised 

feature engineering, and only uses implicit intent as a feature. 

The experiment findings reveal that the presented intent-based 

IDS could detect malware application software with an AUC 

of 81% and an accuracy of 77.2%. 

 Khariwal et al. (2020), Jiang, Mao, Guan and Huang (2020), 

and Sangal and Verma (2020) have proposed robust models for 

detecting malicious applications by combining permissions and 

intents along with various machine learning algorithms. 

Khariwal et al. (2020) and Jiang et al. (2020) used an 

information gain algorithm to find the best subset of combined 

intents with permissions. Whereas Sangal and Verma (2020) 

utilized the PCA algorithm for feature reduction. In addition to 

permissions and intents, Y. Zhang, Feng, Huang, Ye and Weng 

(2020) added two other features, such as hardware and app 

component features, to their model for the prediction of the 

Android malware family based on the Driben dataset. 

3.3. Classes or source code features 

The classes.dex file contains the compiled bytecode of the app's 

classes and holds valuable information about the app's 

functionality. Usually, researchers extract two main feature 

categories from the class, which are API calls and opcodes. 

Analysing these features can help detect suspicious or 

malicious activities, such as accessing sensitive system 

resources, making unauthorized network requests. Zhao, Li, 

Zheng and Shi (2018) and Niu et al. (2020) extracted opcode 

sequences from the bytecode or classes of the Android app and 

utilized them as input for a deep learning model in order to 

detect Android malware. Both studies trained on small datasets 

and got high scores. 

Ma, Ge, Liu, Zhao and Ma (2019) developed a novel approach 

based on the API call to identify malicious code in the Android 

system. They proposed a selection approach for API features 

relevant to malware, explored the structure interactions among 

these APIs, and developed a CNN classifier model for the 

classification of the API features. A real-world dataset with 

3,697 malicious apps and 3,312 benign apps showed that the 

API features were efficient in classifying Android malware. H. 

Zhang, Luo, Zhang and Pan (2019) proposed a new malware 

detection method for Android applications based on correlation 

relationships among abstracted API calls. The source code is 

divided into function methods and association rules mining is 

used to define an application in computational semantics. 

Machine learning algorithms are used to distinguish benign and 

malicious. 

There are many studies that combine the features from 

manifests and classes for the purpose of increasing the accuracy 

of the model. Lê, Nguyen, Truong, Nguyen and Ngô (2020) 

proposed a method of machine learning to identify Android 

malware apps. The features that are used to train machine 

learning are built based on behaviour, requisite permissions, 

and other features of malicious applications. The findings 

achieved an accuracy of 98.66% with a set of 28879 samples 

containing malicious and benign apps. Tiwari and Shukla 
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(2018) proposed a system for detecting malware in mobile 

devices based on two common types of features: permission 

and API calls using machine learning algorithms. Due to the 

limited resources of the mobile device, the proposed system 

reduced the number of features in the dataset to 30 features 

using the PCA algorithm. 

Singh, Wadhwa, Ahuja, Soni and Sharma (2020) proposed 

model uses Latent Semantic Indexing (LSI) to reduce the 

representation of opcodes in a lower-dimensional space, 

allowing the system to work with a smaller set of opcodes. 

Additionally, permissions and intents are added to the feature 

set to improve the performance of the model classifiers. The 

authors combine permissions with API call detecting 

ransomware application. Almomani et al (2021) developed an 

approach for detecting ransomware by combining permissions 

with API calls. The method employed the SVM approach for 

the classification while addressing the imbalance between 

benign and ransomware apps in the dataset through the use of 

the Synthetic Minority Oversampling Technique (SMOTE). 

This method offers a promising solution for accurately 

identifying ransomware based on its distinctive permissions 

and API patterns, providing enhanced security measures 

against this prevalent threat. 

R. Kumar et al. (2019), Yerima and Alzaylaee (2020), and 

Esmaeili and Shahriari (2019) focused on combining manifest 

features with source code features to train deep learning 

models, including multimodal deep neural networks and 

CNNs. However, it is worth noting that these studies employed 

unbalanced datasets during the training process. Yerima and 

Alzaylaee (2020), Esmaeili and Shahriari (2019) focused on 

only one type of malware, which is botnets. Further, a 

framework based on the stacking approach is proposed by Xie, 

Qin and Di (2023). The proposed approach comprises three 

parts:  dataset creation, feature reduction, and optimization 

method GA-StackingMD. The implementation of a stacking 

model comprising five base classifiers has resulted in a 

significant enhancement in detection accuracy when compared 

to the use of individual classifiers. 

