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ABSTRACT: 

This study focuses on MATLAB code programs of the entire stages of solving Stochastic Transportation Linear 

Programming Problems with Fuzzy Uncertainty Information on Probability Distribution Space (STLPPFI) with its 

algorithm outlines. A MATLAB code program of STLPPFI problem solver with algorithm outlines are proposed to solve 

STLPPFI model problems, and it utilizes many concepts as Alpha-Cut technique, Truth Degrees technique, Linear Fuzzy 

Membership Function (LFMF), Trapezoidal Fuzzy Number (𝑇𝑝𝐹𝑁), Triangular Fuzzy Number (𝑇𝑟𝐹𝑁), Linear Fuzzy 

Ranking Function (LFRF), Expectation Weighted Summation technique (EWS) and analyzing cases via second condition 

test of alpha-cut technique. The STLPPFI problem solver is utlized to convert STLPPFI into its corresponding equivalent 

Deterministic Transportation Linear Programming Problem (DTLPP) via defuzzifying from fuzziness on probability 

distribution space and derandomization randomness of problem formulation respectively. In addition, Dual-Simplex 

algorithm method with Vogel Approximation Algorithm Method (VAM) are used to obtain optimal solution from DTLPP. 

All MATLAB code programs with their proposed algorithm outlines are new except Dual-Simplex and VAM. The 

MATLAB code program of STLPPFI problem solver are more efficient along with a numerical example on electricity field 

illustrating practicability of this proposed MATLAB code program with its algorithm. Finally, the solution procedure 

illustrates the MATLAB code program of the proposed method is practical and applicable in the fields of energy and industry 

as it facilitates the method of transforming the energy at the lowest cost, least time running and is commercially applicable. 

Comparative comments are provided between Dual-Simplex and VAM in solution process. 

KEYWORDS: Alpha-Cut Technique Algorithm; Stochastic Transportation Problem; Fuzzy Information Probability 

Distribution; Truth Degrees Technique MATLAB Program; Expectation Weighted Summation Algorithm.

1. INTRODUCTION TO STLPPFI 

         Linear Programming Problems LPPs have been important 

subjects in solving optimization life problems, and the simplex 

algorithm method has improved to solve them. This improvement 

has led to extending Deterministic Transportation Linear 

Programming Problems DTLPP from LPP as a special case of it, 

and it is one of the most useful mathematical models. 

Additionally, DTLPP has three popular algorithms: the North-

West Corner Method, Matrix Minima Cost Method (MMCM) 

and Vogel Approximation Method (VAM) for solving these 

kinds of problems and finding Basic Feasible Solution (BFS) for 

DTLPP. However, these methods are not sufficient to stop, so 

both algorithm methods, the Stepping Stone Method (SSM) and 

Modify Distribution Method (MODI) are used to find optimal 

solution for DTLPP. Sometimes the three methods mentioned 

above that are used to find BFS do not yield the optimal solution. 

The mean goals of DTLPP are to minimize the total transport 

costs, increasing the amount of transporting goods/objects as 

possible, increasing availability/production sources and 

decreasing non-useful demand/requirement endpoints as possible 

by removing unnecessary points and reducing waste points which 

does not appear if and only if availability/production sources and 

demand/requirement endpoints are balanced since the problem 

cannot be solved without a balance condition (Reeb, James 

Edmund;Leavengood, Scott A, 2002; Winston, Wayne 

L;Goldberg, Jeffrey B, 2004; Sharma, 1974; Sengamalaselvi, 

2017). 

         Now, DTLPP steps to complexity and challenges will be 

added to it via discovering real-life problems as fuzziness and 

randomness of problem which are motivating to search for more 

efficient algorithms and program outlines to solve Stochastic 

Transportation Linear Programming Problems with Fuzzy 

Uncertainty Information on Probability Distribution Space 

STLPPFI. Where problem formulation has randomness in 

objective cost coefficients and fuzziness in linear inequalities 

polyhedral sets of information probability distribution space, we 

focus on transporting electricity power sector problems which 

has non-deterministic values of transporting cost coefficients and 

non-deterministic values of creation probability distribution 

parameters intervals with weight rank in importance of 

probability distribution. The (LPP) mathematical formulation 

contain a (max/min) linear objective function subject to set of 

linear constraint satisfies equations/inequalities, with non-

negative unrestricted variable set. A  DTLPP usually contains 

minimizing linear objective function or minimizing total 

transporting cost of shipping objects, subject to both availability 

and requirement linear constraints set where total availabilities 

satisfy total requirements, parameters set are non-negative (Reeb, 

James Edmund;Leavengood, Scott A, 2002; Sengamalaselvi, 

2017; Sharma, 1974; Winston, Wayne L;Goldberg, Jeffrey B, 

2004). 

