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ABSTRACT: 

The COVID-19 disease, which has recently emerged and has been considered a worldwide pandemic, has had a significant 

impact on the lives of millions of people and has forced a substantial load on healthcare organizations. Numerous deep-

learning models have been utilized for diagnosing coronaviruses from chest computed tomography (CT) images. However, 

in light of the limited availability of datasets on COVID-19, the pre-trained deep learning networks were used. The main 

objective of this research is to construct and develop an automated approach for the early detection and diagnosis of COVID-

19 in thoracic CT images. This paper proposes the DDTL-COV model, a deep transfer learning model based on 

DenseNet121, to classify patients on CT scans as either COVID or non-COVID, utilizing weights obtained from the 

ImageNet dataset. Two datasets were used to train the DDTL-COV model: the SARS-CoV-2 CT-scan dataset and the 

COVID19-CT dataset. In the SARS-CoV-2 CT dataset, the model achieved a good accuracy of 99.6%. However, on the 

second dataset (COVID19-CT dataset), its performance shows an accuracy rate of 89%. These results show that the model 

performed better than alternative methods. 

KEYWORDS: DTL, CNN, DenseNet121, COVID-19, Chest CT scan radiography.

1. INTRODUCTION 

1.1 Overview 

        SARS-CoV-2 or COVID-19 is the worldwide epidemic 

caused by Coronavirus illness in 2019 caused severe acute 

respiratory syndrome (SARS) and was found for the first time in 

Wuhan, which is located in China. In March 2020, the World 

Health Organization (WHO) gave the disease the name COVID-

19 and predicted that it would spread over the world as an 

epidemic (Cantarero et al. 2021;De Anda-Suarez et al. 2022). 

COVID-19 negatively affects the health of people, especially the 

elderly, people with existing medical issues, and people whose 

immune systems are already impaired. By the middle of July 

2020, more than 13 million individuals had contracted COVID-

19, and more than 570,000 people had already died from the 

epidemic (Sakib et al. 2020). COVID-19's most pervasive 

clinical characteristics are a dry cough, fever, and tiredness (Yan 

et al. 2021). patients often have the most severe symptoms of 

pneumonia after they have been infected with the coronavirus 

(Rahman, Khandakar, and Member 2021). Despite this, it is 

possible that some COVID-19 cases may exhibit no symptoms at 

all. In severe circumstances, intensive care unit treatment or 

oxygen support therapy may be required (Munusamy et al. 2021).  

"Reverse Transcriptase Polymerase Chain Reaction (RT-PCR)" 

real-time testing was utilized as a diagnostic method to halt the 

COVID-19 illness from spreading after the genome of SARS-

CoV-2 was sequenced (Mondal et al. 2022).  

        The present pandemic state does not support the low-

sensitivity RT-PCR test because RT-PCR takes considerable 

time and has a significant number of false-negative results 

(Ibrahim and Mahmood 2023). A test result that is falsely 

negative can result in an illness spreading extensively (Tabik et 

al. 2020). Sometimes, infected individuals may not be identified 

right away and may not receive the proper care (Shah et al. 2021). 

Consequently, diagnostic imaging, especially chest X-rays and 

 
 

chest computerized tomographic (CT) (Dai et al. 2020), is 

frequently used in combination with other tests to aid in earlier 

COVID-19 screening and treatment (Tai et al. 2021). 

        In light of this, lesions with ground-glass opacities (GGO) 

and pulmonary fibrosis are COVID-19 lung imaging features 

(Dong et al. 2021). CT scans are extremely sensitive, so they help 

assess the severity of the illness; however, their main limitation 

is the time required for diagnosis; even radiology specialists 

require approximately 21.5 minutes to parse each case's test 

results (Wu et al. 2021). For these reasons, automated diagnosis 

technologies, such as models of deep learning (DL), have been 

created to screen for COVID-19 in CT images recently (He et al. 

2020). According to several recent studies, CNNs are a particular 

kind of DL technique (Hussain et al. 2021), having a high 

capability for COVID-19 identification (Shi et al. 2021). With an 

acceptable performance prediction using COVID-19-infected 

patients' chest CT scan images (Mohammed et al. 2020). These 

techniques can be applied by fine-tuning the weights or 

knowledge gained from the pre-trained CNN model on the large 

dataset and adapting it to perform well on specific tasks with 

limited data and achieve better results compared to training from 

scratch (Shukla et al. 2020). As in the dataset of COVID-19  for 

the diagnosis of COVID-19 from CT-scan chest images (Sarker 

et al. 2020). A densely connected convolutional network 

(DenseNet), a specialized CNN technique, has the advantages of 

mitigating the problem of vanishing gradients, improving feature 

reuse, and decreasing parameter usage. Despite these advantages, 

it has some limitations, such as computational complexity and the 

substantial amount of GPU memory; furthermore, DenseNet-121 

is prone to overfitting (Albelwi 2022).  