All the aforementioned studies on static analysis have a 

common limitation in that they solely relied on computer-based 

examination processes and did not involve the actual use of 

mobile devices. This limitation raises concerns about the real-

world applicability and performance of the developed models 

for detecting malware on mobile devices. Feng, Liu and Lin 

(2019) introduced the MobiDroid system, which comprises two 

components for detecting malicious applications on mobile 

devices. The server component generates feature dictionaries 

and trains deep neural networks, while the mobile device 

component utilizes the dictionaries and trained model for on-

device malware detection. The approach takes into account the 

performance limitations of Android devices, allowing users to 

balance classification accuracy and overall cost. Yuan, Jiang, 

Li and Cai (2019) developed an on-device lightweight Android 

malware detector based on the broad learning method. The 

presented system detector uses primarily one-shot model 

training calculation. It can therefore be trained directly or 

progressively on mobile devices. The model can be increased 

further via on-device model retraining.  

The analysis of the Android manifest file and source code 

features has proven to be a common and effective technique in 

Android malware detection. These files contain crucial 

information about an application's functionalities and provide 

valuable insights into an app's behaviour and potential risks. 

Researchers have built numerous machine learning and deep 

learning models based on single-feature and multi-feature 

categories and got promising results. Despite these promising 

results, it is essential to address certain limitations. Most of the 

studies rely solely on computer-based testing, without 

considering the actual use of mobile devices. Ensuring real-

world applicability and performance of the developed models 

on mobile devices remains a critical consideration for practical 

deployment. 

Based on specific parameters, Table 1 represents the summary 

of the previous works that are based on static analysis. 

 
 

Table 1. Summary of the papers based on static analysis 
 

Reference  Dataset 

Sources 

No. of 

Sample 

Method Analysis 

Tool 

Feature Type Acc. 

% 

Pre. 

% 

Recall 

% 

F1 

score% 

(Khatter, 2018) 

 

Drebin, 

Androtrack
er 

B 533 

M 527 

NB,KLR,SLR,RB

F, SMO, PART, 
CNN, SVM 

AndroData 

Weak tool 

Permission 98.2 --- --- --- 

(Zhao et al., 

2018) 

Drebin, 

Chinese 
app 

B 1200 

M 1200 

CNN APK Tool Opcode 99.07 99.12 99.11 99.12 

(Tiwari & 

Shukla, 2018) 

 

GP, 

PRAGaurd 

B 652 

M 669 

PCA and chi 

Square test for 

feature reduction 
and SVM for 

detection 

AXMLPrin

ter2.jar 

permission, API 

call 

94.69 --- --- --- 

(R. Kumar et 
al., 2019) 

 

GP,VirusSh
are, 

Malgenome 

B 21047 
M 14284 

multimodal deep 
neural network 

APK Tool permission, API 
call, Opcode, 
others 

98 --- 98.2 --- 

(Sirisha & 

Anuradha, 
2019) 

--- 398 for 

B and M 

Sequential neural 

network 

Androguard Permission 85 --- --- --- 

(Kapoor et al., 

2019) 
 

GP , 

VirusShare 
and other 

trusted sites 

B 1500 

M 2500 

LR, LDA, KNN, 

SVM, GNB, DT 

python 

script 

Permission 99.34 99.4 --- 99.5 

(Sandeep, 
2019) 

 

GP, 
Virsushre 

 

--- RF for feature 
Selection 

DL for 

classification 

Androguard Permission 94.65 --- --- --- 
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(Ma et al., 

2019) 

 

androzoo, 

AMD 

B 10010 

M 10683 

DNN with LSTM FLOWDR

OID 

API call --- 99.15 98.82 98.98 

(H. Zhang et 

al., 2019) 

 

Drebin. 