         An Stochastic Transportation Linear Programming 

Problems (STLPP) is a DTLPP when parameters are random and 

represented by probability distributions (Abdelaziz, F Ben;Masri, 

Hatem, 2005; Abdelaziz, Fouad Ben;Masri, Hatem, 2010; 

Abdelaziz, Fouad Ben;Masri, Hatem, 2009; Ameen, 2015; Guo, 

Haiying;Wang, Xiaosheng;Zhou, Shaoling, 2015; Hamadameen, 

Abdulqader Othman;Hassan, Nasruddin, 2018). The probability 

distribution space (𝛺, 2𝛺, 𝑃) of an STLPP in many cases is 

unknown, undetermined, and un-specified since it has fuzzy 

information, unknown distribution, then should be 
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determined/specified as first step in solution procedures. Further, 

an STLPP’s under fuzzy information on probability and 

described by fuzzy linear inequalities polyhedral set are called 

Stochastic Transportation Linear Programming Problems with 

Fuzzy Uncertainty Unknown Information on Probability 

Distribution Space STLPPFI (A. Edward Samuel;M. 

Venkatachalapathy, 2011; Abdelaziz, F Ben;Masri, Hatem, 

2005; Abdelaziz, Fouad Ben;Masri, Hatem, 2009; Abdelaziz, 

Fouad Ben;Masri, Hatem, 2010; Ameen, 2015; Appati, Justice 

Kwame;Gogovi, Gideon Kwadwo;Fosu, Gabriel Obed, 2015; 

Dharani, K;Selvi, D, 2018; Guo, Haiying;Wang, 

Xiaosheng;Zhou, Shaoling, 2015; Mahdavi-Amiri, N;Nasseri, 

SH, 2006; Mahdavi-Amiri;NezamNasseri;Seyed Hadi, 2007) and 

(Sengamalaselvi, 2017; Sakawa, Interactive multiobjective linear 

programming with fuzzy parameters, 1993; Sakawa, 

Fundamentals of fuzzy set theory, 1993). 

2. PRELIMINARIES OF FUZZY CONCEPTS AND 

POLYHEDRAL SET TYPES 

        This section reviews some necessary definitions of fuzzy 

concepts along with stating two kinds of polyhedral sets that are 

related to certainty information on probability distribution as 

follows: 

2.1 Basic Definitions 

2.1.1 Definition of Fuzzy Set: Let 𝑋 be a universal set, 𝐴 ̃ ⊆
𝑋. 𝐴 ̃is called a fuzzy/non-exact set that contains ordered pairs, 

𝐴 ̃ = {(𝑥, 𝜇𝐴 ̃(𝑥)), ∀𝑥 ∈ 𝑋} where 𝜇𝐴 ̃(𝑥) is membership function 

of 𝑥 ∈ 𝐴 ̃(i.e., a characteristic/indicator function for 𝐴 ̃that shows 

to what degree 𝑥 ∈ 𝐴 ̃), if the height of fuzzy set is one, then fuzzy 

set is normal, where the height of a fuzzy set is the largest 

membership value attained by any point in the set (Ameen, 2015; 

Dharani, K;Selvi, D, 2018; Mahdavi-Amiri, N;Nasseri, SH, 

2006; Mahdavi-Amiri;NezamNasseri;Seyed Hadi, 2007; 

Sakawa, Fundamentals of fuzzy set theory, 1993; Sakawa, 

Interactive multiobjective linear programming with fuzzy 

parameters, 1993). Formulation (4.2-3) is one of the fuzzy set 

kinds. 

 

2.1.2 Definition of Alpha-Level Set: The alpha−level set of 

fuzzy set 𝐴 ̃is a set 𝐴 ̃𝛼 = {𝑥 ∈ ℝ, 𝜇𝐴 ̃(𝑥) ≥ 𝛼, 0 < 𝛼 ≤ 1}. The 

lower and upper bounds of alpha−level set of fuzzy set 𝐴 ̃are 

finite numbers represented by inf(𝑥 ∈ 𝐴 ̃𝛼) , sup(𝑥 ∈ 𝐴 ̃𝛼) 

respectively (Ameen, 2015; Dharani, K;Selvi, D, 2018).When 

Formulation (4.2-1) convert to Formulation (4.2-2) needs alpha-

level set to finding efficient points via applying conditions of 

fuzzy set, and also used in analyzing cases for second condition 

of alpha-cut technique Formulation (4.1-3). 

 

2.1.3 Definition of Convexity of Fuzzy Number: Fuzzy 

number is a convex fuzzy set 𝐴 ̃on ℝ if and only if its membership 

function is piecewise continuous, and there exist have three 

intervals [𝑎, 𝑏], [𝑏, 𝑐] and [𝑐, 𝑑] such that 𝐴 ̃is increasing on 
[𝑎, 𝑏], equal to 1 on [𝑏, 𝑐], decreasing on [𝑐, 𝑑], and equal to 0 

elsewhere, ∀𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ (Ameen, 2015; Dharani, K;Selvi, D, 

2018; Mahdavi-Amiri, N;Nasseri, SH, 2006; Mahdavi-

Amiri;NezamNasseri;Seyed Hadi, 2007; Sakawa, Fundamentals 

of fuzzy set theory, 1993; Sakawa, Interactive multiobjective 

linear programming with fuzzy parameters, 1993). In Figure (4.2-

1) and Formulation (4.2-4) shows seven difference convex fuzzy 

numbers. 