        Therefore, the main focus of this study is on using pre-

trained DenseNet-121 models of DL to automatically identify 

and diagnose COVID-19 using chest CT-scan data. 

        The following is a list of the important contributions that 

this article has made: 

http://journals.uoz.edu.krd/
http://sjuoz.uoz.edu.krd/
https://creativecommons.org/licenses/by-nc-sa/4.0/
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1.         The DenseNet121-based Deep Transfer 

Learning (DTL) model was modified by the exclusion of the last 

layer (i.e., the top) and the addition of three dense layers, 

including Dense128, Dense64, and Dense2, to the model to 

enhance the model and achieve high accuracy. 

2. The model is used as an approach for 

automatically detecting and diagnosing COVID-19 patients on 

lung CT-scan images. 

3. To ensure a precise and effective evaluation of 

the model, the image datasets go through a pre-processing stage. 

4. Employing a modified model on two CT-scan 

image datasets offers a faster alternative to the widely used RT-

PCR testing kit. 

 

        The remaining parts of this article have been organized into 

the following sections and order: The relevant works are listed in 

section 2. The suggested DTL model and data description are 

described in Section 3. In section 4 the findings and their analysis 

are discussed. Finally, section 5 presents the points of conclusion. 

2.  RELATED WORK 

        Various study projects have been carried out extensively and 

fast in order to build AI strategies for combating the COVID-19 

worldwide pandemic. Some relevant research on using a chest 

CT scan to diagnose and classify COVID-19 is reviewed. 

Wang, Liu, and Dou (2020) suggested a new joint learning 

framework to use different datasets to detect COVID-19 disease. 

The network has been split into two parts. The first part has a 

lightweight structure and four separate layers of convolution. The 

second part has more densely packed learning blocks that 

connect. The COVID-CT dataset and SARS-CoV-2 were used in 

this work. The work results show that the SARS-CoV-2 dataset 

outperformed the COVID-CT dataset with an accuracy of 90%, 

95% precision, 85% recall, and a 90% F1-score. 

Panwar et al. (2020) proposed the VGG model as a type of DTL 

algorithm to classify COVID-19 positive or negative cases, that 

utilized three distinct datasets: SARS-COV-2 CT-scan, COVID-

chest X-ray, and Chest X-ray radiography. The grad-CAM-based 

colour representation technique was used by the researchers to 

make the suggested model more comprehensible and 

interpretable. Achieved an accuracy of 95%, a sensitivity of 

94.4%, and a specificity of 95.84. 

         Silva et al. (2020) presented a model called Efficient 

CovidNet applied to lung CT-scan radiography to identify 

COVID-19 patients, which uses voting techniques and cross-

dataset analytics. Experimental results obtained from SARS-

COV-2 CT-Scan datasets show a sensitivity of 98.80%, a 

precision of 99.2%, and an accuracy of 98.99%. 

Seum et al. (2020) compared 12 pre-trained CNNs models in 

classifying COVID-19 patients by utilizing an available dataset 

(the SARS-COV-2 CT-Scan). This work was carried out in two 

phases: one without segmentation and another with 

segmentation. The study results showed in the first phase that the 

performance of the DenseNet169 model is higher than other 

models in terms of F1-scores, and accuracy with 88.60% and 

89.31%, respectively. In the second phase, DenseNet201 and 

ResNet18 both obtained an accuracy of 89.92%, implying that 

using classification after segmentation improves the efficiency of 

a classification model. 

        Ramzy, Sherin, and Karma (2021) suggested (COV-CAF), 

which is a computer-aided framework to identify COVID-19 

cases through 3D CT-scan pictures. The researchers combined 

both DL and traditional techniques in COV-CAF, which has two 

stages: one for preparatory work and the second one for 

extracting and classifying. The first stage is focused on 3D CT 

volumes and proposes an effective cut selection method for 

selecting useful CT slices, and the second stage uses a recently 

developed CNN called Norm-VGG16 to extract features 

automatically. They employed two datasets, the SARS-CoV-2 

CT-scan and MosMedData. The findings obtained on the SARS-

COV-2 CT scan were 97.59% accuracy and 98.41% sensitivity; 

whereas, it gained an overall accuracy of 97.76% and an average 

sensitivity of 96.73% on the MosMedData dataset. 

         Biswas et al. (2021) conducted a study to use effective 

transfer learning (TL) algorithms to construct an accurate 

COVID-19 prediction model on SARS-CoV-2 CT datasets. 

