

journals.uoz.edu.krd

Available online at sjuoz.uoz.edu.krd

Vol. 11, No. 4, pp. 469– 480, October-December, 2023

p-ISSN: 2663-628X

e-ISSN: 2663-6298

* Corresponding author
This is an open access under a CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

469

GUARDING ANDROID: A COMPREHENSIVE REVIEW OF INTRUSION

DETECTION TECHNIQUES FOR SMARTPHONES

Ibrahim Mahmood Ibrahim a* , Amira Bibo Sallow b

a Department of Information Technology, Technical College of Informatics-Akre, Duhok Polytechnic University, Duhok, Iraq

ibrahim.mahmood@dpu.edu.krd

b Department of Information Technology, Technical College of Duhok, Duhok Polytechnic University, Duhok, Iraq

amira.bibo@dpu.edu.krd

Received: 26 May, 2023 / Accepted: 2 Aug., 2023 / Published: 15 Oct., 2023. https://doi.org/10.25271/sjuoz.2023.11.4.1156

ABSTRACT:

The popularity of using the Android operating system has increased the number of developers and intruders in this field.

Many applications are developed in this area and perform malicious activities like ransomware attacks, installing

backdoors, phishing, sending premium short message service, and stealing private data. These activities pose many

threats to smartphone users. This study provides a review of the main strategies used in intrusion detection systems to

detect malicious activities at the application and system levels. The study illustrates the advantages and disadvantages

of each method and the significant features used to discriminate against malicious activities and highlights several open

issues that warrant further investigation and improvement. It is a comprehensive review that may be useful for academic

researchers interested in cybersecurity.

KEYWORDS: Intrusion Detection System, Malware detection, Static features, Dynamic features, Hybrid features

1. INTRODUCTION

Smartphones play an essential role in our daily lives. They offer

a variety of enticing features that allow mobile users to make

use of a variety of high-quality customized services (Ribeiro,

Saghezchi, Mantas, Rodriguez, & Abd-Alhameed, 2020).

Some of the services provided by smartphones are voice and

video communication, e-mail addresses, internet browsing,

online shopping, banking, and many other functions

(Radoglou-Grammatikis & Sarigiannidis, 2017). Many

operating systems are available for smartphone devices.

Among them, Android is the most widely used (Agrawal &

Trivedi, 2019). The popularity of the Android system has

opened the door for attackers to increase the number of threats

to Android devices (da Costa et al., 2020). According to the

McAfee Labs Threats’ report in the first quarter of 2020, 98%

of attackers target Android devices (Bayazit, Sahingoz, &

Dogan, 2020).

Android is a Linux-based operating system that comes with a

number of useful applications and middleware. Google allows

third-party developers to build applications and release them to

the Android Market in order to fully utilize and explore the

capabilities of Android (Hein & Myo, 2018). The hacker takes

advantage of Android application capabilities to compromise

device security and privacy, posing a major risk of personal

data leakage such as the user's location, contact information,

accounts, images, and so on (R. Kumar et al., 2019).

Many levels of security tools exist to protect against

cyberattacks, like firewalls, anti-virus, and Intrusion Detection

system (IDS) (Uğurlu & Doğru, 2019). Firewalls primarily

control access between networks and do not produce any

signals if an attack occurs internally (Alqahtani et al., 2020).

Antivirus is effective for detecting known malware and

ineffective for detecting unknown malware. It needs to

constantly update its databases to be effective and detect new

samples of malware. IDSs come in two main categories:

signature-based and anomaly-based detection. Signature

detection identifies suspicious behaviour by matching it to an

attack signature that has already been saved in a database. This

type is less effective for detecting malicious activities,

especially for new attacks, because they need to constantly

update their signature databases. Anomaly detection considers

normal behaviour to be a model and attempts to detect any

deviation from the model before deciding whether or not to

create an alarm. An anomaly-based IDS is better suited for

detecting new malware attacks (Elkhadir, Chougdali, &

Benattou, 2016). The major aim of an IDS is to detect various

types of malwares like botnets, Trojans, spyware, backdoors,

worms, ransomware, and riskware as quickly as possible,

which is unachievable with a regular firewall (Zachariah,

Akash, Yousef, & Chacko, 2017; Khraisat, Gondal, Vamplew,

& Kamruzzaman, 2019).

Anomaly-based IDS employs three techniques to analyse and

understand the behaviour of the malware, which are static,

dynamic, and hybrid analysis. The static analysis technique

decompiles an Android application package to obtain two main

files (i.e., manifes.xml and classes. dex) and then starts to

extract static features from these two files without executing

them. Many features can be extracted from static analysis, such

as permissions, intents, opcodes, used features, and API calls

(Malik). The dynamic analysis technique is used to identify

malicious behaviour when the application is running by

extracting many features like system calls, network traffic, or

hardware features utilization like CPU, memory, and battery.

The hybrid technique combines the benefits of dynamic and

static analysis (Bayazit et al., 2020; H. Zhou, Yang, Pan, &

Guo, 2020).

Machine learning techniques are commonly used to detect

Android malware, whether using static, dynamic, or hybrid

analysis methods. Machine learning-based malware detection

has the capability to detect previously unseen kinds of malware

and can provide better detection and efficiency than traditional

methods, such as signature-based malware detection, which is

http://journals.uoz.edu.krd/
http://sjuoz.uoz.edu.krd/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:ibrahim.mahmood@dpu.edu.krd
mailto:amira.bibo@dpu.edu.krd
https://doi.org/10.25271/sjuoz.2023.11.4.1156

Ibrahim et al. / Science Journal of University of Zakho 11(4), 469– 480, October-December, 2023

470

based on identifying the specific patterns of known malware

(K. Liu et al., 2020).

This paper addresses the crucial issue of Android device

security in the face of increasing threats and attacks. With

smartphones playing an essential role in our daily lives and

Android being the most widely used operating system, it has

become a prime target for attackers. Anomaly-based IDSs offer

a promising approach by considering normal behaviour as a

model and detecting any deviations from it. This paper focuses

on the analysis of malware behaviour using static, dynamic,

and hybrid techniques and leverages machine learning to

enhance malware detection. The findings of this study have the

potential to enhance Android device security and mitigate the

risks associated with personal data leakage and privacy

breaches.

The remaining sections of our paper are organized as follows.

Section 2 provides background information about Intrusion

Detection Systems (IDS). Section 3 presents literature review

in the field. Section 4 contains a discussion and comparison of

our findings, followed by Section 5 which explores the

challenges and recommendations associated with the topic.

Finally, in Section VI, the points of conclusion arrived at

throughout the study are presented.

2. INTRUSION DETECTION SYSTEM

Intrusion detection systems (IDS) monitor and analyse network

logs, file system activity, and real-time events in the local

system to detect cyber-attacks (P. Liu, 2019). Another

definition of IDS is a new type of security technology that

monitors a system for harmful activity (Borkar, Donode, &

Kumari, 2017). An IDS can usually perform a variety of tasks,

such as information monitoring and recording, security officer

notification, and report generation. In general, smartphones

consist of hardware, an operating system, and applications. An

IDS system can monitor either an event at the application level,

the kernel level, the hardware level, or a hybrid of them. The

IDS system can work to detect malicious activities generated

by malware apps like damaging file systems, information

leakage, or any other types of threats. There are many

classifications for IDS based on topology, source, approach,

and focus. The details of the classification are illustrated in

Figure 1 (Georgios Kambourakis, 2018).

Figure 1. IDS Classification

2.1. Detection approach

The detection method applied to identify intrusion detection

systems (IDS) is classified to Signature-based and anomaly-

based detection approaches. The misuse (signature) detection

method maintains a database of predefined patterns and uses

that database to track the usage of those patterns (BalaGanesh,

Chakrabarti, & Midhunchakkaravarthy, 2018). Signatures are

hashes created by many algorithms like MD5 and SHA256 for

previously seen malicious applications. These hash values are

saved in a database and can be used for scanning applications.

