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Abstract: 

Due to its simplicity and numerical efficiency, the Barzilai and Borwein (BB) gradient method has 
received numerous attentions in different scientific fields. In this paper, the sufficient condition for 
convergence of the BB method when the coefficient matrix of linear algebraic equations is slightly 
unsymmetric with positive definite symmetric part is presented. 
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1. Introduction 

A significant development that has completely changed our perspectives on the effectiveness of 
gradient methods is due to Barzilai and Borwein ( Barzilai andBorwein, 1988). They proposed two 
choices of step size the gradient method. The computational cost and typical behaviour of the 
algorithm for both choices of step size are quite similar. Their method aimed to accelerate the 
convergence of the steepest descent (SD) method.  

      The main idea of Barzilai and Borwein’s approach is to use the information in the previous 
iteration to decide the step size in the current iteration. The Barzilai-Borwein (BB) method requires 
few storage locations and inexpensive computations. Therefore, several authors have paid attention to 
the BB method. Their method is strongly related to Quasi-Newton (QN) algorithms (Dennis and 
Schnabel, 1983) and (Fletcher, 2000). 

      It is known that the (BB) method ( Barzilai andBorwein, 1988) converge when this method is 
applied to solve linear systems of the form   

Ax =b, 
where A is symmetric and positive definite. For some finite difference discretizations of elliptic 

problems, one gets positive definite matrices that are almost symmetric. Practically, the BB method 
works for these matrices. However, the convergence of this method is not guaranteed theoretically. 

     For quadratics that the BB method has been shown to converge (Raydan. ,1993) and its 
convergence is R-linear (Dai and Liao, 2002). For the case of ݊ = 2, the method is R-superlinearly 
convergent ( Barzilai andBorwein, 1988). For more details on the Barzilai and Borwein method see 
(Raydan, 1991) and (Dai and R. Fletcher, 2005). The BB algorithm for quadratic case is summarized 
in Algorithm 1.  

 
Algorithm 1  Barzilai and Borwein (BB) 

1.  Given	ݔ଴ ∈ ℝ௡, choose arbitrary ߛ଴ > 0, for instance, ߛ௞ = (௚బ,	௚బ)(௚బ,	஺௚బ)	,		(or 		ߛ௞ = (஺௚బ,	௚బ)(஺௚బ,	஺௚బ) )  
2.  For k=0, 1, 2, …(until convergence) do 
3.  ݃଴ = ௢ݔܣ − ܾ 
௞ାଵݔ  .4 = ௞ݔ −   ௞݃௞ߛ
5.  ݃௞ାଵ = ݃௞ −  ௞݃ܣ௞ߛ

௞ߛ  .6 = (௚ೖషభ,	௚ೖషభ)(௚ೖషభ,	஺௚ೖషభ)		,				( or   ߛ௞ = (஺௚ೖషభ,	௚ೖషభ)(஺௚ೖషభ,	஺௚ೖషభ)  )  
7.  End for 
       

This paper presents the proof of convergence of the BB method when the Euclidian norm (݈ଶ) of 
the unsymmetric part of a positive definite matrix is less than some value related to the smallest and 
the largest eigenvalues of the symmetric part of the given matrix. This means that the restriction of ܣ 
be symmetric is removed, and required only that its symmetric part (ܣ +  .be positive definite 2/(்ܣ
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Let us begin with some notations: 
1- The Euclidean inner product of any two vectors ݑ, ݒ ∈ ܴ௡ is defined by (ݑ, (ݒ =  ,ݒ்ݑ

and the induced Euclidean norm (or 2-norm) of  ݑ is 
║ݑ║ =	ඥ(ݑ, 	.(ݑ

2- Let ܣ be an ݊	ݔ	݊ matrix and the associated matrix norm is given by A ≔ Sup‖௨‖ୀଵ ║Au║. 
It is known that ܣ can be represented as ܣ+0ܣ=ܣଵ, 
where ܣ଴ and ܣଵthe symmetric and skew-symmetric of a matrix ܣ, i.e. ܣ଴ = ܣ) + ଵܣ     ,2/(்ܣ = ܣ) −  .2/(்ܣ

4- Let ܣ be positive definite, then the symmetric part ܣ଴ is also positive definite. Hence ܣ  
and ܣ଴ are invertible and the eigenvalues of  ܣ଴ are all positive real numbers. If       ߣ௠௜௡,…,ߣ௠௔௫		are the eigenvalues of ܣ଴ such that 
0< ௠௜௡ߣ ≤	… ≤   ௠௔௫ߣ
then ߣ௠௜௡ିଵ ௠௔௫ିଵߣ ,… ,  are the eigenvalues of ܣ଴ିଵ. 