AMD and 

androzoo 

B 26464  

M 26403 

 

SVM, KNN,RF 

for classification 

and ARM for 
feature reduction 

Andguard API call 96 97 95 96 

(Esmaeili & 

Shahriari, 

2019) 

Drebin --- NB,DT,KNN Androbug 

and MobSF 

tool 

permission, API  

call, Intent, 
Network, 
Hardware, others 

96 9.6 81.4 88.3 

(Feng et al., 

2019) 
 

GP, Drebin, 

Genome,vir
usshare 

B 21499 

M 21499 

CNN ApkTool, 

AndroGuar
d, Soot, 

FlowDroid 

permission, API 

call, Opcode 

97 96.87 96.87 --- 

(Yuan et al., 

2019) 
 

AndroZoo,

VirusShare 
and 

Contagio 

B 33655 

M 22221 

BL AXMLPrin

ter 
baksmali 

permission, API 

call, Intent 

94.71 92.4 89.61 93.42 

(Khariwal et 

al., 2020) 

 

Genome 

Drebin and 

Koodous 

B 1414 

M 1714 

SVM, NB, RF for 

detection and IG 

for feature 

selection 

Apktool permission, Intent 94.37 --- --- --- 

(Alsoghyer & 
Almomani, 

2020) 
 

HelDroid, 
RansomPro

ber 
,Virus Total 

and 

Koodous 

B 500 
M 500 

RF, J48, SMO, 
NB 

Apk tool 
Weka tool 

Permission 96.9 --- --- --- 

(Dharmalingam 
& Palanisamy, 

2021) 

 

GP, 
AAGM, 

AMD 

B 1005 
M 1592 

Proposed PGS, 
SVM, DT, DNN, 

TF-IDF for feature 

Reduction 

APKParser 
tool, 

XML-

DOM 

Permission 94.22 --- 93.4 --- 

(Sewak et al., 

2020) 

 

GP and 

Drebin 

B 5721 

M 5560 

SAE and MLP 

DNN 

APKTOOL Intent 77.2 --- --- --- 

(Jiang et al., 
2020) 

 

Xiaomi 
App Store, 

MalGenom

e and 
Andro- 

MalShare 

B 1700 
M 1600 

SVM, KNN, NB, 
J48) for detection 

and IG for feature 

selection 

Apktool 
Weka 

permission, Intent --- --- 94.5 94.5 

(Sangal & 
Verma, 2020) 

 

CICInvesA
ndMal2019 

B 1126 
M 396 

RF, KNN, NB, 
DT, SVM for 

classification and 

PCA For feature 
Selection 

Weka permission, Intent 96.05 96 96.1 96 

(Y. Zhang et 

al., 2020) 

 

Drebin M 5554 LR , GBDT, RF Dex.-jar permission, Intent, 
Hardware, others 

97.98 98.51 98.37 98.47 

(Niu et al., 

2020) 

Virusshare , 

AndroZoo 

and 
Peapod. 

B 1000 

M 1796 

LSTM FlowDroid, 

drizzleDum

per and 
FUPK3 

Opcode 97 97 97 97 

(Lê et al., 2020) 

 

GP, 

Virusshare 

B 12290 

M 16589 

NB,RF,DT, 

Gradient Boosting 

and AdaBoost 

Dexdunp permission, API 

call 

98.66 --- --- --- 

(Singh et al., 

2020) 

 

CICInvesA

ndMal2019 

Android 
Botnet 

B 1147 

M 905 

LSI, SVM, LR, 

RF, KNN 

Androguard Permissions, 

Intents, opcodes 

93.92  

 

96.89 88.64 92.58 

(Yerima & 

Alzaylaee, 
2020) 

ISCX 

botnet 
dataset 

B 6803 

M 1929 

CNN Developed 

by the 
author 

permission, API 

call, Intent, others 

98.9 98.3 97.8 98.1 

(Mathur et al., 

2021) 

AndroZoo, 

Virus total, 

AMD 

B 14730 

M 14700 

KNN,RF, LR, 

SVM,ET, 

XG,AB,BG 

Androguard Permission 96.95 --- --- --- 

(Amer, 2021) 

 

Drebin 

MalGenom

e 

B 9476 

M 5560 

Ensemble Model( 

RF, MLP, 

AdaBoost, SVM, 
DT) 

--- Permission 99.3 98.8 99.3 99 

(Almomani et 

al., 2021) 

GP,VirusT

otal, 

Koodous, 

RansomPro

per Project 

B 9653 

M 500 

PSO, SVM and 

SMOTE 

APK Tool permission, API 

call 

--- --- 96.4 --- 
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(Xie et al., 