 

2.1.4 Definition of The Trapezoidal Fuzzy Number 

(𝑻𝒑𝑭𝑵): A trapezoidal fuzzy number 𝑇𝑝𝐹𝑁 is 𝐴 ̃ =

(𝑎𝐿, 𝑎𝑈, 𝛼, 𝛽), where [𝑎𝐿, 𝑎𝑈] is the modal set of 𝐴 ̃, and 

[𝑎𝐿 − 𝛼, 𝑎𝑈 + 𝛽] is the support part set of 𝐴 ̃ (Ameen, 2015; 

Dharani, K;Selvi, D, 2018; Mahdavi-Amiri, N;Nasseri, SH, 

2006; Mahdavi-Amiri;NezamNasseri;Seyed Hadi, 2007; 

Sakawa, Fundamentals of fuzzy set theory, 1993; Sakawa, 

Interactive multiobjective linear programming with fuzzy 

parameters, 1993). The 𝑇𝑝𝐹𝑁 could be illustrates in following 

figure: 

 

Figure: 2.1-1: Trapezoidal Fuzzy Number 𝑇𝑝𝐹𝑁 

 

Where the linear fuzzy membership function LFMF for 

trapezoidal fuzzy number 𝑇𝑝𝐹𝑁 is as following: 

𝜇(𝑥) =

{
 
 

 
 
𝑥 − 𝛼

𝑎𝐿 − 𝛼
𝛼 ≤ 𝑥 ≤ 𝑎𝐿

1 𝑎𝐿 ≤ 𝑥 ≤ 𝑎𝑈

𝛽 − 𝑥

𝛽 − 𝑎𝑈
𝑎𝑈 ≤ 𝑥 ≤ 𝛽

0 𝑂𝑡ℎ𝑒𝑟 𝑊𝑖𝑠𝑒

  

Formulation 2.1-1: The Linear Fuzzy Membership Function 

LFMF For 𝑇𝑝𝐹𝑁 

 

2.1.5 Definition of The Triangle Fuzzy Number (𝑻𝒓𝑭𝑵): A 

trapezoidal fuzzy number 𝑇𝑝𝐹𝑁 is reduced to the triangular fuzzy 

number 𝑇𝑟𝐹𝑁 and denoted by 𝐴 ̃ = (𝑎, 𝛼, 𝛽), where 𝑎 = 𝑎𝐿 =
𝑎𝑈 ∈ 𝐴 ̃ ⊆ 𝐹(𝑅) (Ameen, 2015; Dharani, K;Selvi, D, 2018), thus 

𝐴 ̃ = (𝑎, 𝛼, 𝛽) ⊂ (𝑎𝐿, 𝑎𝑈, 𝛼, 𝛽) ⊆ 𝐹(𝑅). The 𝑇𝑟𝐹𝑁 could be 

illustrates as following figure: 

 

Figure : 2.1-2: Triangular Fuzzy Number 𝑇𝑟𝐹𝑁 

 

Where the linear fuzzy membership function LFMF for triangular 

fuzzy number 𝑇𝑟𝐹𝑁 is as following: 
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𝜇(𝑥) =

{
 
 

 
 
𝑥 − 𝛼

𝑎 − 𝛼
𝛼 ≤ 𝑥 ≤ 𝑎

1 𝑥 = 𝑎
𝛽 − 𝑥

𝛽 − 𝑎
𝑎 ≤ 𝑥 ≤ 𝛽

0 𝑂𝑡ℎ𝑒𝑟 𝑊𝑖𝑠𝑒

  

Formulation 2.1-2: The Linear Fuzzy Membership Function 

LFMF For 𝑇𝑟𝐹𝑁 

 

2.1.6 Definition of Ranking Function (𝑹(𝑭)): A ranking 

function 𝑅(𝐹): 𝐹(𝑅) ⟶ ℝ is a mapping that transforms each 

fuzzy number into its corresponding real value in real line, where 

a natural order exists (Ameen, 2015; Dharani, K;Selvi, D, 2018). 

Formulation (4.2-5) and Formulation (4.2-6) are two kinds of 

ranking functions. 

2.2 The Relating Polyhedral Sets with Building Uncertainty 

Unknown Information on Probability Space 

Two kinds of information on probability distribution which are 

fuzzy and stochastic polyhedral sets are preferred in this 

subsection. 