During the scanning process, if the hash of the scanned

application is found in the database, this application is marked

as malicious (Borek, 2017). The advantage of misuse-based

IDS is that it is capable of effectively recognizing known

attacks, but it fails to detect unknown attacks. In order to store

the signature of each known attack, a database must be

persistently updated (Istiaque, Khan, & Waheed, 2020). In the

anomaly method, a basic profile of a regular network or system

activity is generated and then every incoming packet or event

which differs from the profile is treated as an intrusion. The

advantage of this method is that it is capable of detecting new

attacks (Shamshirband et al., 2020). The problem with this

strategy is that if a normal application makes more system calls,

it may be classified as malware; and compared to signature-

based IDS, anomaly-based IDSs are more computationally

expensive (Chawla, Lee, Fallon, & Jacob, 2019).

2.2. Detection topology

Intrusion detection systems vary in design depending on the

user's perspective. In general, they can be classified into host-

based IDS and network-based IDS. In Host IDS (HIDS), the

software installed on the host device helps to prevent malicious

cyber-attacks by systems. One strategy is to detect normal

system behaviour based on system call sequences performed by

system processes (Chawla et al., 2019). An IDS based on the

network (NIDS) monitors network traffic for suspicious,

abnormal, or unauthorized activities that may result in a cyber-

attack. Intrusion detection based on the network is based on the

knowledge acquired. The methods for detecting such actions

are based either on signatures (misuse detection) or behaviour-

based (anomaly detection). Systems based on signatures detect

attacks that are programmed to notify, while systems based on

behaviour detect deviations from the usual behaviour profile

and are able to detect unauthenticated attacks (S. Kumar,

Viinikainen, & Hamalainen, 2016).

3. LITERATURE REVIEW

In 2011, smartphone manufacturers distributed around 450

million devices. In the same period, mobile malware spread

quickly, leading to the development of many IDSs with the

purpose of performing malware detection (Georgios

Kambourakis, 2018). In this study, focus is on the intrusion

detection framework related to the smartphone-based Android

operating system at the application and system level and the

analysis method used by researchers.

3.1. Malware IDS-based static features

Static analysis is used to detect malicious applications without

requiring them to be run or executed on smartphones (Gyamfi

& Owusu, 2018; Khariwal, Singh, & Arora, 2020). Static

analysis is primarily concerned with analyzing the basic files

of an Android application instead of executing them, which

allows them to execute relatively quickly. The

"AndroidManifest.xml" and "classes.dex" files are the two

most common files in the static analysis process, from which

representative features like permissions, intents, opcodes, API

calls, and functional call graphs can be extracted, respectively

(Jannat, Hasnayeen, Shuhan, & Ferdous, 2019; Lei, Qin, Wang,

Li, & Ye, 2019). The process of static analysis is illustrated in

Figure 2.

Ibrahim et al. / Science Journal of University of Zakho 11(4), 469– 480, October-December, 2023

471

Figure 2. Process of static analysis

3.2. Manifest features

Analysing the Android manifest file is a common technique

used in Android malware detection. The Android manifest file

is an essential component of an Android application that

contains important information about its functionalities and

permissions. By examining this file, researchers can gain

insights into the behaviour and potential risks associated with

an app. The analysis of the Android manifest file involves

extracting and inspecting various elements, such as

permissions requested by the app, declared components

(activities, services, and receivers), intent filters, and other

metadata. This information helps in understanding the app's

intended functionality and potential interactions with the

device and other apps. Some malicious apps exploit these

features to engage in unauthorized or harmful activities. The

researchers built many machine learning and deep learning

models for the purpose of detecting malicious activities

resulting from mobile applications. In their studies, they

employed single-feature category and multi-feature categories.

Khatter (2018) presented an intrusion detection system for

classifying malicious applications based on permission

analysis. Their system involves feature extraction, machine

learning training, and model performance evaluation using a

testing dataset. The study evaluates different machine learning

algorithms, with kernel logistic regression achieving 98.2%

accuracy for malware detection and LibLinear achieving

87.83% accuracy for classifying 81 malware families.

Sirisha and Anuradha (2019) introduced a sequential neural

network model for predicting the presence of malware in

Android APK files obtained from the web and Play Store. The

model was trained on a dataset of 398 APK files with 331

features, and during testing, it was evaluated using data from

the Play Store and malicious sites like Droidbench, which

contained both malicious and benign APK files. The proposed

method achieved an accuracy of over 85% in real-time

detection of malicious applications based on permission

extraction from the APK.

The researchers Kapoor, Kushwaha and Gandotra (2019),

Alsoghyer and Almomani (2020), and Mathur, Podila,

Kulkarni, Niyaz, and Javaid (2021) built and trained many

machine-learning models based on permissions for detecting

malware apps on Android devices, and all studies achieved

accuracy above 96%. The researcher (Sandeep, 2019) presents

a novel approach by developing a fully connected deep learning

model for the detection of malicious applications, utilizing

permission features. One distinguishing aspect of this study is

the inclusion of additional details, such as application name and

version, during the malware detection process.

Dharmalingam and Palanisamy (2021) proposed the

Permission Grading System (PGS) to extract requested

permissions from applications and detect the permissions that

are special to malware and benign apps, with the contribution

of each permission calculated. The presented model is effective

only when malware and benign applications have different sets

of permission.

Amer (2021) introduced a mechanism for analysing Android

applications based on permission combinations indexed within

the app. To improve the performance of the proposed model,

multiple machine-learning algorithms were combined to create

an ensemble model.

Analysing the intent filters declared by an app can help identify

potential misuse. Malware authors may register intent filters to

capture sensitive intents or intercept system-level events for

malicious purposes. For instance, Sewak, Sahay and Rathore

(2020) developed a method named Deep-Intent, which is an

online Intrusion Detection System (IDS) that uses an E2E DL

implementation for both supervised learning and unsupervised

feature engineering, and only uses implicit intent as a feature.

The experiment findings reveal that the presented intent-based

IDS could detect malware application software with an AUC

of 81% and an accuracy of 77.2%.

 Khariwal et al. (2020), Jiang, Mao, Guan and Huang (2020),

and Sangal and Verma (2020) have proposed robust models for

detecting malicious applications by combining permissions and

intents along with various machine learning algorithms.

Khariwal et al. (2020) and Jiang et al. (2020) used an

information gain algorithm to find the best subset of combined

intents with permissions. Whereas Sangal and Verma (2020)

utilized the PCA algorithm for feature reduction. In addition to

permissions and intents, Y. Zhang, Feng, Huang, Ye and Weng

(2020) added two other features, such as hardware and app

component features, to their model for the prediction of the

Android malware family based on the Driben dataset.

3.3. Classes or source code features

The classes.dex file contains the compiled bytecode of the app's

classes and holds valuable information about the app's

functionality. Usually, researchers extract two main feature

categories from the class, which are API calls and opcodes.

Analysing these features can help detect suspicious or

malicious activities, such as accessing sensitive system

resources, making unauthorized network requests. Zhao, Li,

Zheng and Shi (2018) and Niu et al. (2020) extracted opcode

sequences from the bytecode or classes of the Android app and

utilized them as input for a deep learning model in order to

detect Android malware. Both studies trained on small datasets

and got high scores.

Ma, Ge, Liu, Zhao and Ma (2019) developed a novel approach

based on the API call to identify malicious code in the Android

system. They proposed a selection approach for API features

relevant to malware, explored the structure interactions among

these APIs, and developed a CNN classifier model for the

classification of the API features. A real-world dataset with

3,697 malicious apps and 3,312 benign apps showed that the

API features were efficient in classifying Android malware. H.

Zhang, Luo, Zhang and Pan (2019) proposed a new malware

detection method for Android applications based on correlation

relationships among abstracted API calls. The source code is

divided into function methods and association rules mining is

used to define an application in computational semantics.

Machine learning algorithms are used to distinguish benign and

malicious.