2023) 

CICMalDro

id2020 

B 13204 

M 4039 

GA-StackingMD 

(SVM, KNN, 

LGBM, CatBoost, 
and RF) 

Androguard permission, API 

call, Opcode, 

Intent, others 

98.66 99.15 99.06 99.1 

 

3.4. Malware IDS-based dynamic features 

In the dynamic approach, the application is executed in a 

controlled environment, monitors the running code, and 

inspects its interaction with the system. The dynamic analysis 

traces many features of an application and system, such as 

system calls, system components, network traffic, CPU 

consumption, memory usage, battery usage, and user 

interaction with the system (Painter & Kadhiwala, 2018). The 

system can detect malware in runtime with this approach 

(Riasat, Sakeena, Sadiq, & Wang, 2018). The process of 

dynamic analysis is illustrated in Figure 3. 

 

 

Figure 3. Dynamic analysis process 

3.5. System calls features 

Monitoring system calls made by an app during execution can 

reveal suspicious activities, such as file manipulation, network 

communication, or attempts to escalate privileges. Unusual or 

unauthorized system calls may indicate the presence of 

malware. Xiao, Zhang, Mercaldo, Hu and Sangaiah (2019) 

developed a novel classifier using Long Short Term Memory 

(LSTM) networks and system call sequences to detect malware 

on Android operating systems. The classifier consists of two 

LSTM networks trained on malware and legitimate 

applications, respectively. When a new sequence is 

encountered, similarity scores from the two networks are 

computed to classify the associated application.  Q. Zhou et al. 

(2019) developed a novel malicious software detection system, 

introducing an innovative machine-learning classification 

algorithm. Unlike previous versions, this system utilizes the 

Monte Carlo technique to randomly adjust weights, enhancing 

optimization based on structural risk minimization and design 

risk reduction objectives. Comparative analysis with nine well-

known machine learning algorithms revealed that the proposed 

system achieved an accuracy rate of 97.85% and higher 

accuracy than all compared algorithms. 

According to Abderrahmane, Adnane, Yacine and Khireddine 

(2019) and X. Zhang et al. (2022), a client-server architecture 

was employed to analyze and classify the execution state of 

Android applications as either malware or benign. The mobile 

apps are sent to a remote server via a user-friendly interface. It 

would be installed and run in a simulation of a human user's 

interaction with it. After the execution of an application, the 

system calls produced by the Linux kernel are collected, 

analyzed, and fed into a neural network model that will be used 

to determine if the analyzed applications are malware or 

benign. 

John, Thomas and Emmanuel (2020) proposed a new malware 

detection mechanism for Android with Graph Convolutional 

Network (GCN). With GCN, a four-dimensional representation 

of Android applications with centralizing graph measures as 

features are produced. The proposed method obtained a four-

dimensional feature representation for Android applications, as 

well as a detection accuracy of 92.3% on datasets including 

malware that had been obfuscated by the attacker. Manzil 

(2022) presented a dynamic behaviour analysis for detecting 

malicious Android applications. The CICMalDroid2020 

dataset was employed in the proposed study, whereby the 

system calls of applications were extracted via dynamic 

analysis. Several machine learning algorithms were trained on 

the dynamic features (system calls). Mahdavifar, Kadir, 

Fatemi, Alhadidi and Ghorbani (2020), Bansal, Baliyan and 

Ghosh (2022), and AlOmari, Yaseen and Al-Betar (2023) have 

incorporated system calls along with other features, including 

binders and composite behaviours, to identify the behavior of 

Android applications. These studies utilized the 

CICMalDroid2020 dataset to analyse APK files within a 

controlled environment. 

3.6. Hardware and network features 

By monitoring the behaviour of the device's hardware 

components and examining the data exchanged over the 

network, suspicious activities and potential malware can be 

identified. In hardware analysis, abnormal behaviour such as 

excessive battery usage or unauthorized access to device 

features like the camera can indicate the presence of malware. 

Network traffic analysis involves inspecting the data 

transferred between the device and external servers, looking for 

patterns associated with malware, such as communication with 

command-and-control servers or unauthorized data transfers. 