2.2.1 The Fuzzy Polyhedral Set 𝝅 ̃: The fuzzy polyhedral set 

contains fuzzy uncertainty unknown information on probability 

distribution space (Ω, 2Ω, 𝑃) and generated by fuzzy/inexact 

inequalities on π which are for each probability 𝑝𝑖 of a given 

event 𝜔𝑖 ∈ 𝜋 ̃, 𝑖 = 1,2, … , 𝑠, and formed by: 

𝜋 ̃ = {

𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑁)
𝑇 ∈ ℝ𝑁;

𝐴𝑝 ≼ 𝑏;∑ 𝑝𝑖 = 1
𝑁

𝑖=1
; ∀𝑝𝑖 ≥ 0; 𝑖 = 1,… , 𝑁

} 

Formulation 2.2-1: The Fuzzy Polyhedral Set 𝝅 ̃ 
 

        Where 𝐴 and 𝑏 are (𝑠, 𝑁) and (𝑠, 1) dimensions fixed fuzzy 

random matrices respectively, and ≼ was a fuzzy/inexact 

inequality and crisp of 𝑃 which meant that 𝐴𝑝 was almost equal 

or less than 𝑏 (Abdelaziz, F Ben;Masri, Hatem, 2005; Abdelaziz, 

Fouad Ben;Masri, Hatem, 2010; Abdelaziz, Fouad Ben;Masri, 

Hatem, 2009; Ameen, 2015; Dharani, K;Selvi, D, 2018; Guo, 

Haiying;Wang, Xiaosheng;Zhou, Shaoling, 2015; Sakawa, 

Interactive multiobjective linear programming with fuzzy 

parameters, 1993; Sakawa, Fundamentals of fuzzy set theory, 

1993; Mahdavi-Amiri;NezamNasseri;Seyed Hadi, 2007; 

Mahdavi-Amiri, N;Nasseri, SH, 2006) and (Hamadameen, 

Abdulqader Othman;Hassan, Nasruddin, 2018; Hamadameen, 

Abdulqader Othman;Zainuddin, Zaitul Marlizawati, 2015). 

 

2.2.2 The Stochastic Polyhedral Set 𝝅: Where the 

information on probability distribution space (Ω, 2Ω, 𝑃) was 

stochastic on 𝜋 and generated by stochastic inequalities on π and 

crisp of 𝑃 which are for each probability 𝑝𝑖 of a given events 𝜔𝑖 ∈

𝜋, 𝑖 = 1,2,… , 𝑠, or (Ω, 2Ω, 𝑃) converted from fuzzy to stochastic, 

then it is called stochastic/default/known polyhedral set and 

formed by: 

𝜋 = {

𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑁)
𝑇 ∈ ℝ𝑁;

𝐴𝑝 ≤ 𝑏;∑ 𝑝𝑖 = 1
𝑁

𝑖=1
; ∀𝑝𝑖 ≥ 0; 𝑖 = 1,… , 𝑁

} 

Formulation 2.2-2: The Stochastic Polyhedral Set 𝝅 

 

        Where 𝐴 and 𝑏 are (𝑠, 𝑁) and (𝑠, 1) dimensions fixed 

random matrices respectively (Abdelaziz, F Ben;Masri, Hatem, 

2005; Abdelaziz, Fouad Ben;Masri, Hatem, 2010; Abdelaziz, 

Fouad Ben;Masri, Hatem, 2009; Ameen, 2015; Dharani, K;Selvi, 

D, 2018; Guo, Haiying;Wang, Xiaosheng;Zhou, Shaoling, 2015; 

Sakawa, Interactive multiobjective linear programming with 

fuzzy parameters, 1993; Sakawa, Fundamentals of fuzzy set 

theory, 1993; Mahdavi-Amiri;NezamNasseri;Seyed Hadi, 2007; 

Mahdavi-Amiri, N;Nasseri, SH, 2006) and (Hamadameen, 

Abdulqader Othman;Hassan, Nasruddin, 2018; Hamadameen, 

Abdulqader Othman;Zainuddin, Zaitul Marlizawati, 2015). 

Therefore, an LPPs with Formulation (2.2-1) is then called linear 

programming problem with fuzzy uncertainty unknown 

information on probability distribution space LPPFI. Although, 

immediately every fuzzy polyhedral set 𝜋 ̃ Formulation (2.2-1) 

should be converted to stochastic polyhedral set 𝜋 Formulation 

(2.2-2) via alpha-cut technique approach, then after converting 

called linear programming problem with certainty known 

information on probability distribution space LPP. 

3. STLPPFI PROBLEM FORMULATION AND ITS 

MATLAB CODE PROGRAM WITH ALGORITHMS 

        This section discusses the organization of STLPPFI model 

problem mathematically and data information of STLPPFI model 

problem and MATLAB Code Program with its Algorithm as 

follows: 

3.1 The Mathematical Formulation Problem of STLPPFI 

        The mathematical formulation of STLPPFI is shown as 

follows: 

The Stochastic Unique-Objective Function 

𝑀𝑖𝑛 𝑧(𝜔, 𝑥) =∑∑𝑥𝑖𝑗𝑐𝑖𝑗(𝜔)

𝑛

𝑗=1

𝑚

𝑖=1

 

Subject to: 

∑𝑥𝑖𝑗

𝑛

𝑗=1

= 𝑎𝑖  ; 𝑖 = 1,2, … ,𝑚 

∑𝑥𝑖𝑗

𝑚

𝑖=1

= 𝑏𝑗 ; 𝑗 = 1,2, … , 𝑛 

With satisfying deterministic balance condition: 

∑𝑎𝑖

𝑚

𝑖=1

=∑𝑏𝑗

𝑛

𝑗=1

 