5- The condition number of 	ܣ଴ is defined to be ܣ║=:ߩ଴║║ܣ଴ିଵ║. 
   Since ܣ଴ is symmetric, ߩ = ఒ೘ೌೣఒ೘೔೙  ≥ 1. 

6- The Rayleigh-quotient of any vector ݑ ∈ ܴ௡with respect to	ܣ is defined by (ݑ)ݎ = ,ݑ) ,ݑ)(ݑܣ (ݑ 	. 
The lemmas that will be used frequently in the proof of the main theorem are follows: 

 
Lemma1. For any vector ߣ ,ݑ௠௜௡║ݑ║ଶ	 ≤ ,ݑ) (ݑ଴ܣ		 ≤  .ଶ║ݑ‖௠௔௫ߣ
 
Proof. For a symmetric matrix positive definite matrix ܣ଴, the Rayleigh quotients are bounded by the 
smallest and the largest eigenvalues of the matrix. Thus, the following relation holds for any u ߣ௠௜௡ ≤ (௨,		஺బ௨)

║௨║మ ≤  .௠௔௫ߣ

Hence the proof is complete. 
 
Lemma 2. For any vector ߣ ,ݑ௠௔௫ିଵ ଶ║ݑ║ ≤ ,ݑ) (ݑ଴ିଵܣ ≤ ௠௜௡ିଵߣ  .ଶ║ݑ║
 
Proof. Similar to proof Lemma 1.  
 
Lemma 3. For any vector ݑ, 

,ݑ)      (ݑܣ = ,ݑ) ,ݑ )    and    (ݑ଴ܣ (ݑଵܣ = 0 
 
Proof. We have (ݑ, (ݑܣ = ,ݑ) (ݑ଴ܣ + ,ݑ)  (ݑଵܣ

Since ܣ்ݑଵݑ is a real number, 
ݑଵܣ்ݑ	  = 	்(ݑଵܣ		்ݑ	) =  .ݑଵܣ்ݑ−= ݑଵ்ܣ்ݑ
Therefore (ݑ, ,ݑ)  and 0 = (ݑଵܣ (ݑܣ = ,ݑ)  .(ݑ଴ܣ

 
Lemma 4 (Cauchy-Schwarz inequality for a positive definite matrix).  

If ܣ଴ is a positive definite matrix, then for any u and	v |(ݑ, |(ݒ଴ܣ ≤ 	ඥ(ݑ, ,ݒ)	(ݑ଴ܣ   .(ݒ଴ܣ
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2. Convergence of the BB Method 
In this section, the proof of convergence of the BB method applied to the slightly unsymmetric 

linear system ݔܣ = ܾ with the positive definite symmetric part		is given.  
 
Theorem 1. If  ‖ܣଵ‖ < (−1	ଵିߩ௠௜௡ඥߣ + ඥ1 +  ,	(ଵିߩ

 
then the BB method, defined by  ݃௞ାଵ = ݃௞ −  ௞          (2.1)݃ܣ௞ߛ
where ߛ௞ = (௚ೖషభ,	௚ೖషభ)(௚ೖషభ,	஺௚ೖషభ),      ( or   ߛ௞ = (஺௚ೖషభ,	௚ೖషభ)(஺௚ೖషభ,	஺௚ೖషభ)  ),                               (2.2) 

converges.  
 
Proof. Using (2.1), (2.2), Lemma (3), Lemma (1) and since ߛ௞ is the Rayleigh quotient of the 
symmetric positive definite matrix ܣ଴	(i.e.  0	 < 	 	௠௜௡ߣ ≤ ௞ߛ ≤ 	  ௠௔௫ for all ݇),we haveߣ