Initially, they utilized three kinds of (DL) models separately: 

ResNet50, Xception, and VGG-16, and then combined these 

three models to increase the model's prediction accuracy. The 

suggested model has a high F1-score of 99% and an accuracy of 

98.79%. 

        Jaiswal et al. (2021) developed a DTL model to detect 

COVID-19 infection. It is a DenseNet201 – based model, which 

was trained before with a massive dataset known as the ImageNet 

dataset. The provided method produced results with an accuracy 

of 0.9625, 96.2% recall, 96.2% precision, and a specificity of 

96.21%. 

        Hasan et al. (2021), using CNN, suggested a method to find 

COVID-19 persons via images from lung scanning. They use the 

newest updated CNN model (DenseNet-121). The findings 

showed a satisfactory level of performance for the COVID-19 

prediction, with an accuracy of 92% and a recall of 95%. 

Horry et al. (2020) built a mechanism for COVID-19 detection 

based on the DL by utilizing the VGG19 algorithm on various 

kinds of medical photographs (CT, x-ray, ultrasound), achieving 

a precision of 84% for CT scans, 86% for x-rays, and 100% for 

ultrasounds, and this system was able to identify COVID-19 in 

100% of the ultrasound images. 

        Islam and Matin (2020) employed LeNet-5 CNN networks 

after a simple CNN model to predict COVID-19 from thoracic 

images. For training purposes, the obtained results were an 

accuracy of 86.06%, an F1-score of 87%, 89% recall, 85% 

precision, and a 0.86 ROC. 

Pham (2020) showed results from 16 pre-trained CNN models of 

COVID-19 classification. According to this study, TL led to 

higher classification rates than data augmentation. ResNet-18 

had the best sensitivity (98%), MobileNet-v2 earned the 

maximum accuracy (95%), and F1-score (96%), and DenseNet-

201 had the highest degree of specificity (96%). This research 

utilized various networks, including ShuffleNet, ResNet-18, 

DenseNet-201, and MobileNet-v2. 

        Garain et al. (2021), for COVID-19 screening, created a 

three-layer DCSNN using CT images. The proposed method 

obtained a 99% F1 score for the potential-based model. For chest 

CT images, the suggested SNN-based model outperforms CNN 

models, but it takes longer to train. Furthermore, in comparison 

to older DL models, the current method is more efficient. 

Chen et al. (2021) conducted a study on automatically identifying 

positive COVID-19 patients using chest CT scan radiography, a 

prototype network that has been pre-trained by a momentum-

contrasting learning strategy was applied. They obtained values 

of 87% of accuracy, 93.2% of AUC, 88.5% of precision, and 

recall 87.4%. 

        Huang and Liao (2022) proposed LightEfficientNetV2 

model and fine-tunes seven CNN techniques involving 

EfficientNet-B0, InceptionV3, Xception, MobileNetV2, 

DenseNet121, EfficientNetV2, and ResNet50V2 to diagnose 

COVID-19 cases on three different datasets (NIH Chest X-rays, 

SARS-CoV-2, and COVID-CT). The proposed 

LightEfficientNetV2 model obtained an accuracy of 99.47% on 

the SARS-CoV-2 dataset and 88.67% on COVID-CT. 

Kathamuthu et al. (2023) used several deep transfer learning-

based CNN approaches including InceptionV3, Resnet50, 

Xception, VGG16, VGG19, and Densenet121 to screen COVID-
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19 in chest CT images and achieved an accuracy of 98% with 

VGG16 model on SARS-CoV-2 CT-scan dataset. 

 

3. METHODOLOGY 

        In light of the limited number of COVID-19 radiography 

pictures in our dataset, it is difficult to develop a DL model in 

this situation because DL approaches need a huge dataset to start 

from scratch. Transfer learning (TL) could be utilized as an 

effective solution to this issue because TL techniques use the 

knowledge gained in one field to carry out tasks in other fields. 

For instance, when initializing DL models with weights obtained 

from the ImageNet (Fei-Fei, Deng, and Li 2010), as the ImageNet 

is a massive dataset comprised of 14 million images from various 

resources, by that time it has learned several features for diverse 

images, so these newly acquired features can then be applied to 

another dataset. For this reason, the weights gained from pre-

trained DenseNet-121 on the ImageNet dataset were employed 

for the SARS-COV2 and the COVID19-CT datasets in this study. 

3.1 Study Design 

        The study system's processes start with two distinct datasets 

that go through data pre-processing techniques before being split 

into training, validation, and test sets. Hence, the data are ready 

to fit into a modified model. Figure 1 shows the general study 

diagram. 