Ariyapala, Do Hoang, Huynh, Wee and Conti (2016), Ribeiro 

et al. (2020), and Barbhuiya, Kilpatrick and Nikolopoulos 

(2020) have developed intrusion detection systems (IDS) 

aimed at detecting malware on mobile devices, utilizing a 

combination of hardware and network features. The IDS 

proposed by Ariyapala et al. (2016) collects host-based data, 

including CPU utilization, battery consumption, process 

execution, user activity, and network traffic. This data is then 

transmitted to a remote server for analysis, enabling the 

identification of malicious activity on the smartphone. On the 

other hand, Ribeiro et al. (2020) and Barbhuiya et al. (2020) 

focus on one-class classification models trained on standard 

usage patterns of CPU, battery, memory, and network traffic. 

These models raise intrusion alarms when significant 

deviations from the regular patterns are detected. 

Radoglou-Grammatikis and Sarigiannidis (2017) developed 

intrusion detection system (IDS) aims to identify abnormal 

actions on mobile Android devices by continuously monitoring 

network activity and collecting 
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NetFlows features. An artificial neural network (ANN) 

processes the collected data streams to determine the presence 

of an attack. While Wang et al. (2019) proposed a lightweight 

malware identification framework for Android systems, where 

network traffic from the mobile app is redirected to a server for 

analysis, reducing resource utilization on the device.  

Android malware detection based on dynamic features in most 

previous studies got promising results. However, several 

limitations need to be addressed. Some of the proposed 

approaches involve transmitting data to remote servers, which 

raises privacy issues about private user data. Additionally, 

these methods might not work in situations when the internet 

connection is slow or unavailable. Some approaches may face 

challenges in real-time detection, as the analysis of system calls 

may require time-consuming computations, leading to delayed 

responses to emerging threats. Studies based on monitoring 

network traffic and hardware resources can introduce 

additional overhead, affecting the device's performance and 

battery life. Table 2 represents the summary of the previous 

works that are based on dynamic analysis. 

 

 

 

 

 

 

Table 2. Summary of the papers that based on dynamic analysis 
 

Reference  Dataset 

Sources 

No. of 

Sample 

Method Analysis 

Tool 

Feature Type Acc. 

% 
Pre. 

% 
Recall 

% 
F1 

score% 

(Ariyapala et 

al., 2016) 
 

Created by 

Author  

--- Markov Chain WireShark Network traffic, CPU, 
Battery, running process 
and services 

--- --- --- --- 

(Xiao et al., 

2019) 

Drebin, 

Google 
Play 

B 3567 

M 3536 

LSTM Monkey and 

Strace 

System call 93.7 91.3 96.6 --- 

(Radoglou-

Grammatikis 

& 
Sarigiannidis, 

2017) 

CTU-13 

dataset 

--- MLP --- Network traffic 85 --- --- --- 

(Q. Zhou et al., 
2019) 

 

Baidu 
Mobile 

Application 

market and 
VirusShare 

B 920 
M 379 

Monte Carlo 
algorithm. 

--- System call 97.85 --- 98.7 --- 

(Wang et al., 

2019) 

Drebin B 8321 

M 5560 

C4.5 TcpDump 

tool 

Network traffic 97.89 --- --- --- 

(Abderrahman
e et al., 2019) 

ArgusLab, 
Darwin 

project 

B 2450 
M 10300 

CNN Android 
emulator,  

Monkey 

Tool, Strace 
Tool 

System call 93.3 94.1 97.8 96 

(Ribeiro et al., 

2020) 

Run Time 

Dataset 
Generation 

B 1200 

sample 

One class K-

mean and 
univariate 

Gaussian 

--- Network traffic, CPU, 
Battery, Memory, 
running process and 

services 

91 --- 85.7 --- 

(John et al., 

2020) 
 

GP,Deribn, 

AMD and 
Malgenome 

B 1410 

M 720 

Graph 

Convolutional 
Nets (GCN) 

Emulator, 

Monkey 
Tool, Strace 

Tool, Weka 

System call 92.3 91.5 93.3 92.3 

(Mahdavifar et 
al., 2020) 

 

CICMalDro
id2020 

B 1795 
M 9803 

DNN CopperDroid System call, Binder, 
Composite behaviour 

96.7 99.16 96.54 97.84 

(Barbhuiya et 

al., 2020) 

Run Time 

Dataset 
Generation 

--- One class 

classification 
and probability 

distribution 

Emulator Network traffic, CPU 93.3 --- --- --- 

(X. Zhang et 
al., 2022) 