There are many studies that combine the features from

manifests and classes for the purpose of increasing the accuracy

of the model. Lê, Nguyen, Truong, Nguyen and Ngô (2020)

proposed a method of machine learning to identify Android

malware apps. The features that are used to train machine

learning are built based on behaviour, requisite permissions,

and other features of malicious applications. The findings

achieved an accuracy of 98.66% with a set of 28879 samples

containing malicious and benign apps. Tiwari and Shukla

Ibrahim et al. / Science Journal of University of Zakho 11(4), 469– 480, October-December, 2023

472

(2018) proposed a system for detecting malware in mobile

devices based on two common types of features: permission

and API calls using machine learning algorithms. Due to the

limited resources of the mobile device, the proposed system

reduced the number of features in the dataset to 30 features

using the PCA algorithm.

Singh, Wadhwa, Ahuja, Soni and Sharma (2020) proposed

model uses Latent Semantic Indexing (LSI) to reduce the

representation of opcodes in a lower-dimensional space,

allowing the system to work with a smaller set of opcodes.

Additionally, permissions and intents are added to the feature

set to improve the performance of the model classifiers. The

authors combine permissions with API call detecting

ransomware application. Almomani et al (2021) developed an

approach for detecting ransomware by combining permissions

with API calls. The method employed the SVM approach for

the classification while addressing the imbalance between

benign and ransomware apps in the dataset through the use of

the Synthetic Minority Oversampling Technique (SMOTE).

This method offers a promising solution for accurately

identifying ransomware based on its distinctive permissions

and API patterns, providing enhanced security measures

against this prevalent threat.

R. Kumar et al. (2019), Yerima and Alzaylaee (2020), and

Esmaeili and Shahriari (2019) focused on combining manifest

features with source code features to train deep learning

models, including multimodal deep neural networks and

CNNs. However, it is worth noting that these studies employed

unbalanced datasets during the training process. Yerima and

Alzaylaee (2020), Esmaeili and Shahriari (2019) focused on

only one type of malware, which is botnets. Further, a

framework based on the stacking approach is proposed by Xie,

Qin and Di (2023). The proposed approach comprises three

parts: dataset creation, feature reduction, and optimization

method GA-StackingMD. The implementation of a stacking

model comprising five base classifiers has resulted in a

significant enhancement in detection accuracy when compared

to the use of individual classifiers.

All the aforementioned studies on static analysis have a

common limitation in that they solely relied on computer-based

examination processes and did not involve the actual use of

mobile devices. This limitation raises concerns about the real-

world applicability and performance of the developed models

for detecting malware on mobile devices. Feng, Liu and Lin

(2019) introduced the MobiDroid system, which comprises two

components for detecting malicious applications on mobile

devices. The server component generates feature dictionaries

and trains deep neural networks, while the mobile device

component utilizes the dictionaries and trained model for on-

device malware detection. The approach takes into account the

performance limitations of Android devices, allowing users to

balance classification accuracy and overall cost. Yuan, Jiang,

Li and Cai (2019) developed an on-device lightweight Android

malware detector based on the broad learning method. The

presented system detector uses primarily one-shot model

training calculation. It can therefore be trained directly or

progressively on mobile devices. The model can be increased

further via on-device model retraining.

The analysis of the Android manifest file and source code

features has proven to be a common and effective technique in

Android malware detection. These files contain crucial

information about an application's functionalities and provide

valuable insights into an app's behaviour and potential risks.

Researchers have built numerous machine learning and deep

learning models based on single-feature and multi-feature

categories and got promising results. Despite these promising

results, it is essential to address certain limitations. Most of the

studies rely solely on computer-based testing, without

considering the actual use of mobile devices. Ensuring real-

world applicability and performance of the developed models

on mobile devices remains a critical consideration for practical

deployment.

Based on specific parameters, Table 1 represents the summary

of the previous works that are based on static analysis.

Table 1. Summary of the papers based on static analysis

Reference Dataset

Sources

No. of

Sample

Method Analysis

Tool

Feature Type Acc.

%

Pre.

%

Recall

%

F1

score%

(Khatter, 2018)

Drebin,

Androtrack
er

B 533

M 527

NB,KLR,SLR,RB

F, SMO, PART,
CNN, SVM

AndroData

Weak tool

Permission 98.2 --- --- ---

(Zhao et al.,

2018)

Drebin,

Chinese
app

B 1200

M 1200

CNN APK Tool Opcode 99.07 99.12 99.11 99.12

(Tiwari &

Shukla, 2018)

GP,

PRAGaurd

B 652

M 669

PCA and chi

Square test for

feature reduction
and SVM for

detection

AXMLPrin

ter2.jar

permission, API

call

94.69 --- --- ---

(R. Kumar et
al., 2019)

GP,VirusSh
are,

Malgenome

B 21047
M 14284

multimodal deep
neural network

APK Tool permission, API
call, Opcode,
others

98 --- 98.2 ---

(Sirisha &

Anuradha,
2019)

--- 398 for

B and M

Sequential neural

network

Androguard Permission 85 --- --- ---

(Kapoor et al.,

2019)

GP ,

VirusShare
and other

trusted sites

B 1500

M 2500

LR, LDA, KNN,

SVM, GNB, DT

python

script

Permission 99.34 99.4 --- 99.5

(Sandeep,
2019)

GP,
Virsushre

--- RF for feature
Selection

DL for

classification

Androguard Permission 94.65 --- --- ---

Ibrahim et al. / Science Journal of University of Zakho 11(4), 469– 480, October-December, 2023

473

(Ma et al.,

2019)

androzoo,

AMD

B 10010

M 10683

DNN with LSTM FLOWDR

OID

API call --- 99.15 98.82 98.98

(H. Zhang et

al., 2019)

Drebin.

AMD and

androzoo

B 26464

M 26403

SVM, KNN,RF

for classification

and ARM for
feature reduction

Andguard API call 96 97 95 96

(Esmaeili &

Shahriari,

2019)

Drebin --- NB,DT,KNN Androbug

and MobSF

tool

permission, API

call, Intent,
Network,
Hardware, others

96 9.6 81.4 88.3

(Feng et al.,

2019)

GP, Drebin,

Genome,vir
usshare

B 21499

M 21499

CNN ApkTool,

AndroGuar
d, Soot,

FlowDroid

permission, API

call, Opcode

97 96.87 96.87 ---

(Yuan et al.,

2019)

AndroZoo,

VirusShare
and

Contagio

B 33655

M 22221

BL AXMLPrin

ter
baksmali

permission, API

call, Intent

94.71 92.4 89.61 93.42

(Khariwal et

al., 2020)

Genome

Drebin and

Koodous

B 1414

M 1714

SVM, NB, RF for

detection and IG

for feature

selection

Apktool permission, Intent 94.37 --- --- ---

(Alsoghyer &
Almomani,

2020)

HelDroid,
RansomPro

ber
,Virus Total

and

Koodous

B 500
M 500

RF, J48, SMO,
NB

Apk tool
Weka tool

Permission 96.9 --- --- ---

(Dharmalingam
& Palanisamy,

2021)

GP,
AAGM,

AMD

B 1005
M 1592

Proposed PGS,
SVM, DT, DNN,

TF-IDF for feature

Reduction

APKParser
tool,

XML-

DOM

Permission 94.22 --- 93.4 ---

(Sewak et al.,

2020)

GP and

Drebin

B 5721

M 5560

SAE and MLP

DNN

APKTOOL Intent 77.2 --- --- ---

(Jiang et al.,
2020)

Xiaomi
App Store,

MalGenom

e and
Andro-

MalShare

B 1700
M 1600

SVM, KNN, NB,
J48) for detection

and IG for feature

selection

Apktool
Weka

permission, Intent --- --- 94.5 94.5

(Sangal &
Verma, 2020)

CICInvesA
ndMal2019

B 1126
M 396

RF, KNN, NB,
DT, SVM for

classification and

PCA For feature
Selection

Weka permission, Intent 96.05 96 96.1 96

(Y. Zhang et

al., 2020)

Drebin M 5554 LR , GBDT, RF Dex.-jar permission, Intent,
Hardware, others

97.98 98.51 98.37 98.47

(Niu et al.,

2020)

Virusshare ,

AndroZoo

and
Peapod.