 

3.2 Datasets Description  

        The two datasets that were utilized in this paper are 

demonstrated in this section. It provides details about the source, 

size, nature, characteristics, and other information of the datasets.  

 

3.2.1 SARS-CoV-2 CT-scan dataset: This dataset consists of 

a total of 2481 CT scans from 120 patients, including 1252 CT 

scan images of 60 infected persons (COVID-19), 28 females with 

32 males, and 1229 CT scan images of 60 uninfected persons 

(non-COVID), females (30) and males (30) (Soares and Angelov 

2020). Figure 2 shows samples from each class (non-COVID and 

COVID-19). These data were obtained from patients in Sao Paulo 

hospitals, Brazil. There are no standard dimensions for CT-scan 

images; in general, their sizes are between 104 × 153 and 484 × 

416. Figure 3 shows the different sizes between them. The 

protocol offered for evaluating models is split randomly into 

training, validation, and testing at 80, 10, and 10 percent, 

respectively, by the train_test_split () method. The distribution of 

the dataset is shown in Table 1. The dataset can be found at: 

www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset. 

 

 

 

 

Figure 2: Non-COVID (left) and COVID-19 (right). 

 

Figure 3: CT-scan images of different sizes. 

 

Figure 1: The general study diagram. 
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3.2.2 COVID19-CT dataset:  The second dataset comprises   

216 instances of COVID-19 and 171 cases of non-COVID, with 

a collection of 746 CT scans. Among the CT scans, there are 349 

images of instances of COVID-19 with 397 samples of non-

COVID-19, including several other disorders of the lungs (He et    

al. 2020). Positive CT scans had been sourced from preprints on 

COVID-19 available on bioRxiv and medRxiv, displaying a 

range of symptoms. As the CT scans were obtained from various 

places, their dimensions varied from 124 × 153 to 1485 × 1853, 

causing inconsistencies in image contrast, as shown in Figure 4. 

The pattern of the spreading of the dataset is displayed in Table 

1. The data are available at : 

https://www.kaggle.com/datasets/luisblanche/covidct?resource=

download&select=CT_NonCOVID. 

 
  Figure 4: The differences in contrast CT scan images. 

 

Table 1: The pattern of distribution of the SARS-COV-2 CT-

scan and COVID19-CT datasets. 

Dataset 
SARS-COV-2 Ct-

Scan 
COVID19-CT 

# Patients 120  387 

# CT-scan images 2481 746 

Train sets images 1983 596 

Valid sets images 249 75 

Test sets images 249 75 

Figure 5: The DDTL-COV model's structure, which includes DenseNet121

3.3 Data Pre-processing 

        The term used to describe all the changes made to initial data 

before feeding it into machine learning (ML) or DL algorithms 

named pre-processing. All images are resized from different 

resolutions to 224 x 224 resolution using the OpenCV library 

interpolation function INTER_AREA. Additionally, the pixels' 

values might range from 0 to 255. If a DL model is applied to the 

image as-is, computing high numeric values may become more 

challenging. We can minimize this by adjusting the values to be  

 between 0 and 1, also known as normalization, which is a 

significant stage to guarantee that each input parameter (in this 

case, a pixel) has a uniform data distribution. This makes 

convergence faster while training the network. 

3.4 Data Augmentation Techniques  

        In data analysis, data augmentation is utilized to raise the 

number of training data sets either by producing drastically 

altered copies of already existing data or by developing synthetic 

data from earlier existing data. This is accomplished by one of 

these two methods. This technique enhances the generalization 

performance and classification accuracy of the model while also 

serving as a regularise to reduce overfitting (Tang, Yuan, and Zhu 

2020). Table 2 lists the parameters used for image augmentation 

in the current study. 

3.5 The Modified DenseNet121 

        In this study, a DenseNet121-based Deep Transfer Learning 

model-COVID-19 is modified and called (DDTL-COV) to 

classify COVID-19-infected patients from chest CT-scan images. 

The DDTL-COV was trained using TL, with the pre-trained. 

https://github.com/UCSD-AI4H/COVID-CT
https://www.kaggle.com/datasets/luisblanche/covidct?resource=download&select=CT_NonCOVID
https://www.kaggle.com/datasets/luisblanche/covidct?resource=download&select=CT_NonCOVID
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        DenseNet121 weights on the ImageNet dataset used as the 

initial weights. Following this, the model was fine-tuned on the 

COVID-19 dataset. Figure 5 shows the architecture of the DDTL-

COV model, which employs DenseNet121 for accurately 

classifying COVID-19 patients.  

The main parts of the DDTL-COV model are the feature 

extraction and classification parts. 