    (݃௞	, (଴ିଵ݃௞ܣ	 = (݃௞ିଵ − ,	௞ିଵ݃ܣ௞ߛ ݃௞ିଵ	଴ିଵܣ	 −  (௞ିଵ݃ܣ଴ିଵܣ௞ߛ
                          = (݃௞ିଵ	, (݃௞ିଵ	଴ିଵܣ	 − ,	௞ିଵ݃ܣ)௞ߛ2 (݃௞ିଵ	଴ିଵܣ	 + ,	௞ିଵ݃ܣ)௞ଶߛ	  (௞ିଵ݃ܣ଴ିଵܣ
                          = (݃௞ିଵ	, (݃௞ିଵ	଴ିଵܣ − ,	௞ሾ(݃௞ିଵߛ2 ݃௞ିଵ) + ,ଵ݃௞ିଵܣ) ,	௞ିଵ݃ܣ)௞ଶሾߛ+ ݃௞ିଵ)ሿ	଴ିଵܣ	 ݃௞ିଵ) + ,	௞ିଵ݃ܣ)  ଵ݃௞ିଵ)ሿܣ଴ିଵܣ
                          = (݃௞ିଵ	, (݃௞ିଵ	଴ିଵܣ − ,	௞(݃௞ିଵߛ ݃௞ିଵ) − ,	ଵ݃௞ିଵܣ)௞ߛ2 ,	௞ିଵ݃ܣ)௞ଶߛ+ (݃௞ିଵ	଴ିଵܣ  (ଵ݃௞ିଵܣ଴ିଵܣ
                         = (݃௞	, (݃௞	଴ିଵܣ − ,	௞(݃௞ߛ ݃௞) − ,	ଵ݃௞ܣ)௞ߛ2 ,	௞ଶሾ(݃௞ߛ+																																						 (଴ିଵ݃௞ܣ (ଵ݃௞ܣ + ,	ଵ݃௞ܣ) =                           ଵ݃௞)ሿ                                            (2.3)ܣ଴ିଵܣ (݃௞ିଵ	, (݃௞ିଵ	଴ିଵܣ − ,	௞(݃௞ିଵߛ ݃௞ିଵ) − ,	ଵ݃௞ିଵܣ)௞ߛ2  (݃௞ିଵ	଴ିଵܣ
,	ଵ݃௞ିଵܣ)௞ଶߛ+                                                                                      ଵ݃௞ିଵ).                                          (2.4)ܣ଴ିଵܣ
Assuming ߜ ≔ ଵ‖ and ܿ௞ିଵܣ‖ ≔ (݃௞ିଵ	, ௠௔௫ିଵߣ ݃௞ିଵ) for any ݇, using Lemma 2 and since	଴ିଵܣ ௞ߛ≥ ≤ ௠௜௡ିଵߣ  , we obtain  																																												ߛ௞(݃௞ିଵ, ݃௞ିଵ) ≥ ௠௔௫ିଵߣ ܿ௞ିଵ	௠௜௡ߣ	 =  .                            (2.5)	ଵܿ௞ିଵିߩ
By using Lemma 2 twice, we have ห(ܣଵ݃௞ିଵ	, ଵ݃௞ିଵ)หܣ଴ିଵܣ ≤ ௠௜௡ିଵߣ 	‖ଶ	ଵ݃௞ିଵܣ‖ ≤ ௠௜௡ିଵߣ  ଶ‖݃௞ିଵ‖ଶߜ
                                                   ≤ ௠௜௡ିଵߣ ,௠௔௫(݃௞ିଵߣଶߜ (݃௞ିଵ	଴ିଵܣ ≤  .                  (2.6)	ଶܿ௞ିଵߜߩ
Using Lemma 4, we get 

                   หܣଵ݃௞ିଵ, ଴ିଵ݃௞ିଵหܣ ≤ ට(ܣଵ݃௞ିଵ	, ଵ݃௞ିଵ)ܿ௞ିଵܣ଴ିଵܣ = ඥߩ	ܿߜ௞ିଵ	.                 (2.7) 

From (2.3) to (2.7) and utilizing Lemma 3, ܿ௞ ≤ ܿ௞ିଵ − ଵܿ௞ିଵିߩ + ௠௜௡ିଵߣ2 ඥߩ	ܿߜ௞ିଵ	 + ௠௜௡ିଶߣ  ଶܿ௞ିଵߜߩ

   	= ܿ௞ିଵ(1 − ଵିߩ + ௠௜௡ିଵߣ2 ඥߩ	ߜ + ௠௜௡ିଶߣ  .	(ଶߜߩ
For the purpose of convergence, we need 1 − ଵିߩ + ௠௜௡ିଵߣ2 ඥߩ	ߜ + ௠௜௡ିଶߣ ଶߜߩ < ௠௜௡ିଵߣ2 ,1 ඥߩ	ߜ + ௠௜௡ିଶߣ ଶߜߩ − ଵିߩ < 0, 
multiplying by ߣ௠௜௡ଶ ଶߜ ଵ, we haveିߩ	 + 	ߜ	ଵିߩ௠௜௡ඥߣ2 − ௠௜௡ଶߣ ଶିߩ < 0. 
This satisfies when ߜ < ଵିߩ௠௜௡ඥߣ− + ටߣ௠௜௡ଶ ଵିߩ + ௠௜௡ଶߣ ଶିߩ = ଵିߩ௠௜௡ඥߣ 	ቀ−1 + ඥ1 +  .ଵቁିߩ
This completes the proof.  