B 1000

M 1796

LSTM FlowDroid,

drizzleDum

per and
FUPK3

Opcode 97 97 97 97

(Lê et al., 2020)

GP,

Virusshare

B 12290

M 16589

NB,RF,DT,

Gradient Boosting

and AdaBoost

Dexdunp permission, API

call

98.66 --- --- ---

(Singh et al.,

2020)

CICInvesA

ndMal2019

Android
Botnet

B 1147

M 905

LSI, SVM, LR,

RF, KNN

Androguard Permissions,

Intents, opcodes

93.92

96.89 88.64 92.58

(Yerima &

Alzaylaee,
2020)

ISCX

botnet
dataset

B 6803

M 1929

CNN Developed

by the
author

permission, API

call, Intent, others

98.9 98.3 97.8 98.1

(Mathur et al.,

2021)

AndroZoo,

Virus total,

AMD

B 14730

M 14700

KNN,RF, LR,

SVM,ET,

XG,AB,BG

Androguard Permission 96.95 --- --- ---

(Amer, 2021)

Drebin

MalGenom

e

B 9476

M 5560

Ensemble Model(

RF, MLP,

AdaBoost, SVM,
DT)

--- Permission 99.3 98.8 99.3 99

(Almomani et

al., 2021)

GP,VirusT

otal,

Koodous,

RansomPro

per Project

B 9653

M 500

PSO, SVM and

SMOTE

APK Tool permission, API

call

--- --- 96.4 ---

Ibrahim et al. / Science Journal of University of Zakho 11(4), 469– 480, October-December, 2023

474

(Xie et al.,

2023)

CICMalDro

id2020

B 13204

M 4039

GA-StackingMD

(SVM, KNN,

LGBM, CatBoost,
and RF)

Androguard permission, API

call, Opcode,

Intent, others

98.66 99.15 99.06 99.1

3.4. Malware IDS-based dynamic features

In the dynamic approach, the application is executed in a

controlled environment, monitors the running code, and

inspects its interaction with the system. The dynamic analysis

traces many features of an application and system, such as

system calls, system components, network traffic, CPU

consumption, memory usage, battery usage, and user

interaction with the system (Painter & Kadhiwala, 2018). The

system can detect malware in runtime with this approach

(Riasat, Sakeena, Sadiq, & Wang, 2018). The process of

dynamic analysis is illustrated in Figure 3.

Figure 3. Dynamic analysis process

3.5. System calls features

Monitoring system calls made by an app during execution can

reveal suspicious activities, such as file manipulation, network

communication, or attempts to escalate privileges. Unusual or

unauthorized system calls may indicate the presence of

malware. Xiao, Zhang, Mercaldo, Hu and Sangaiah (2019)

developed a novel classifier using Long Short Term Memory

(LSTM) networks and system call sequences to detect malware

on Android operating systems. The classifier consists of two

LSTM networks trained on malware and legitimate

applications, respectively. When a new sequence is

encountered, similarity scores from the two networks are

computed to classify the associated application. Q. Zhou et al.

(2019) developed a novel malicious software detection system,

introducing an innovative machine-learning classification

algorithm. Unlike previous versions, this system utilizes the

Monte Carlo technique to randomly adjust weights, enhancing

optimization based on structural risk minimization and design

risk reduction objectives. Comparative analysis with nine well-

known machine learning algorithms revealed that the proposed

system achieved an accuracy rate of 97.85% and higher

accuracy than all compared algorithms.

According to Abderrahmane, Adnane, Yacine and Khireddine

(2019) and X. Zhang et al. (2022), a client-server architecture

was employed to analyze and classify the execution state of

Android applications as either malware or benign. The mobile

apps are sent to a remote server via a user-friendly interface. It

would be installed and run in a simulation of a human user's

interaction with it. After the execution of an application, the

system calls produced by the Linux kernel are collected,

analyzed, and fed into a neural network model that will be used

to determine if the analyzed applications are malware or

benign.

John, Thomas and Emmanuel (2020) proposed a new malware

detection mechanism for Android with Graph Convolutional

Network (GCN). With GCN, a four-dimensional representation

of Android applications with centralizing graph measures as

features are produced. The proposed method obtained a four-

dimensional feature representation for Android applications, as

well as a detection accuracy of 92.3% on datasets including

malware that had been obfuscated by the attacker. Manzil

(2022) presented a dynamic behaviour analysis for detecting

malicious Android applications. The CICMalDroid2020

dataset was employed in the proposed study, whereby the

system calls of applications were extracted via dynamic

analysis. Several machine learning algorithms were trained on

the dynamic features (system calls). Mahdavifar, Kadir,

Fatemi, Alhadidi and Ghorbani (2020), Bansal, Baliyan and

Ghosh (2022), and AlOmari, Yaseen and Al-Betar (2023) have

incorporated system calls along with other features, including

binders and composite behaviours, to identify the behavior of

Android applications. These studies utilized the

CICMalDroid2020 dataset to analyse APK files within a

controlled environment.

3.6. Hardware and network features

By monitoring the behaviour of the device's hardware

components and examining the data exchanged over the

network, suspicious activities and potential malware can be

identified. In hardware analysis, abnormal behaviour such as

excessive battery usage or unauthorized access to device

features like the camera can indicate the presence of malware.

Network traffic analysis involves inspecting the data

transferred between the device and external servers, looking for

patterns associated with malware, such as communication with

command-and-control servers or unauthorized data transfers.

Ariyapala, Do Hoang, Huynh, Wee and Conti (2016), Ribeiro

et al. (2020), and Barbhuiya, Kilpatrick and Nikolopoulos

(2020) have developed intrusion detection systems (IDS)

aimed at detecting malware on mobile devices, utilizing a

combination of hardware and network features. The IDS

proposed by Ariyapala et al. (2016) collects host-based data,

including CPU utilization, battery consumption, process

execution, user activity, and network traffic. This data is then

transmitted to a remote server for analysis, enabling the

identification of malicious activity on the smartphone. On the

other hand, Ribeiro et al. (2020) and Barbhuiya et al. (2020)

focus on one-class classification models trained on standard

usage patterns of CPU, battery, memory, and network traffic.

These models raise intrusion alarms when significant

deviations from the regular patterns are detected.

Radoglou-Grammatikis and Sarigiannidis (2017) developed

intrusion detection system (IDS) aims to identify abnormal

actions on mobile Android devices by continuously monitoring

network activity and collecting

Ibrahim et al. / Science Journal of University of Zakho 11(4), 469– 480, October-December, 2023

* Corresponding author
This is an open access under a CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

475

NetFlows features. An artificial neural network (ANN)

processes the collected data streams to determine the presence

of an attack. While Wang et al. (2019) proposed a lightweight

malware identification framework for Android systems, where

network traffic from the mobile app is redirected to a server for

analysis, reducing resource utilization on the device.

Android malware detection based on dynamic features in most

previous studies got promising results. However, several

limitations need to be addressed. Some of the proposed

approaches involve transmitting data to remote servers, which

raises privacy issues about private user data. Additionally,

these methods might not work in situations when the internet

connection is slow or unavailable. Some approaches may face

challenges in real-time detection, as the analysis of system calls

may require time-consuming computations, leading to delayed

responses to emerging threats. Studies based on monitoring

network traffic and hardware resources can introduce

additional overhead, affecting the device's performance and

battery life. Table 2 represents the summary of the previous

works that are based on dynamic analysis.

Table 2. Summary of the papers that based on dynamic analysis

Reference Dataset

Sources

No. of

Sample

Method Analysis

Tool

Feature Type Acc.

%
Pre.

%
Recall

%
F1

score%

(Ariyapala et

al., 2016)

Created by

Author

--- Markov Chain WireShark Network traffic, CPU,
Battery, running process
and services

--- --- --- ---

(Xiao et al.,

2019)

Drebin,

Google
Play

B 3567

M 3536

LSTM Monkey and

Strace

System call 93.7 91.3 96.6 ---

(Radoglou-

Grammatikis

&
Sarigiannidis,

2017)

CTU-13

dataset

--- MLP --- Network traffic 85 --- --- ---

(Q. Zhou et al.,
2019)

Baidu
Mobile

Application

market and
VirusShare

B 920
M 379

Monte Carlo
algorithm.