         In the feature extraction part, the input layer of the CNN is 

defined by the shape of the input image (224,224,3) followed by 

a convolutional layer of 3 kernels with size (3 x 3) with padding 

'same'. The DDTL-COV model was trained using TL with the 

pre-trained DenseNet121 weights on the ImageNet dataset. 

 

 

Table 2: Parameters for image augmentation 
Parameters values Functions 

Rotation-range 360 The degree range of rotations 

randomly 

Width-shift-range 0.2 The range of shifting 

horizontally is randomly 
selected. 

Height-shift-range 0.2 The range of shifting vertically 

is randomly selected.  

Horizontal-flip True The input randomly flips in the 
horizontal direction. 

Vertical-flip True The input randomly flips in the 

vertical direction. 

Zoom range 0.2 The randomized zooming range. 

 

                DenseNet is a logical extension of ResNet and boosts 

performance by merging the feature maps at each layer with those 

of the layer that came before it inside a dense block. This permits 

the layers of the network that come after them to directly use the 

features of the layers that came before them, which promotes the 

reuse of features across the network as shown in Figure 6, which 

facilitates solving the vanishing gradient issue and also 

minimizes the parameters' number. 

        Depending on the network version, the DenseNet network 

is structured into four blocks of layers, each of which has a 

particular number of layers. For instance, the DenseNe-169 has 4 

blocks with 6, 12, 32, and 32 layers, respectively, and DenseNe-

121 was used in this study; it is shown in Error! Reference 

source not found. 7 as having four blocks with a total of 6, 12, 

24, and 16 layers, respectively. 

 

 

 

 
Figure 5: A dense block with five layers that shows the direct 

connections between layers. 

         

 

 
Figure 6: DenseNet121's layered architectural design. 

 
        Layers for Batch Normalization, Relu functions, consonant 

layers, and Pooling layers are put between these blocks. 

The DenseNet121 architecture implements direct 

interconnections between all antecedent and subsequent layers in 

furtherance of connectivity. 

The feature concatenation's mathematical formulation is as 

follows:    

                              ul = Hl([u0, u1 , … … , ul−1])               (1) 

  

        Here, Hl(. )  is a transition that is not linear. It consists of 

BN and ReLU (Yu et al. 2020).  And mathematically can be 

represented as in Eq (2)  

ReLU(x) = {
0, x < 0
x, x ≥ 0

                          (2) 
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          And followed by a convolution layer of (3 x 3) windows, 

[u0, u1 , … … , ul−1]) is the feature map string for layers 0 to l-1 

that has been concatenated into one tensor for simplicity of use, 

for down sampling. In the model architecture, transition layers 

made up of a BN layer are used to build and separate dense 

blocks, a 2×2 average pooling layer at the end, and a (1×1) 

convolution layer between them. 

         The growth rate, represented by the hyperparameter k in 

DenseNet121, indicates how the dense design achieves superior 

outcomes. The architecture of DenseNet121 evolves by 

observing feature maps as the network's global state. Therefore, 

despite having a reduced growth rate, it performs efficiently. 

Every succeeding layer of the network is able to access all of the 

feature maps that were generated by the layer that came before it. 

Additionally, each layer adds k feature maps to the overall state, 

resulting in a total input feature map count across the lth layer 

known as FM: 

                                 (FM)l = K0 + K(l − 1)                 (3) 

        Here, k0   is the symbol for the channels on the input layer. 

To improve the efficiency of computation, an (1x1) convolution 

layer is added before every (3x3) convolution, decreasing the 

number of inputs for the feature map, which is typically more 

than the number of output feature maps k. The bottleneck layer, 

which is a (1x1) convolution layer, is inserted and creates 4k 

feature maps.  

         In the classification part, the fully connected layer at the 

end pre-trained DenseNet121model (i.e., the top) is excluded 

(include_top = False), an additional three dense layers including 

(Dense128_Relu_BN_Dropout 0.3), 

(Dense64_Relu_BN_Dropout 0.25), and last dense (2) is added 

to the model after GobalAveragePooling2D layer and BN, hence, 

Dense () indicates the layer's neurons, BN represents the Batch 

Normalization layer, Relu is the activation function, Dropout () 

is used to regularize CNNs in addition, it overcomes the over-

fitting issue. For binary classification, the last Dense layer along 

the sigmoid is utilized as the output layer since the sigmoid is an 

activation function that turns non-normalized outputs into binary 

0s and 1s, where (0 = COVID-19, 1= Non_COVID). 

The sigmoid function can be expressed using the formula below:       

 

y =
1

1 + e−(∑ wixi)
                                  (4) 

 

 

The history of the model is presented in Table 3. 

 

Table 3: Model history. 