With satisfying domain condition: 

𝑥𝑖𝑗 ≥ 0,∀𝑖, 𝑗; 𝑖 = 1,2,… ,𝑚; 𝑗 = 1,2,… , 𝑛; 𝑥 ∈ 𝑋,𝜔 ∈ 𝛺 

Formulation 3.1-1: The Mathematical Formulation of STLPPFI 

 

        Where stochastic unique-objective function is optimality 

condition of LPP, and it is subject to both of deterministic 

availability constraints and deterministic requirement constraints 

respectively, as well as satisfying deterministic balance condition 

and domain condition, where constraints are feasible solution 

region condition of LPP, and deterministic balance condition 

mean that total availability constraints satisfy total requirements 

constraints, and domain condition mean that non-negativity of 

unknown variable set and belongings of stochastic parameters to 

probability distribution space. Where 𝑎𝑖  and 𝑏𝑗 are (𝑚, 1) known 

vectors production values of electricity in Kw/h and (1, 𝑛) known 

vectors requirement values of using electricity in Kw/h 

respectively, both 𝑎𝑖 , 𝑏𝑗 are crisp and does not appear 

scholastically, and 𝑐𝑖𝑗(𝜔) is probably estimated cost values of 

transporting electricity in IQD/Kw and it is not crisp and appears 

scholastically should be determined it via both transformations, 

and 𝑐𝑖𝑗(𝜔) is (𝑚, 𝑛) random matrix as shows in Table (3.1-1) as 

well as probably estimated cost values for each 𝑐𝑖𝑗(𝜔) shows in 

Table (3.1-2) respectively, and 𝑥𝑖𝑗  is (𝑚, 𝑛) unknown matrix 

should be found it via suitable methods and it is amount of 

transporting electricity in Kw/h. So, the Formulation (3.1-1) has 

fuzzy uncertainty unknown information in probability 

distribution space 𝑃. Depends on (Abdelaziz, Fouad Ben;Aouni, 

Belaid;El Fayedh, Rimeh, 2007; Abdelaziz, F Ben;Masri, Hatem, 

2005; Abdelaziz, Fouad Ben;Masri, Hatem, 2009; Abdelaziz, 

Fouad Ben;Masri, Hatem, 2010; Ameen, 2015). Formulation 

(3.1-1) can be defined in terms of some probability distribution 
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space (Ω, 2Ω, 𝑃), where {Ω = {𝜔𝑘}; 𝑘 = 1,2,… , 𝑁} is a discrete 

set of events or a finite set of possible states of nature, 2Ω is 

power set of Ω, and 𝑃 is fuzzy uncertainty unknown probability 

distribution space that assigns to each 𝐴 ∈ 2Ω probability of 

occurrence 𝑃(𝐴) (i.e., 𝑃 is (𝑠, N) matrix of probabilities 𝑝𝑖 =
𝑃({𝜔 = 𝜔𝑖}), 𝑖 = 1,2,… , 𝑠, 𝑝𝑖 ∈ 𝜋 ̃, ∀𝑖). 
        Although, the set 𝑋 is a known polyhedral set of feasible 

solutions that includes deterministic constraints of STLPPFI 

problem, solving STLPPFI Formulation (3.1-1) first needs to be 

converted into DTLPP Formulation (3.2-1). Secondly, finding 

the set of non-negatives 𝑥𝑖𝑗 , ∀𝑖, 𝑗 that minimize the objective 

function, satisfy constraint conditions, balanced condition and 

domain condition. Where the data is illustrated in Table (3.1-1) 

of STLPPFI Formulation (3.1-1), and note that the data in Table 

(3.1-1) may be vague or containing inaccurate values since there 

might be fuzzy information on probability distribution or there is 

not any previous information on probability distribution, so 

information and data will be distributed as follows: 

        Suppose that 𝑚 electricity power production stations named 

𝐺1, 𝐺2, 𝐺3, …, and 𝐺𝑚 with 𝑛 cities need to be supplied with 

electricity names 𝐾1, 𝐾2, 𝐾3, …, and 𝐾𝑛 as following balanced 

STLPPFI table: 

Table: 3.1-1: The Data Distribution Table of STLPPFI 

Power 

Plants 

Cites Supply 

Million 

Kw/h 
𝐾1 𝐾2 … 𝐾𝑛 

𝐺1 𝑐11(𝜔) 𝑐12(𝜔) … 𝑐1𝑛(𝜔) 𝑎1 

𝐺2 𝑐21(𝜔) 𝑐22(𝜔) … 𝑐2𝑛(𝜔) 𝑎2 

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 
𝐺𝑚 𝑐𝑚1(𝜔) 𝑐𝑚2(𝜔) … 𝑐𝑚𝑛(𝜔) 𝑎𝑚 

Demand 

Million 

Kw/h 

𝑏1 𝑏2 … 𝑏𝑛 

Total = 

(v) M 

Kw/h 

Balanced 

Where prices of transporting costs are stochastically, and 

probably estimated cost values of random matrix of 𝑐𝑖𝑗(𝜔) will 

be as follows: 