--- System call 97.85 --- 98.7 ---

(Wang et al.,

2019)

Drebin B 8321

M 5560

C4.5 TcpDump

tool

Network traffic 97.89 --- --- ---

(Abderrahman
e et al., 2019)

ArgusLab,
Darwin

project

B 2450
M 10300

CNN Android
emulator,

Monkey

Tool, Strace
Tool

System call 93.3 94.1 97.8 96

(Ribeiro et al.,

2020)

Run Time

Dataset
Generation

B 1200

sample

One class K-

mean and
univariate

Gaussian

--- Network traffic, CPU,
Battery, Memory,
running process and

services

91 --- 85.7 ---

(John et al.,

2020)

GP,Deribn,

AMD and
Malgenome

B 1410

M 720

Graph

Convolutional
Nets (GCN)

Emulator,

Monkey
Tool, Strace

Tool, Weka

System call 92.3 91.5 93.3 92.3

(Mahdavifar et
al., 2020)

CICMalDro
id2020

B 1795
M 9803

DNN CopperDroid System call, Binder,
Composite behaviour

96.7 99.16 96.54 97.84

(Barbhuiya et

al., 2020)

Run Time

Dataset
Generation

--- One class

classification
and probability

distribution

Emulator Network traffic, CPU 93.3 --- --- ---

(X. Zhang et
al., 2022)

AMD,
Google

play

B 300
M 125

MLP Monkey
runner, trace

tool, ADB

tool

System call 99.34 99.12 99.07 99.44

(Manzil,

2022)

CICMalDro

id2020

B 1795

M 1253

RF, DT, LR,

SVM,

and AdaBoost

Monkey

runner, trace

tool, ADB
tool

System call 99.5 99.5 99.5 99.5

(Bansal et al.,

2022)

CICMalDro

id2020

B 1,795

M 9803

Light Gradient

Boosting

Copper-

Droid

System call, Binder,

Composite behavior

98.01 99.19 98.39 98.79

(AlOmari et
al., 2023)

CICMalDro
id2020

B,M
11598

Light Gradient
Boosting

CopperDroid System call, Binder,
Composite behavior

95.49 95.48 94.7 95.47

https://creativecommons.org/licenses/by-nc-sa/4.0/

Ibrahim et al. / Science Journal of University of Zakho 11(4), 469– 480, October-December, 2023

* Corresponding author
This is an open access under a CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

476

3.7. Malware IDS-based hybrid features

Malware IDS-based hybrid features are characterized by the

combination of diverse feature types within an Intrusion

Detection System (IDS) framework, aimed at the identification

and detection of malware. These hybrid features integrate

various sources of information, including manifest files, source

codes, system calls, network traffic patterns, and hardware

features. The purpose of this integration is to augment the

accuracy and effectiveness of malware detection within the

IDS system.

As conducted by Arshad et al. (2018), a three-level hybrid

malware detection model has been created for Android

operating systems that combine the strengths of the three

different levels to offer excellent detection accuracy: a)

dynamic and static analysis, b) remote and localhost, and c)

machine learning algorithms. Kuo, Liu and Wang (2019),

Fang, Yang and Ji (2019) employed a combination of static

feature analysis through permissions and dynamic feature

analysis through API usage to enhance the accuracy of Android

malware detection.

Arora and Peddoju (2018), Shyong, Jeng and Chen (2020)

focused on a hybrid method consisting of static permissions

and monitoring network traffic features used for the purpose of

detecting malicious activity on mobiles. The proposed system

by Shyong et al. (2020) utilizes two phases. In the first phase,

static permissions are collected and classified into benign and

malicious applications, filtering out benign ones. The second

phase involves the dynamic analysis of network traffic

generated by identified malware. Features are extracted from

the malware's network behaviour, and machine learning is

employed to classify the malware into specific families. Y. Liu,

Zhang, Li and Chen (2016) and N. Zhang et al. (2021) focused

on distinguishing benign applications from malware by

analysing both the manifest and system call features.

Vinayakumar, Soman, Poornachandran and Sachin Kumar

(2018) presented the LSTM model for detecting malware on

Android devices. Different network topologies with many

network parameters are employed to obtain acceptable

malware detection rates. A layered LSTM of 32 blocks of

memory has shown success in detecting all individual malware

behaviours, compared to other static machine learning

classifications. Garg and Baliyan (2019) proposed an ensemble

model combining machine learning algorithms to efficiently

identify and classify malware. Features such as permission,

API calls, system components, network traffic, battery, and

other features were extracted from applications and devices.

During the experimental results, the accuracy of the proposed

system reached 98.27%. Table 3 represents the summary of the

previous works that is based on hybrid analysis.

Table 3. Summary of the papers based on hybrid analysis

Reference Dataset

Sources

No. of

Sample

Method Analysis Tool Feature Type Acc. % Pre.

%
Recall

%
F1

score%

(Y. Liu et al.,
2016)

Wandoujia
and Gnome

project

B+M
500

SVM, KNN,NB Apktool. ADB
Tool, Strace Tool,

Monkey Tool

permissions, API
call, System calls

93.33~
99.28

--- 94.59
~99.4

7

(Arshad et

al., 2018)

Drebin,

Genome

--- SVM RF,DT, NB Asset Packaging

tool ,Baksmali
tool., Weka

Network 98.97 --- 98.5 ---

(Arora &

Peddoju,
2018)

Genome

Project

B 600

M 524

FP-Growth

algorithm, IG and
Chi-Square for

feature selection

Apk tool permissions,

Network

94.25 --- 97.9 ---

(Vinayakum

ar et al.,
2018)

MalGenome B 408

M 1330

LSTM Apk Tool, Adb

monkey tool

permissions,

Battery, Memory

93.9 ~

97.5

--- --- ---

(Kuo et al.,
2019)

GP,
Virusshare

B 1000
M 1000

SVM, RF Apk tool, Emulator permissions, API
call

94 --- 95 ---

(Fang et al.,
2019)

GP,
Virusshare

B 4000
M 4000

XGBoost,
Bayesian classifier

for detection and

classification. TF-
IDF for feature

filtering

Apk Tool,
BackSmali Tool,

MALINE Tool

Monkey Tool
,Emulator, Strace

Tool

permissions, API
call

94.6 --- --- ---

(Garg &

Baliyan,
2019)

GP,

Wandouji,
AMD,

Androzoo

B 60000

M 25450

ensemble (SVM,

PART, MLP,
RIDOR)

Apk tool,

Emulator, ADB
shell, Strace tool

permissions, API

call, System calls,
Network, Battery,

CPU, Memory

98.27 --- 98.79 ---

(Shyong et
al., 2020)

GP, Drebin B 1000
M 1024

RF aapt dump
permissions,

Emulator,Tcpdum

p ,Monkey tool

permissions,
Network

96
~98.86

--- --- ---

(N. Zhang et
al., 2021)

PlayDrone,
Drebin

B 2978
M 2707

CNN, BiLTSM Strace, Monkey,
AndroGuard, ADB

tools

Opcode, System
calls

97 56.5 95.5 96

4. DISCUSSION AND COMPARISON

This section discusses the methodologies employed by

researchers for analysing Android applications, along with the

strengths and weaknesses of each approach. Furthermore, the

study explores the types of features utilized by researchers in

their analyses. Most of the researchers reviewed in this study

focused on analysis at the application level instead of the

https://creativecommons.org/licenses/by-nc-sa/4.0/

Ibrahim et al. / Science Journal of University of Zakho 11(4), 469– 480, October-December, 2023

477

system level due to limited resources on smartphones. The

behaviour of applications is typically examined through three

approaches: static analysis, dynamic analysis, and hybrid

analysis. Static analysis involves decompiling the application

and extracting key features to differentiate between malicious

and benign activities without executing the application.