Layer(type) Output shape Parameter # 

Input layer (None,224,224,3) 0 

Conv2D (None,224,224,3) 84 

Densenet121 (Functional) 
(None, None, None, 

1024) 
7037504 

GlobalAveragePooling2d (None, 1024) 0 

Batch normalization (None, 1024) 4096 

Dense (None, 128) 131200 

Batch normalization_1 (None, 128) 512 

Dropout (None, 128) 0 

Dense 1 (None, 64) 8256 

Batch normalization_2 (None, 64) 256 

Dropout 1 (None, 64) 0 

Dense 2 (None, 2) 130 

Total parameters: 7,182,038 

Trainable parameters: 7,095,958 

Non-trainable parameters: 86,080 

 

 
3.6  Hyperparameters 

        The model completed training around 20 minutes with 75 

epochs and a batch size of 32. The binary cross-entropy is utilized 

as a loss function that is capable of being lowered using the 

backpropagation approach while the model is being trained. The 

following equation demonstrates the loss function: 

𝐿(𝜃) = −
1

𝑛
 [∑ ∑ 𝑦𝑘

𝑖 ln ℎ𝜃

𝑘

𝑘=1

𝑛

𝑖=1

(𝑥𝑖)
𝑘

]                   (5) 

        Here, the number of training samples is represented by n, 

the number of classes by k, the model parameter is θ, the actual 

level of the ith training sample is 𝑦𝑘 
𝑖 , and the output for the ith 

training sample is ℎ𝜃(𝑥𝑖)
𝑘
 at the kth node. 

  

        The model is optimized by using the Adam optimizer, which 

is a subset of the stochastic gradient descent approach that is 

based on adaptive estimation of the first moment estimate 𝑚𝑡, 

second-moment estimate 𝑣𝑡, with α = 0.003 as the initial learning 

rate. updating the model weight θ with Adam's optimizer is 

illustrated in the below equation: 

                 𝑡 = 𝑡−1 −  α
𝑚𝑡

√𝑣𝑡+
                              (6) 

Where                                   

                    𝑚𝑡 = 𝛽1 ×  𝑚𝑡−1 + (1 − 𝛽1) × 𝑔𝑡         (7) 

                    𝑣𝑡 = 𝛽2 ×  𝑣𝑡−1 + (1 − 𝛽2) × 𝑔𝑡
2               (8) 

         Here, 𝑔𝑡   represents the weights of the gradient concerning 

the loss function, the weight at time t−1 is indicated by  θt−1,  the                

weight at time t is represented by θt, β1, and β2 are 

hyperparameters, the default value of  β1 = 0.9 and β2 = 0.999 

were used, With the ReduceLROnPlateau callback, the learning 

rate is decreased by a factor of 0.70 until it reaches a lower limit 

(min lr = 0.0001) when the validation loss remains constant for 

about 5 epochs (patience = 5). 

4. RESULTS AND DISCUSSIONS 

4.1 Introduction 

        This section demonstrates the efficacy of the suggested 

model in identifying if a person has COVID-19 illness or not by 

using the datasets SARS-CoV-2 CT-scan and COVID19-CT.  

Initially, we analyzed SARS-CoV-2 CT results then COVID19-

CT and compared them. Additionally, each dataset's results were 

then compared with those from earlier studies and research using 

the same datasets.  The pretraining model that is used in this study 

is DenseNet-121. 

Figure 7: The accuracy of the DDTL-COV model throughout 

training and validation across the course of 75 epochs. 
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Figure 8:  The loss of the DDTL-COV model throughout 

training and validation across the course of 75 epochs. 

4.2 Experimental setup  

        In this study, a Windows 10 Pro 64-bit operating system has 

been used with the Anaconda compiler supported by Python 3.7 

and the TensorFlow library and Keras library, which both support 

GPU hardware acceleration on some COVID-19 CT scans for DL 

and CNN purposes, probably for achieving perfect infection 

detection. And, as for hardware, the following computer and key 

specifications were used: I5-10400F (10th Generation Intel Core 

i5 Desktop Processor with 6 cores and 12 threads), GeForce RTX 

2070 with 8GB of vRAM, and 16 GB of DDR4 at 2666 MHz 

(RAM/Memory). 
 

 

4.3 The results of the DDTL-COV model from the SARS-

CoV-2 CT dataset 

        Three sets are created from the dataset for the performance 

analysis. 80% of the data used to train the model is in the training  

set. 10% of the data makes up the validation set, which is used to 

fine-tune the model's hyperparameters and guard against 

overfitting. The remaining 10% of the data makes up the testing 

set, which is used to assess the model's ultimate performance. The 

loss of training and validation decreases gradually through each 

epoch, indicating that the model is learning and generalizing 

well. After epoch 55, the validation loss stops decreasing, which 

means that the model has reached its optimal performance. It is 

crucial to remember that the ideal number of epochs may change 

based on the model's complexity and the quantity of the dataset. 