Table: 3.1-2: The Probably Estimated Cost Values of 

Probability Distribution Space 

𝜔 𝜔1 𝜔2 … 𝜔𝑠 

𝑐11(𝜔) 
𝑐11(𝜔1) 

IQD 

𝑐11(𝜔2) 
IQD 

… 𝑐11(𝜔𝑠) IQD 

𝑐12(𝜔) 
𝑐12(𝜔1) 

IQD 

𝑐12(𝜔2) 
IQD 

… 𝑐12(𝜔𝑠) IQD 

⋮ ⋮ ⋮ ⋱ ⋮ 

𝑐1𝑛(𝜔) 
𝑐1𝑛(𝜔1) 

IQD 

𝑐1𝑛(𝜔2) 
IQD 

… 𝑐1𝑛(𝜔𝑠) IQD 

𝑐21(𝜔) 
𝑐21(𝜔1) 

IQD 

𝑐21(𝜔2) 
IQD 

… 𝑐21(𝜔𝑠) IQD 

𝑐22(𝜔) 
𝑐22(𝜔1) 

IQD 

𝑐22(𝜔2) 
IQD 

… 𝑐22(𝜔𝑠) IQD 

⋮ ⋮ ⋮ ⋱ ⋮ 

𝑐2𝑛(𝜔) 
𝑐2𝑛(𝜔1) 

IQD 

𝑐2𝑛(𝜔2) 
IQD 

… 𝑐2𝑛(𝜔𝑠) IQD 

⋮ ⋮ ⋮ ⋱ ⋮ 

𝑐𝑚1(𝜔) 
𝑐𝑚1(𝜔1) 

IQD 

𝑐𝑚1(𝜔2) 
IQD 

… 𝑐𝑚1(𝜔𝑠) IQD 

𝑐𝑚2(𝜔) 
𝑐𝑚2(𝜔1) 

IQD 

𝑐𝑚2(𝜔2) 
IQD 

… 𝑐𝑚2(𝜔𝑠) IQD 

⋮ ⋮ ⋮ ⋱ ⋮ 

𝑐𝑚𝑛(𝜔) 
𝑐𝑚𝑛(𝜔1) 

IQD 

𝑐𝑚𝑛(𝜔2) 
IQD 

… 𝑐𝑚𝑛(𝜔𝑠) IQD 

Where information of response cities on electricity power plants 

are fuzzy distributed i.e., the information probability distribution 

shown as fuzzy polyhedral set 𝜋 ̃form (Formulation (2.2-1)). The 

STLPPFI Formulation (3.1-1) has stochastically uncertainty 

unknown expression in its objective function coefficients, and 

then it has fuzzily uncertainty unknown expression in its 

information probability distribution space (Ω, 2Ω, 𝑃). The 

uncertainty has randomness for parameters and fuzziness for 

probability distributing. 

3.2 The Mathematical Formulation Problem of DTLPP 

        STLPPFI mathematical formulation was introduced in 

subsection (3.1). Now standard Deterministic Transportation 

Linear Programming Problems DTLPP need to be introduced. 

Since after defuzzifying fuzziness of information on probability 

distribution space of STLPPFI then STLPPFI convert to STLPP, 

then after derandomizing stochastic/randomness of problem 

formulation of STLPP then immediately STLPP convert to 

DTLPP. Now, DTLPP can be formulated and shown as follows: 

The Deterministic Unique-Objective Function 

𝑀𝑖𝑛 𝑧(𝑥) =∑∑𝑥𝑖𝑗𝑐𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 

Subject to: 

∑𝑥𝑖𝑗

𝑛

𝑗=1

= 𝑎𝑖  ; 𝑖 = 1,2, … ,𝑚 

∑𝑥𝑖𝑗

𝑚

𝑖=1

= 𝑏𝑗 ; 𝑗 = 1,2, … , 𝑛 

With satisfying deterministic balance condition: 

∑𝑎𝑖

𝑚

𝑖=1

=∑𝑏𝑗

𝑛

𝑗=1

 

With satisfying domain condition: 

𝑥𝑖𝑗 ≥ 0, ∀𝑖, 𝑗; 𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2,… , 𝑛; 𝑥 ∈ 𝑋 

Formulation 3.2-1: The Mathematical Formulation of DTLPP 

 

        Where the deterministic unique-objective function is the 

optimality condition of LPP, and it is subject to both 

deterministic availability constraints and deterministic 

requirement constraints respectively, as well as satisfying the 

deterministic balance condition and the domain condition, where 

constraints are the feasible solution region condition of LPP, and 

the deterministic balance condition mean that the total 

availability constraints satisfy the total requirements constraints, 

and the domain condition means the non-negativity of unknown 

variable set. Where 𝑐𝑖𝑗 , 𝑎𝑖 and 𝑏𝑗  are (𝑚, 𝑛) known matrices of 

deterministic cost values of transporting electricity in IQD/Kw, 
(𝑚, 1) known vector production values of electricity in Kw/h, 
(1, 𝑛) known vector requirement values of using electricity in 

Kw/h respectively, and all of them are deterministic and do not 

appear scholastically, and 𝑥𝑖𝑗  is (𝑚, 𝑛) unknown matrix should 

be found it using a suitable method such as Dual-Simplex and 

VAM, and it represents the amount of transporting electricity in 

Kw/h. 