Dynamic analysis, on the other hand, involves executing the

application on a real device or in a simulated environment to

extract relevant behavioural features. Hybrid analysis

combines the strengths of both static and dynamic analysis to

enhance the detection capabilities of the system. In general,

static analysis is known for its speed and simplicity compared

to dynamic analysis, while hybrid analysis is more complex

than both static and dynamic methods. Figure 4 illustrates the

distribution of papers reviewed in this study, highlighting the

utilization of static, dynamic, and hybrid methods for analysis.

Figure 4. Statistics about the analysis technique
Comparing malware IDS based on different feature sets is crucial for

assessing their strengths and weaknesses in detecting Android

malware. Malware IDS relying on Android manifest analysis rapidly

extracts vital information about an app's functionalities and potential

risks. However, they may struggle with advanced malware that uses

obfuscation techniques to conceal malicious activities within legitimate

functions. Source code-based IDS, particularly API analysis,

effectively detects suspicious activities like accessing sensitive

resources; nevertheless, it may encounter challenges with obfuscated

code, leading to false positives or negatives. System call-based IDS can

identify unknown malware but requires more computational resources

and time, potentially causing delays in real-time detection. Hardware-

based monitoring IDS, examining resources like battery and CPU, is

valuable for detecting resource-exploiting malware; however, it may

impact device performance and battery life due to additional overhead.

Android malware detection approaches can utilize single-category or

multi-category features. Single-category features, such as permissions,

offer simplicity and efficiency but result in lower detection accuracy.

In contrast, multi-category features, including permissions, APIs, and

network traffic, enhance detection accuracy but pose challenges in

handling multiple categories and require more processing resources.

Figure 5 presents the statistical analysis of the reviewed papers,

showcasing the utilization of single and multi-category features in

static analysis.

Figure 5. Single and multi-feature category statistics

Furthermore, it is crucial to highlight the significance of the features

and databases employed by researchers. Figures 6 and 7 provide visual

representations of the prominent features and commonly utilized

databases in the reviewed papers in this work.

Figure 6. More frequent feature categories

Figure 7. Frequent dataset used by researchers

Some researchers have developed IDS systems using one-class

classifiers that rely exclusively on normal behaviour data obtained

from running benign apps, eliminating the need for training with

malicious samples. However, these models are prone to false positives

due to unexpected changes in smartphone behaviour, such as CPU

spikes during Android OS maintenance or sudden increases in network

traffic from background downloads or installations. Therefore, when

constructing a host-based IDS for detecting malicious activities on

smartphones, it is advisable to strike a balance between accuracy and

efficiency, considering the limited resources available on smartphones,

particularly in terms of CPU, memory, and battery.

5. CHALLENGES AND RECOMMENDATIONS

The process of constructing a machine learning-based mobile

malware detection model entails several key steps. Firstly,

samples of both benign and malicious applications are

analysed, and crucial features are extracted from them.

Subsequently, a classification model is developed capable of

effectively differentiating between benign and malicious

samples. To assess the model's performance, it is tested on a

mobile device using real-time applications. Evaluation metrics

such as accuracy and performance are then used to measure the

effectiveness of the model. Despite the substantial progress

made by researchers in developing various models, there

remain several challenges and open issues that warrant further

investigation. The following points outline some of these

challenges:

1- Dataset: Due to the lack of a comprehensive and

available dataset, many researchers have relied on

the Drebin dataset. While this dataset is valuable, it

does not include new samples of applications. As

Android continuously evolves with new versions and

Ibrahim et al. / Science Journal of University of Zakho 11(4), 469– 480, October-December, 2023

478

updates that introduce new features and deprecate old

ones, developers exploit these changes to build

applications. Hence, it is recommended to construct

a dataset that comprises applications based on most

API levels of Android; this provides many

advantages, such as improved model generalization,

an accurate representation of the Android ecosystem,

and enhanced model accuracy.

2- Analysis tool: Researchers face challenges in

analysing a large number of applications, as it is a

time-consuming process that often requires multiple

tools and expertise. It is recommended to develop an

automat and easy-to-use analysis tool that can

analyse applications in static, dynamic, and hybrid

modes and extract features from them. This saves

time for the user to analyse as many applications as

possible in different ways.

3- Feature Selection: The identification and selection

of informative features for malware detection is a

critical task. It is recommended to explore advanced

feature selection techniques, such as combining

existing methods or developing new ones, to enhance

the model's accuracy and efficiency.

4- Privacy Preservation: Ensuring user privacy while

conducting malware detection is essential. It is

recommended to explore the possibility of

conducting certain analysis tasks locally on the user's

device. This approach can minimize data sharing and

enhance user privacy.

5- Real-Time Detection: Mobile malware detection

models should operate efficiently in real-time,

without imposing excessive computational overhead

on the device. It is recommended to create a model

that relies on computationally-efficient features.

Utilizing these features, the model will optimize

resource utilization while maintaining its

effectiveness in detecting malware promptly,

enabling swift responses to emerging malicious

activities.

6. CONCLUSION

This paper presents a comprehensive overview of Android

malware intrusion detection systems and their classification.

The three analytical methods discussed in previous works are

static, dynamic, and hybrid analysis. The statistical analysis

shows that static analysis is the approach that is most frequently

used (53%), followed by dynamic analysis (29%), and hybrid

analysis (18%). The results of the analysis also showed that the

most used features by researchers were permissions, which

reached 34%, followed by API calls, system calls, and intent

features, respectively. The study emphasizes the importance of

considering both the selection of databases for benign and

malware applications and the appropriate tools for analysis to

extract critical features from diverse sources. Notably, the

Drebin database was the preferred choice for 22% of

researchers for malware samples, while 25% relied on the

Google Play database for benign applications. Finally, the

paper addresses open challenges in the field and offers valuable

recommendations for further research and development in the

domain of Android malware detection.

7. ACKNOWLEDGEMENTS

Full thanks expressed to Duhok Polytechnic University (DPU).

8. COMPETING INTERESTS

Authors have declared that no competing interests exist.

9. FUNDING

We would like to clarify that there was no external funding

received for this research project. The manuscript was

completed without any financial support or grants. We would

like to acknowledge that this study was conducted

independently and self-funded.

REFERENCES

Abderrahmane, A., Adnane, G., Yacine, C., & Khireddine, G. (2019).

Android malware detection based on system calls analysis and
CNN classification. Paper presented at the 2019 IEEE

Wireless Communications and Networking Conference

Workshop (WCNCW).
Agrawal, P., & Trivedi, B. (2019). A survey on android malware and

their detection techniques. Paper presented at the 2019 IEEE

International conference on electrical, computer and
communication technologies (ICECCT).

Almomani, I., Qaddoura, R., Habib, M., Alsoghyer, S., Al Khayer, A.,

Aljarah, I., & Faris, H. (2021). Android ransomware detection
based on a hybrid evolutionary approach in the context of

highly imbalanced data. IEEE Access, 9, 57674-57691.

AlOmari, H., Yaseen, Q. M., & Al-Betar, M. A. (2023). A Comparative
Analysis of Machine Learning Algorithms for Android

Malware Detection. Procedia Computer Science, 220, 763-

768.
Alqahtani, H., Sarker, I. H., Kalim, A., Minhaz Hossain, S. M., Ikhlaq,

S., & Hossain, S. (2020). Cyber intrusion detection using

machine learning classification techniques. Paper presented at
the Computing Science, Communication and Security: First

International Conference, COMS2 2020, Gujarat, India,

March 26–27, 2020, Revised Selected Papers 1.
Alsoghyer, S., & Almomani, I. (2020). On the effectiveness of

application permissions for Android ransomware detection.

Paper presented at the 2020 6th conference on data science
and machine learning applications (CDMA).

Amer, E. (2021). Permission-based approach for android malware

analysis through ensemble-based voting model. Paper
presented at the 2021 International Mobile, Intelligent, and

Ubiquitous Computing Conference (MIUCC).