 
3. Numerical Experiments 

In this section, two numerical experiments are presented to show the rate of convergence of the 
Barzilai-Borwein (BB) algorithm for solving the linear system of equations ݔܣ = ܾ where ܣ is slightly 
unsymmetric positive definite matrix. They demonstrate that if the sufficient condition  
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‖ଵܣ‖ < (−1	ଵିߩ௠௜௡ඥߣ + ඥ1 +  (ଵିߩ
Satisfies, then the BB algorithm convergence. Simulations were run in MatLab 27.  
 

Example 1. For the first experiment, a matrix ܣ with size ݀ ൈ ݀ can be taken as 
 

ێێۏ
ێێێ
ۍ 1.0000 −0.0009 −0.0001−0.0007 1.6667 −0.00000.0013 0.0015 2.3333 −0.0013 −0.0007 0.0020−0.0022 −0.0013 0.0012−0.0007 −0.0029 0.0018 0.00210.00080.0003−0.0004 −0.0014 −0.00230.0000 0.0024 −0.0014−0.0017−0.0021 0.00110.0021 −0.00200.0028	

3.0000 −0.0007 −0.00190.0026 3.6667 −0.0024	0.0007−0.0027 −0.00330.0023	 4.33330.0020
ۑۑے0.00270.00260.0015.0000

ۑۑۑ
ې
 

 
 where  ݊	 = 	7, ܣ = ൣܽ௜௝൧, ݅ = 1,2, … , ݊; 	݆ = 1,2, … , ݊ such that ܽ௜௝ are equally spaced real 

numbers between 1 and 5	when	݅ = ݆,  and ܽ௜௝ is a random number between -1 and 1 when	݅ ് ݆. The 
symmetric part of ܣ (ܣ଴)  is symmetric positive definite matrix and its condition number ߩ = 5 where ߣ௠௜௡ = 1 and  ߣ௠௔௫ = ‖ଵܣ‖ .5 = 0.0041. The value of ߣ௠௜௡ඥିߩଵ	ቀ−1 + ඥ1 + ଵቁିߩ = 0.0427.  

Figure 1 shows the rate of convergence ݎ௞ = (௚ೖశభ,௚ೖశభ)(௚ೖ,௚ೖ)   of the BB algorithm as a function of 

number of iteration ݇=300 

 
Figure 1: Rate ݎ௞of convergence as a function of ݇for Example 1. 
 

Example 2. For the second experiment, a matrix ܣ with size ݀ ൈ ݀ can be taken as 

 

ێێێۏ
11.0000ۍ 0.76210.0000 11.00000.0000 0.0000 0.7621 0.4057 0.05790.7919 0.9355 0.352911.0000 0.9169 0.81320.0000 0.00000.0000 0.0000 0.0000 11.0000 0.00990.0000 0.0000 ۑۑے11.0000

 ېۑ
 
where  ݀	 = 	5, ܣ = ൣܽ௜௝൧, ݅ = 1,2, … , ݊; 	݆ = 1,2, … , ݊ such that ܽ௜௝ = 11 when	݅ = ݆,  and ܽ௜௝ ݅	when (݀)݀݊ܽݎ= ് ߩ ଴  is symmetric positive definite matrix and its condition numberܣ .݆ = 1.1801 

where ߣ௠௜௡ = 10.3449 and ߣ௠௔௫ = ‖ଵܣ‖ .12.2082 = 1.0117and the value of ߣ௠௜௡ඥିߩଵ	ቀ−1 +ඥ1 + ଵቁିߩ = 3.4204.  

Figure 2 shows the rate of convergence ݎ௞ = (௚ೖశభ,௚ೖశభ)(௚ೖ,௚ೖ)   of the BB algorithm as a function of number 

of iteration ݇ = 100. 



Journal of University of Zakho, Vol. 3(A) , No.1, Pp 140-144, 2015 
  

 144

 
Figure 2: Rate ݎ௞ of convergence as a function of ݇ for Example 2. 
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