        Although the set 𝑋 is a polyhedral set of feasible solutions 

that includes deterministic constraints of the DTLPP problem, to 

solve Formulation (3.2-1), we need to find a set of non-negatives 

𝑥𝑖𝑗 , ∀𝑖, 𝑗 that minimize the objective function, satisfy constraint 

conditions, the balanced condition and the domain condition. The 

data distributed in Table (3.2-1) of DTLPP Formulation (3.2-1), 

and note that data in Table  (3.2-1) are most approximately 

equivalent values of fuzzy random estimate values before and 

most approximately equivalent values to exact values, since we 

convert fuzzy information on probability distribution space to 

known information or we have approximately trust information 

on probability distribution space now, so the information 

distributed as follows: 

        Suppose that 𝑚 electricity power product stations named 

𝐺1, 𝐺2, 𝐺3, …, and 𝐺𝑚 with 𝑛 cities need to be supplied with 
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electricity names 𝐾1, 𝐾2, 𝐾3, …, and 𝐾𝑛 as following balanced 

standard DTLPP table:  

 

 

Table: 3.2-1: The Data Distribution Table of DTLPP 

Power Plants 
Cites Supply 

Million Kw/h 𝐾1 𝐾2 … 𝐾𝑛 

𝐺1 𝑐11 𝑐12 … 𝑐1𝑛  𝑎1 

𝐺2 𝑐21 𝑐22 … 𝑐2𝑛 𝑎2 

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 
𝐺𝑚 𝑐𝑚1 𝑐𝑚2 … 𝑐𝑚𝑛 𝑎𝑚 

Demand 

Million Kw/h 
𝑏1 𝑏2 … 𝑏𝑛 

Total = 

(v) M 

Kw/h 

Balanced 

 

3.3 STLPPFI Algorithm with its MATLAB Code Program 

       The STLPPFI algorithm with its MATLAB code program 

was introduced in detail and STLPPFI MATLAB program will 

be applied to solve illustrate example in section 5. 

3.3.1 The Algorithm Program Outline of STLPPFI 

        The program outline of STLPPFI will be as follows: 

Input: input fuzzy information on probability distribution via 

three vectors 𝑏𝑖 , 𝑑𝑖 and 𝛼𝑖 as credibility degree of the DM about 

information on probability distribution space, vagueness level 

vector and alpha-cut level vector respectively, then input an 

acceptance vector via vector 𝑝 from 𝑅𝑁 matrix in each row select 

one value where length of vector 𝑝 is 3/4/5, then input 𝑐𝑠 matrix 

(𝑚𝑚 ∗ 𝑛𝑛, 3)/(𝑚𝑚 ∗ 𝑛𝑛, 4)/(𝑚𝑚 ∗ 𝑛𝑛, 5) 2𝐷 dimensions’ 

matrix as estimates cost values where matrix 𝑐𝑠 is (𝑚, 𝑛) 
estimates distribution matrix with (1, 𝑘) deterministic acceptance 

vector face, then input 𝑚𝑚 value and 𝑛𝑛 value respectively as 

length of row and column of deterministic cost values of matrix 

𝑐𝑑 will be in final where should (𝑚𝑚 ∗ 𝑛𝑛)/(𝑘𝑘) i.e., (𝑚𝑚 ∗
𝑛𝑛) divide over (𝑘𝑘) if it is not divided then the problem does 

not have solution, then finally input availability constraints 

vector 𝑎𝑣𝑏 and input requirement constraints vector 𝑟𝑒𝑞 where 

should be total availability satisfy total requirement as applying 

balance condition on it. 

Step 1: Form the problem as Formulation (3.1-1). 

Step 2: To transform Formulation (2.2-1) into Formulation (2.2-

2) use truth degrees’ algorithm which contains three algorithms 

respectively as follows: 

Step 2a: Use Formulation (4.1-3) i.e., (use alpha-cut algorithm) 

to obtain alpha-cut technique probability interval from three 

vectors 𝑏𝑖 , 𝑑𝑖 and 𝛼𝑖 as credibility degree of the DM about 

information on probability distribution space, vagueness level 

vector and alpha-cut level vector respectively to cover and 

determine fuzzy uncertainty information on probability 

distribution. 

Step 2b: Build the truth degrees set on probability distribution 

via uses dividing each obtain alpha-cut technique probability 

interval to ten continuous subintervals or eleven equal distance 

points in each row of degrees of truth of fuzzy logical value i.e., 

(use linspace MATLAB function). 