Ariyapala, K., Do Hoang, G., Huynh, N. A., Wee, K. N., & Conti, M.
(2016). A host and network based intrusion detection for

android smartphones. Paper presented at the 2016 30th

International Conference on Advanced Information
Networking and Applications Workshops (WAINA).

Arora, A., & Peddoju, S. K. (2018). NTPDroid: a hybrid android

malware detector using network traffic and system
permissions. Paper presented at the 2018 17th IEEE

international conference on trust, security and privacy in

computing and communications/12th IEEE international
conference on big data science and engineering

(TrustCom/BigDataSE).
Arshad, S., Shah, M. A., Wahid, A., Mehmood, A., Song, H., & Yu, H.

(2018). SAMADroid: a novel 3-level hybrid malware

detection model for android operating system. IEEE Access,
6, 4321-4339.

BalaGanesh, D., Chakrabarti, A., & Midhunchakkaravarthy, D. (2018).

Smart devices threats, vulnerabilities and malware detection
approaches: a survey. European Journal of Engineering and

Technology Research, 3(2), 7-12.

Bansal, V., Baliyan, N., & Ghosh, M. (2022). Dynamic Android
Malware Detection Using Light Gradient Boosting Machine.

Paper presented at the 2022 4th International Conference on

Artificial Intelligence and Speech Technology (AIST).
Barbhuiya, S., Kilpatrick, P., & Nikolopoulos, D. S. (2020).

DroidLight: Lightweight anomaly-based intrusion detection

system for smartphone devices. Paper presented at the
Proceedings of the 21st International Conference on

Distributed Computing and Networking.

Bayazit, E. C., Sahingoz, O. K., & Dogan, B. (2020). Malware
detection in android systems with traditional machine learning

models: a survey. Paper presented at the 2020 International

Congress on Human-Computer Interaction, Optimization and

Robotic Applications (HORA).

Ibrahim et al. / Science Journal of University of Zakho 11(4), 469– 480, October-December, 2023

479

Borek, M. (2017). Intrusion Detection System for Android: Linux

Kernel System Salls Analysis.

Borkar, A., Donode, A., & Kumari, A. (2017). A survey on Intrusion

Detection System (IDS) and Internal Intrusion Detection and

protection system (IIDPS). Paper presented at the 2017
International conference on inventive computing and

informatics (ICICI).

Chawla, A., Lee, B., Fallon, S., & Jacob, P. (2019). Host based
intrusion detection system with combined CNN/RNN model.

Paper presented at the ECML PKDD 2018 Workshops:

Nemesis 2018, UrbReas 2018, SoGood 2018, IWAISe 2018,
and Green Data Mining 2018, Dublin, Ireland, September 10-

14, 2018, Proceedings 18.

da Costa, F. H., Medeiros, I., Costa, P., Menezes, T., Vinícius, M.,
Bonifácio, R., & Canedo, E. D. (2020). Droidxp: A

benchmark for supporting the research on mining android

sandboxes. Paper presented at the 2020 IEEE 20th
International Working Conference on Source Code Analysis

and Manipulation (SCAM).

Dharmalingam, V. P., & Palanisamy, V. (2021). A novel permission

ranking system for android malware detection—the

permission grader. Journal of Ambient Intelligence and

Humanized Computing, 12, 5071-5081.
Elkhadir, Z., Chougdali, K., & Benattou, M. (2016). Intrusion detection

system using pca and kernel pca methods. Paper presented at

the Proceedings of the Mediterranean Conference on
Information & Communication Technologies 2015: MedCT

2015 Volume 2.

Esmaeili, S., & Shahriari, H. R. (2019). PodBot: a new botnet detection
method by host and network-based analysis. Paper presented

at the 2019 27th Iranian Conference on Electrical Engineering

(ICEE).
Fang, Q., Yang, X., & Ji, C. (2019). A hybrid detection method for

android malware. Paper presented at the 2019 IEEE 3rd

Information Technology, Networking, Electronic and
Automation Control Conference (ITNEC).

Feng, R., Liu, Y., & Lin, S. (2019). A performance-sensitive malware

detection system on mobile platform. Paper presented at the
Formal Methods and Software Engineering: 21st International

Conference on Formal Engineering Methods, ICFEM 2019,

Shenzhen, China, November 5–9, 2019, Proceedings 21.
Garg, S., & Baliyan, N. (2019). A novel parallel classifier scheme for

vulnerability detection in android. Computers & Electrical

Engineering, 77, 12-26.
Georgios Kambourakis, A. S., Constantinos Kolias, and Dimitrios

Damopoulos. (2018). Intrusion Detection and Prevention for

Mobile Ecosystems: Taylor & Francis Group, LLC.
Gyamfi, N. K., & Owusu, E. (2018). Survey of mobile malware

analysis, detection techniques and tool. Paper presented at the

2018 IEEE 9th Annual Information Technology, Electronics
and Mobile Communication Conference (IEMCON).

Hein, C. L. P. M., & Myo, K. M. (2018). Permission-based feature
selection for android malware detection and analysis.

International Journal of Computer Applications, 181(19), 29-

39.
Istiaque, S. M., Khan, A. I., & Waheed, S. (2020). Smart intrusion

detection system comprised of machine learning and deep

learning. European Journal of Engineering and Technology
Research, 5(10), 1168-1173.

Jannat, U. S., Hasnayeen, S. M., Shuhan, M. K. B., & Ferdous, M. S.

(2019). Analysis and detection of malware in Android
applications using machine learning. Paper presented at the

2019 International Conference on Electrical, Computer and

Communication Engineering (ECCE).
Jiang, X., Mao, B., Guan, J., & Huang, X. (2020). Android malware

detection using fine-grained features. Scientific

Programming, 2020, 1-13.
John, T. S., Thomas, T., & Emmanuel, S. (2020). Graph convolutional

networks for android malware detection with system call

graphs. Paper presented at the 2020 Third ISEA Conference
on Security and Privacy (ISEA-ISAP).

Kapoor, A., Kushwaha, H., & Gandotra, E. (2019). Permission based

android malicious application detection using machine
learning. Paper presented at the 2019 International Conference

on Signal Processing and Communication (ICSC).

Khariwal, K., Singh, J., & Arora, A. (2020). IPDroid: Android malware
detection using intents and permissions. Paper presented at the

2020 Fourth World Conference on Smart Trends in Systems,

Security and Sustainability (WorldS4).

Khatter, K. (2018). Malicious Application Detection and Classification

System for Android Mobiles.

Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J. (2019).
Survey of intrusion detection systems: techniques, datasets

and challenges. Cybersecurity, 2(1), 1-22.

Kumar, R., Zhang, X., Wang, W., Khan, R. U., Kumar, J., & Sharif, A.
(2019). A multimodal malware detection technique for

Android IoT devices using various features. IEEE Access, 7,

64411-64430.
Kumar, S., Viinikainen, A., & Hamalainen, T. (2016). Machine

learning classification model for network based intrusion

detection system. Paper presented at the 2016 11th
international conference for internet technology and secured

transactions (ICITST).

Kuo, W.-C., Liu, T.-P., & Wang, C.-C. (2019). Study on android hybrid
malware detection based on machine learning. Paper

presented at the 2019 IEEE 4th International Conference on

Computer and Communication Systems (ICCCS).

Lê, N. C., Nguyen, T.-M., Truong, T., Nguyen, N.-D., & Ngô, T.

(2020). A Machine Learning Approach for Real Time

Android Malware Detection. Paper presented at the 2020
RIVF International Conference on Computing and

Communication Technologies (RIVF).

Lei, T., Qin, Z., Wang, Z., Li, Q., & Ye, D. (2019). EveDroid: Event-
aware Android malware detection against model degrading

for IoT devices. IEEE Internet of Things Journal, 6(4), 6668-

6680.
Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., & Liu, H. (2020). A review

of android malware detection approaches based on machine

learning. IEEE Access, 8, 124579-124607.
Liu, P. (2019). An intrusion detection system based on convolutional

neural network. Paper presented at the Proceedings of the

2019 11th International Conference on Computer and
Automation Engineering.