AMD, 
Google 

play 

B 300 
M 125 

MLP Monkey 
runner, trace 

tool, ADB 

tool 

System call 99.34 99.12 99.07 99.44 

(Manzil, 

2022) 

 

CICMalDro

id2020 

B 1795 

M 1253 

RF, DT, LR, 

SVM, 

and AdaBoost 

Monkey 

runner, trace 

tool, ADB 
tool 

System call 99.5 99.5 99.5 99.5 

(Bansal et al., 

2022) 

CICMalDro

id2020 

B 1,795 

M 9803 

Light Gradient 

Boosting 

Copper- 

Droid 

System call, Binder, 

Composite behavior 

98.01 99.19 98.39 98.79 

(AlOmari et 
al., 2023) 

CICMalDro
id2020 

B,M 
11598 

Light Gradient 
Boosting 

CopperDroid System call, Binder, 
Composite behavior 

95.49 95.48 94.7 95.47 
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3.7. Malware IDS-based hybrid features 

Malware IDS-based hybrid features are characterized by the 

combination of diverse feature types within an Intrusion 

Detection System (IDS) framework, aimed at the identification 

and detection of malware. These hybrid features integrate 

various sources of information, including manifest files, source 

codes, system calls, network traffic patterns, and hardware 

features. The purpose of this integration is to augment the 

accuracy and effectiveness of malware detection within the 

IDS system. 

As conducted by Arshad et al. (2018), a three-level hybrid 

malware detection model has been created for Android 

operating systems that combine the strengths of the three 

different levels to offer excellent detection accuracy: a) 

dynamic and static analysis, b) remote and localhost, and c) 

machine learning algorithms. Kuo, Liu and Wang (2019), 

Fang, Yang and Ji (2019) employed a combination of static 

feature analysis through permissions and dynamic feature 

analysis through API usage to enhance the accuracy of Android 

malware detection. 

Arora and Peddoju (2018), Shyong, Jeng and Chen (2020) 

focused on a hybrid method consisting of static permissions 

and monitoring network traffic features used for the purpose of 

detecting malicious activity on mobiles. The proposed system 

by Shyong et al. (2020) utilizes two phases. In the first phase, 

static permissions are collected and classified into benign and 

malicious applications, filtering out benign ones. The second 

phase involves the dynamic analysis of network traffic 

generated by identified malware. Features are extracted from 

the malware's network behaviour, and machine learning is 

employed to classify the malware into specific families. Y. Liu, 

Zhang, Li and Chen (2016) and N. Zhang et al. (2021) focused 

on distinguishing benign applications from malware by 

analysing both the manifest and system call features. 

Vinayakumar, Soman, Poornachandran and Sachin Kumar 

(2018) presented the LSTM model for detecting malware on 

Android devices. Different network topologies with many 

network parameters are employed to obtain acceptable 

malware detection rates. A layered LSTM of 32 blocks of 

memory has shown success in detecting all individual malware 

behaviours, compared to other static machine learning 

classifications. Garg and Baliyan (2019) proposed an ensemble 

model combining machine learning algorithms to efficiently 

identify and classify malware. Features such as permission, 

API calls, system components, network traffic, battery, and 

other features were extracted from applications and devices. 

During the experimental results, the accuracy of the proposed 

system reached 98.27%. Table 3 represents the summary of the 

previous works that is based on hybrid analysis. 
 

Table 3. Summary of the papers based on hybrid analysis 
 

Reference Dataset 

Sources 

No. of 

Sample 

Method Analysis Tool Feature Type Acc. % Pre. 

% 
Recall 

% 
F1 

score% 

(Y. Liu et al., 
2016) 

 

Wandoujia 
and Gnome 

project 

B+M 
500 

SVM, KNN,NB Apktool. ADB 
Tool, Strace Tool, 

Monkey Tool 

permissions, API 
call, System calls 

93.33~
99.28 

--- 94.59
~99.4

7 

--- 

(Arshad et 

al., 2018) 
 

Drebin, 

Genome 

--- SVM RF,DT, NB Asset Packaging 

tool ,Baksmali 
tool., Weka 

Network 98.97 --- 98.5 --- 

(Arora & 

Peddoju, 
2018) 

 