The training and validation accuracy of the DDTL-COV model 

across various epochs are arranged in Figure 8, and the loss 

analyses of the model over the same number of epochs is 

illustrated in Figure 9. 

        Figure 10 shows a confusion matrix that is used to 

summarize the results of samples of each class that were 

successfully and mistakenly categorized. Based on the confusion 

matrix, the performance of the model was evaluated using four 

metrics: precision, recall, F1 score, and accuracy. The DDTL-

COV model only produced one false positive case and no false 

negative cases, indicating a high score of accuracy of 99.6% and 

an F1-score of 100%. So, it will be of significance in the medical 

research field, as shown in Table 4. 

 

Table 4: DDTL-COV model results from the SARS-CoV-2 CT 

dataset. 

Class\metrics precision recall F1-score 

Class 0\COVID-19 100%       99%       100%       

Class 1\non-COVID 99% 100%       100%       

Accuracy overall           100%       

Macro avg  100%       100%       100%       

Weighted avg 100%            100%             100%       

                  

4.3.1  Comparison of Results with previous studies 

          In this research, several innovative approaches developed 

for COVID-19 identification using the SARS-CoV-2 dataset are 

compared, as shown in Table 5. Some studies yielded fewer 

results, such as Panwar et al. (2020), which used the VGG model 

to obtain an accuracy of 95% and a recall of 94.4%. Wang, Liu, 

and Dou (2020) used the CNN model and achieved 95% accuracy 

and a 94.4% of F1-scor. As for  Ramzy, Sherin, and Karma 

(2021), with VGG16, accuracy is 97.59%, recall is 98.41%, and 

so on. On the other hand, some other studies introduced various 

DL models and got superior results, as Silva et al. (2020) were 

capable to obtain an accuracy of 98.99%, a recall of 98.80%, and 

a precision of 99.20% through the utilization of Efficient 

CovidNet, and Biswas et al. (2021), by merging three previously 

trained CNNs of models (Xception, ResNet50, and VGG-16), 

were able to get an F1-score of 99% and an accuracy of 98.79%. 

The overall performance of the DDTL-COV model is superior to 

all other studies. 

 

Table 5: A comparison of the DDTL-COV model with the 

modern techniques using the SARS-CoV-2 CT dataset (Acc: 

accuracy, Pre: precision, Rec: recall, F1-S: F1-score). 

 

Ref. Method 
Acc. 

% 

Pre. 

% 

Rec. 

% 

F1-S 

% 

(Wang, Liu, 

and Dou 

2020) 

CNN 90 95 85 90 

(Panwar et 

al. 2020) 
VGG 95 / 94.4 / 

(Silva et al. 

2020) 

Efficient 

CovidNet 
98.99 99.20 98.80 / 

(Seum et al. 

2020) 

12 pre-training 

CNNs 
89.92 99.50 86.80 

89.67 

 

(Ramzy, 

Sherin, and 

Karma 2021) 

VGG16 97.59 / 98.41 / 

(Biswas et al. 

2021) 

Combine 3 pre-

trained CNNs 

models (VGG-

16, ResNet50, 

Xception) 

98.79 / / 99 

(Jaiswal et 

al. 2021) 
DenseNet201 96.21 96.25 96.2 96.2 

Figure 9: Confusion matrix of the DDTL-COV model for 

the SARS-CoV-2 CT dataset. 
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(Hasan et al. 

2021) 
DenseNet-121 92 / 95 / 

(Huang and 

Liao 2022) 

LightEfficientN

etV2 
99.47 99.19 99.25 99.04 

(Kathamuthu 

et al. 2023) 
VGG16 98 97.99 97.99 97.99 

This work 
DDTL_COV 

(DenseNet-121) 
99.6 100 100 100 

 

4.4  DDTL-COV model results from the COVID19 CT dataset  

As in a previous experiment, the COVID19 CT dataset is 

partitioned randomly into three distinct sets of training, 

validation, and testing at 80, 10, and 10 percent, respectively. The 

model is trained over 75 epochs at a speed of 5 seconds per epoch, 

and its convergence is at a noticeably good speed. Figures 11 and 

12 illustrate the accuracy of training and validation, as well as the 

training loss, and the validation loss of the DDTL-COV model 

on the COVID19-CT dataset, respectively. 

 

 
Figure 10: The DDTL-COV model accuracy across 75 epochs 

of training and validation from the COVID19-CT dataset. 