Liu, Y., Zhang, Y., Li, H., & Chen, X. (2016). A hybrid malware

detecting scheme for mobile Android applications. Paper
presented at the 2016 IEEE International Conference on

Consumer Electronics (ICCE).

Ma, Z., Ge, H., Liu, Y., Zhao, M., & Ma, J. (2019). A combination
method for android malware detection based on control flow

graphs and machine learning algorithms. IEEE Access, 7,

21235-21245.
Mahdavifar, S., Kadir, A. F. A., Fatemi, R., Alhadidi, D., & Ghorbani,

A. A. (2020). Dynamic android malware category

classification using semi-supervised deep learning. Paper
presented at the 2020 IEEE Intl Conf on Dependable,

Autonomic and Secure Computing, Intl Conf on Pervasive

Intelligence and Computing, Intl Conf on Cloud and Big Data
Computing, Intl Conf on Cyber Science and Technology

Congress (DASC/PiCom/CBDCom/CyberSciTech).
Malik, S. Anomaly based Intrusion Detection in Android Mobiles: A

Review.

Manzil, H. H. R. (2022). DynaMalDroid: Dynamic Analysis-Based
Detection Framework for Android Malware Using Machine

Learning Techniques. Paper presented at the 2022

International Conference on Knowledge Engineering and
Communication Systems (ICKES).

Mathur, A., Podila, L. M., Kulkarni, K., Niyaz, Q., & Javaid, A. Y.

(2021). NATICUSdroid: A malware detection framework for
Android using native and custom permissions. Journal of

Information Security and Applications, 58, 102696.

Niu, W., Cao, R., Zhang, X., Ding, K., Zhang, K., & Li, T. (2020).
OpCode-level function call graph based android malware

classification using deep learning. Sensors, 20(13), 3645.

Painter, N., & Kadhiwala, B. (2018). Machine-learning-based android
malware detection techniques—A comparative analysis.

Paper presented at the Information and Communication

Technology for Sustainable Development: Proceedings of
ICT4SD 2016, Volume 1.

Radoglou-Grammatikis, P. I., & Sarigiannidis, P. G. (2017). Flow

anomaly based intrusion detection system for Android mobile
devices. Paper presented at the 2017 6th International

Conference on Modern Circuits and Systems Technologies

(MOCAST).

Ibrahim et al. / Science Journal of University of Zakho 11(4), 469– 480, October-December, 2023

480

Riasat, R., Sakeena, M., Sadiq, A. H., & Wang, Y.-J. (2018). Onamd:

an online android malware detection approach. Paper

presented at the 2018 International Conference on Machine

Learning and Cybernetics (ICMLC).

Ribeiro, J., Saghezchi, F. B., Mantas, G., Rodriguez, J., & Abd-
Alhameed, R. A. (2020). Hidroid: prototyping a behavioral

host-based intrusion detection and prevention system for

android. IEEE Access, 8, 23154-23168.
Sandeep, H. (2019). Static analysis of android malware detection using

deep learning. Paper presented at the 2019 International

Conference on Intelligent Computing and Control Systems
(ICCS).

Sangal, A., & Verma, H. K. (2020). A static feature selection-based

android malware detection using machine learning
techniques. Paper presented at the 2020 International

conference on smart electronics and communication

(ICOSEC).
Sewak, M., Sahay, S. K., & Rathore, H. (2020). Deepintent:

implicitintent based android ids with e2e deep learning

architecture. Paper presented at the 2020 IEEE 31st annual

international symposium on personal, indoor and mobile radio

communications.

Shamshirband, S., Fathi, M., Chronopoulos, A. T., Montieri, A.,
Palumbo, F., & Pescapè, A. (2020). Computational

intelligence intrusion detection techniques in mobile cloud

computing environments: Review, taxonomy, and open
research issues. Journal of Information Security and

Applications, 55, 102582.

Shyong, Y.-C., Jeng, T.-H., & Chen, Y.-M. (2020). Combining static
permissions and dynamic packet analysis to improve Android

malware detection. Paper presented at the 2020 2nd

International Conference on Computer Communication and
the Internet (ICCCI).

Singh, A. K., Wadhwa, G., Ahuja, M., Soni, K., & Sharma, K. (2020).

Android malware detection using LSI-based reduced opcode
feature vector. Procedia Computer Science, 173, 291-298.

Sirisha, P., & Anuradha, T. (2019). Detection of permission driven

malware in android using deep learning techniques. Paper
presented at the 2019 3rd International conference on

Electronics, Communication and Aerospace Technology

(ICECA).
Tiwari, S. R., & Shukla, R. U. (2018). An android malware detection

technique using optimized permission and api with pca. Paper

presented at the 2018 Second International Conference on
Intelligent Computing and Control Systems (ICICCS).

Uğurlu, M., & Doğru, İ. A. (2019). A survey on deep learning based

intrusion detection system. Paper presented at the 2019 4th
International Conference on Computer Science and

Engineering (UBMK).

Vinayakumar, R., Soman, K., Poornachandran, P., & Sachin Kumar, S.
(2018). Detecting Android malware using long short-term

memory (LSTM). Journal of Intelligent & Fuzzy Systems,
34(3), 1277-1288.

Wang, S., Chen, Z., Yan, Q., Yang, B., Peng, L., & Jia, Z. (2019). A

mobile malware detection method using behavior features in
network traffic. Journal of Network and Computer

Applications, 133, 15-25.

Xiao, X., Zhang, S., Mercaldo, F., Hu, G., & Sangaiah, A. K. (2019).
Android malware detection based on system call sequences

and LSTM. Multimedia Tools and Applications, 78, 3979-

3999.
Xie, N., Qin, Z., & Di, X. (2023). GA-StackingMD: Android Malware

Detection Method Based on Genetic Algorithm Optimized

Stacking. Applied Sciences, 13(4), 2629.
Yerima, S. Y., & Alzaylaee, M. K. (2020). Mobile botnet detection: A

deep learning approach using convolutional neural networks.

Paper presented at the 2020 International Conference on
Cyber Situational Awareness, Data Analytics and Assessment

(CyberSA).

Yuan, W., Jiang, Y., Li, H., & Cai, M. (2019). A lightweight on-device
detection method for android malware. IEEE transactions on

systems, man, and cybernetics: systems, 51(9), 5600-5611.

Zachariah, R., Akash, K., Yousef, M. S., & Chacko, A. M. (2017).
Android malware detection a survey. Paper presented at the

2017 IEEE international conference on circuits and systems

(ICCS).

Zhang, H., Luo, S., Zhang, Y., & Pan, L. (2019). An efficient Android

malware detection system based on method-level behavioral

semantic analysis. IEEE Access, 7, 69246-69256.

Zhang, N., Xue, J., Ma, Y., Zhang, R., Liang, T., & Tan, Y. a. (2021).

Hybrid sequence‐based Android malware detection using
natural language processing. International Journal of

Intelligent Systems, 36(10), 5770-5784.

Zhang, X., Mathur, A., Zhao, L., Rahmat, S., Niyaz, Q., Javaid, A., &
Yang, X. (2022). An early detection of android malware using

system calls based machine learning model. Paper presented

at the Proceedings of the 17th International Conference on
Availability, Reliability and Security.

Zhang, Y., Feng, C., Huang, L., Ye, C., & Weng, L. (2020). Detection

of android malicious family based on manifest information.
Paper presented at the 2020 15th International Conference on

Computer Science & Education (ICCSE).

Zhao, L., Li, D., Zheng, G., & Shi, W. (2018). Deep neural network
based on android mobile malware detection system using

opcode sequences. Paper presented at the 2018 IEEE 18th

International Conference on Communication Technology

(ICCT).

Zhou, H., Yang, X., Pan, H., & Guo, W. (2020). An android malware

detection approach based on SIMGRU. IEEE Access, 8,
148404-148410.

Zhou, Q., Feng, F., Shen, Z., Zhou, R., Hsieh, M.-Y., & Li, K.-C.

(2019). A novel approach for mobile malware classification
and detection in Android systems. Multimedia Tools and

Applications, 78, 3529-3552.