Genome 

Project 

B 600 

M 524 

FP-Growth 

algorithm, IG and 
Chi-Square for 

feature selection 

Apk tool permissions, 

Network 

94.25 --- 97.9 --- 

(Vinayakum

ar et al., 
2018) 

 

MalGenome B 408 

M 1330 

LSTM Apk Tool, Adb 

monkey tool 

permissions, 

Battery, Memory 

93.9 ~ 

97.5 

--- --- --- 

(Kuo et al., 
2019) 

 

GP, 
Virusshare 

B 1000 
M 1000 

SVM, RF Apk tool, Emulator permissions, API 
call 

94 --- 95 --- 

(Fang et al., 
2019) 

 

GP, 
Virusshare 

B 4000 
M 4000 

XGBoost, 
Bayesian classifier 

for detection and 

classification. TF-
IDF for feature 

filtering 

Apk Tool, 
BackSmali Tool, 

MALINE Tool 

Monkey Tool 
,Emulator, Strace 

Tool 

permissions, API 
call 

94.6 --- --- --- 

(Garg & 

Baliyan, 
2019) 

GP, 

Wandouji, 
AMD, 

Androzoo 

B 60000 

M 25450 

ensemble (SVM, 

PART, MLP, 
RIDOR) 

Apk tool,  

Emulator, ADB 
shell, Strace tool 

permissions, API 

call, System calls, 
Network, Battery, 

CPU, Memory 

98.27 --- 98.79 --- 

(Shyong et 
al., 2020) 

 

GP, Drebin B 1000 
M 1024 

RF aapt dump 
permissions, 

Emulator,Tcpdum

p ,Monkey tool 

permissions, 
Network 

96 
~98.86 

--- --- --- 

(N. Zhang et 
al., 2021) 

PlayDrone, 
Drebin 

B 2978 
M 2707 

CNN, BiLTSM Strace, Monkey, 
AndroGuard, ADB 

tools 

Opcode, System 
calls 

97 56.5 95.5 96 

4. DISCUSSION AND COMPARISON 

This section discusses the methodologies employed by 

researchers for analysing Android applications, along with the 

strengths and weaknesses of each approach. Furthermore, the 

study explores the types of features utilized by researchers in 

their analyses. Most of the researchers reviewed in this study 

focused on analysis at the application level instead of the 
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system level due to limited resources on smartphones. The 

behaviour of applications is typically examined through three 

approaches: static analysis, dynamic analysis, and hybrid 

analysis. Static analysis involves decompiling the application 

and extracting key features to differentiate between malicious 

and benign activities without executing the application. 

Dynamic analysis, on the other hand, involves executing the 

application on a real device or in a simulated environment to 

extract relevant behavioural features. Hybrid analysis 

combines the strengths of both static and dynamic analysis to 

enhance the detection capabilities of the system. In general, 

static analysis is known for its speed and simplicity compared 

to dynamic analysis, while hybrid analysis is more complex 

than both static and dynamic methods. Figure 4 illustrates the 

distribution of papers reviewed in this study, highlighting the 

utilization of static, dynamic, and hybrid methods for analysis.

Figure 4. Statistics about the analysis technique 
Comparing malware IDS based on different feature sets is crucial for 

assessing their strengths and weaknesses in detecting Android 

malware. Malware IDS relying on Android manifest analysis rapidly 

extracts vital information about an app's functionalities and potential 

risks. However, they may struggle with advanced malware that uses 

obfuscation techniques to conceal malicious activities within legitimate 

functions. Source code-based IDS, particularly API analysis, 

effectively detects suspicious activities like accessing sensitive 

resources; nevertheless, it may encounter challenges with obfuscated 

code, leading to false positives or negatives. System call-based IDS can 

identify unknown malware but requires more computational resources 

and time, potentially causing delays in real-time detection. Hardware-

based monitoring IDS, examining resources like battery and CPU, is 

valuable for detecting resource-exploiting malware; however, it may 

impact device performance and battery life due to additional overhead. 

Android malware detection approaches can utilize single-category or 

multi-category features. Single-category features, such as permissions, 

offer simplicity and efficiency but result in lower detection accuracy. 

In contrast, multi-category features, including permissions, APIs, and 

network traffic, enhance detection accuracy but pose challenges in 

handling multiple categories and require more processing resources. 

Figure 5 presents the statistical analysis of the reviewed papers, 

showcasing the utilization of single and multi-category features in 

static analysis. 