 

Figure 11: The loss of the DDTL-COV model throughout 

training and validation across the course of 75 epochs using the 

COVID19 CT dataset. 

        Common assessment criteria such as F1-score, Recall 

(sensitivity), accuracy, and specificity were used to assess the 

efficacy of the classification method employed in this research. 

The results of the model are shown in Table 6, which finds that it 

has a recall of 91% and an accuracy of 89%. Furthermore, these 

findings show that this model only produced one false negative 

case and seven false positive cases, as shown in Figure 13. 

 

 

 

 

Table 6: The DDTL-COV model's classification from the 

COVID19-CT dataset. 

Class \ Metrics Precision Recall F1-score 

Class 0\COVID-19 81% 97%    88% 

Class 1\non-COVID 97% 84% 90% 

Accuracy overall      89% 

Macro avg 89% 91% 89% 

Weighted avg 91% 89% 89% 

 

 
Figure 12: The DDTL-COV model confusion matrix utilizing 

COVID19-CT dataset. 

 

4.4.1 Result in comparison with previous studies  :Compared 

to the related works using the dataset COVID19 CT, the provided 

approach obtains average accuracy and F1- scores of 89% and 

88%, respectively. The results of some research are fewer (Islam 

and Matin 2020) which used the basic CNN model plus the 

LeNet-5 CNN model to achieve an accuracy of 86.06%, a 

precision of 85%, a recall of 89%, and an F1-score of 87%. Also, 

its performance is superior to Horry et al. (2020) but less than 

that to Garain et al. (2021), Chen et al. (2021),  and  Pham (2020), 

as shown in Table 7.  

4.5 A Comparison of results between the COVID-19-CT dataset 

and the SARS-CoV-2 dataset 

The overall performance of the COVID19-CT dataset in the 

manner of accuracy in comparison to that of the SARS-CoV-2 

dataset is less as shown in Table 8. This is explained by the cross-

source variability of the dataset's CT scans. The non-COVID-19   

CT images were obtained from various sources and display a 

variety of results, making it challenging to differentiate between 

COVID-19 and other findings associated with lung disorders due 

to the possibility of visual manifestations overlapping. Another 

explanation is that the COVID19-CT dataset's CT images exhibit 

a significant contrast variation, varying spatial resolution, and 
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other visual traits that can impair the model's capacity to extract 

more discriminative and generalizable features. 

 

Table 7: A comparison of the DDTL-COV model with the 

modern techniques using the COVID19-CT dataset (Acc: 

accuracy, Pre: precision, Rec: recall, F1-S: F1-score).). 

Ref. Method 
Acc. 

% 
Pre. 
% 

Rec. 
% 

F1-S 
% 

(Horry et 

al. 2020) 
VGG19 / 84 / 

78 

 

(Islam and 

Matin 

2020) 

CNN + 
LeNet-5 

86.0
6  

85 89 87 

(Pham 

2020) 

Sixteen 

pre-trained 
CNNs 

95 % 

(Mo

bile
Net-

v2)  

/ 

98 
(ResNe

t-18) 

 

96 
(Mob

ileNe

t-v2) 

(Garain et 
al. 2021) 

Three-layer 
DCSNN 

/ / / 99 

 (Chen et 
al. 2021) 

prototypical 
network 

93.2 88.5 87.4 / 

(Huang and 

Liao 2022) 

LightEffici

entNetV2 

88.6

7 

87.2

8 
87.43 87.55 

This work 

DDTL_COV 

(DenseNet-

121) 
89 89 91 89 

 

Table 8: Accuracy of the DDT-COV model for two datasets on 

test data. 

 

  Datasets Accuracy 

SARS-CoV-2 CT 99.6%        

COVID19- CT 89% 

CONCLUSION  

        This study suggests the DDTL-COV model, a deep transfer 

learning model based on DenseNet121, using weights from the 

ImageNet dataset to categorize patients on CT scans as either 

COVID or non-COVID. The SARS-CoV-2 CT scan and 

COVID19-CT datasets were utilized to assess the model, with 

image enhancement in pre-processing using the OpenCV library 

interpolation function INTER_AREA and data augmentation 

techniques. The suggested model achieves outstanding 

performance in the SARS-CoV-2 CT-scan dataset, with an 

accuracy of 99.6%. However, on the COVID19-CT dataset, it 

performed with an accuracy rate of 89%. The limitation of this 

model, its performance is not good on the COVID19-CT dataset. 

        The future study will design a structure combining DL 

models that have already been pre-trained. Additionally, the 

technique of k-fold cross-validation will be used as a partitioning 

strategy for the dataset 
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