 

 
Figure 5. Single and multi-feature category statistics 

 

Furthermore, it is crucial to highlight the significance of the features 

and databases employed by researchers. Figures 6 and 7 provide visual 

representations of the prominent features and commonly utilized 

databases in the reviewed papers in this work. 

 
Figure 6. More frequent feature categories 

Figure 7. Frequent dataset used by researchers 

 

Some researchers have developed IDS systems using one-class 

classifiers that rely exclusively on normal behaviour data obtained 

from running benign apps, eliminating the need for training with 

malicious samples. However, these models are prone to false positives 

due to unexpected changes in smartphone behaviour, such as CPU 

spikes during Android OS maintenance or sudden increases in network 

traffic from background downloads or installations. Therefore, when 

constructing a host-based IDS for detecting malicious activities on 

smartphones, it is advisable to strike a balance between accuracy and 

efficiency, considering the limited resources available on smartphones, 

particularly in terms of CPU, memory, and battery. 

5. CHALLENGES AND RECOMMENDATIONS  

The process of constructing a machine learning-based mobile 

malware detection model entails several key steps. Firstly, 

samples of both benign and malicious applications are 

analysed, and crucial features are extracted from them. 

Subsequently, a classification model is developed capable of 

effectively differentiating between benign and malicious 

samples. To assess the model's performance, it is tested on a 

mobile device using real-time applications. Evaluation metrics 

such as accuracy and performance are then used to measure the 

effectiveness of the model. Despite the substantial progress 

made by researchers in developing various models, there 

remain several challenges and open issues that warrant further 

investigation. The following points outline some of these 

challenges: 

 

1- Dataset: Due to the lack of a comprehensive and 

available dataset, many researchers have relied on 

the Drebin dataset. While this dataset is valuable, it 

does not include new samples of applications. As 

Android continuously evolves with new versions and 
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updates that introduce new features and deprecate old 

ones, developers exploit these changes to build 

applications. Hence, it is recommended to construct 

a dataset that comprises applications based on most 

API levels of Android; this provides many 

advantages, such as improved model generalization, 

an accurate representation of the Android ecosystem, 

and enhanced model accuracy. 

2- Analysis tool: Researchers face challenges in 

analysing a large number of applications, as it is a 

time-consuming process that often requires multiple 

tools and expertise. It is recommended to develop an 

automat and easy-to-use analysis tool that can 

analyse applications in static, dynamic, and hybrid 

modes and extract features from them. This saves 

time for the user to analyse as many applications as 

possible in different ways.  

3- Feature Selection: The identification and selection 

of informative features for malware detection is a 

critical task. It is recommended to explore advanced 

feature selection techniques, such as combining 

existing methods or developing new ones, to enhance 

the model's accuracy and efficiency. 

4- Privacy Preservation: Ensuring user privacy while 

conducting malware detection is essential. It is 

recommended to explore the possibility of 

conducting certain analysis tasks locally on the user's 

device. This approach can minimize data sharing and 

enhance user privacy. 

5- Real-Time Detection: Mobile malware detection 

models should operate efficiently in real-time, 

without imposing excessive computational overhead 

on the device. It is recommended to create a model 

that relies on computationally-efficient features. 

Utilizing these features, the model will optimize 

resource utilization while maintaining its 

effectiveness in detecting malware promptly, 

enabling swift responses to emerging malicious 

activities. 

6. CONCLUSION 

This paper presents a comprehensive overview of Android 

malware intrusion detection systems and their classification. 

The three analytical methods discussed in previous works are 

static, dynamic, and hybrid analysis. The statistical analysis 

shows that static analysis is the approach that is most frequently 

used (53%), followed by dynamic analysis (29%), and hybrid 

analysis (18%). The results of the analysis also showed that the 

most used features by researchers were permissions, which 

reached 34%, followed by API calls, system calls, and intent 

features, respectively. The study emphasizes the importance of 

considering both the selection of databases for benign and 

malware applications and the appropriate tools for analysis to 

extract critical features from diverse sources. Notably, the 

Drebin database was the preferred choice for 22% of 

researchers for malware samples, while 25% relied on the 

Google Play database for benign applications. Finally, the 

paper addresses open challenges in the field and offers valuable 

recommendations for further research and development in the 

domain of Android malware detection. 
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