Step 2c: Build fuzzy truth degrees polyhedral set via using linear 

fuzzy membership functions LFMF Formulation (4.1-1) and 

Formulation (4.1-2) i.e., shown fuzzy truth degrees polyhedral 

set via both 𝑇𝑟𝐹𝑁 and 𝑇𝑝𝐹𝑁 in each row as fuzzy truth degrees 

regions 𝐹𝑁(𝑘, 1: 24) = [𝑇𝑟𝐹𝑁1, 𝑇𝑝𝐹𝑁2, 𝑇𝑟𝐹𝑁3, 𝑇𝑝𝐹𝑁4, 
𝑇𝑟𝐹𝑁5,𝑇𝑝𝐹𝑁6, 𝑇𝑟𝐹𝑁7], where 𝑇𝑟𝐹𝑁1(1st 3 elements), 

𝑇𝑝𝐹𝑁2(2nd 4 elements), 𝑇𝑟𝐹𝑁3(3rd 3 elements), 𝑇𝑝𝐹𝑁4(4th 4 

elements), 𝑇𝑟𝐹𝑁5(5th 3 elements), 𝑇𝑝𝐹𝑁6(6th 4 elements), 

𝑇𝑟𝐹𝑁7(7th 3 elements) of FN matrix, and where fuzzy vector 

forms contain 𝑇𝑟𝐹𝑁 as (𝑎, 𝑎𝑙𝑝ℎ𝑎, 𝑏𝑒𝑡𝑡𝑎), and for 𝑇𝑝𝐹𝑁 as (𝑎 −

𝑙𝑜𝑤𝑒𝑟, 𝑎 − 𝑢𝑝𝑝𝑒𝑟, 𝑎𝑙𝑝ℎ𝑎, 𝑏𝑒𝑡𝑡𝑎). Then convert fuzzy truth 

degrees polyhedral set to stochastic truth degrees polyhedral set 

or deterministic values vector or nine important efficient points 

in each fuzzy truth degrees regions after applying linear fuzzy 

ranking functions LFRF Formulation (4.2-5) and Formulation 

(4.2-6) (i.e., use LFRF algorithm) to deffuzzifier all seven fuzzy 

numbers column values for all 𝑖 in each row and showing via 

obtain deterministic matrix values 𝑅𝑁. 

Step 3: Test second condition of alpha-cut technique probability 

interval Formulation (4.1-3) (i.e., use acceptance P algorithm) 

which is from deterministic vector 𝑝 in each row, we take 

𝑝1, 𝑝2, 𝑝3 . . . 𝑝𝑛 values to obtain acceptance vectors to check that 

STLPP Formulation (3.1-1) with stochastic polyhedral set 

Formulation (2.2-2) are acceptable for the entire cases to go to 

next step or not (where 𝑛 cases are passes via test 9^𝑛 cases via 

𝑠𝑢𝑚(𝑝𝑖) = 1, ∀𝑝𝑖 ≥ 0). Then create logical comparative matrix 

to find and select each case equal one after 𝑠𝑢𝑚(𝑝𝑖) = 1, ∀𝑝𝑖 ≥
0, then select locations of acceptance cases via create acceptance 

location vector, then collect 𝑝𝑖 as acceptances’ vectors of 𝑝. 

Step 4: Use Formulation (4.3-1) for deterministic acceptance 

vectors that passes Step 3 (i.e., use EWS algorithm) to convert 

STLPP Formulation (3.1-1) with stochastic polyhedral set 

Formulation (2.2-2) into DTLPP Formulation (3.2-1). This step 

starts by inputting vector 𝑝 as an acceptance vector that was 

obtained previously from 𝑅𝑁 matrix, inputting 𝑐𝑠 2𝐷 

dimensions’ (𝑚, 𝑛) estimates distribution matrix as estimates 

cost values Table (3.1-2) with (1, 𝑘) deterministic acceptance 

vector face, inputting 𝑚𝑚 and 𝑛𝑛 scalar values as length of row 

and column of final obtain deterministic cost value matrix 𝑐𝑑 in 

Table (3.2-1). Then 𝑐𝑠 (𝑚 ∗ 𝑛, 𝑘) 2𝐷 matrix converts to 𝑐𝑠𝑠 
(𝑚, 𝑘, 𝑛) 3𝐷 matrix via applying EWS algorithm process on 𝑐𝑠𝑠 
(𝑚, 𝑘, 𝑛) 3𝐷 matrix with (1, 𝑘) dimension acceptance vector 𝑝 

to convert 𝑐𝑠𝑠 (𝑚, 𝑘, 𝑛) 3𝐷 matrix to 𝑐𝑑 (𝑚, 𝑛) 2𝐷 deterministic 

cost value matrix in Table (3.2-1). 

Step 5: Solve DTLLP Formulation (3.2-1) 𝑛 times with all 

acceptance vectors that passes Step 3 via each step 5a & 5b 

separately to obtain initial feasible solution IFS, where 

Formulation (3.2-1) contains the obtained 𝑐𝑑 (𝑚, 𝑛) 
deterministic cost matrix in Table (3.2-1) with both (1, 𝑛) and 

(𝑚, 1) deterministic vectors by inputting availability constraints 

vector 𝑎𝑣𝑏 and requirement constraints vector 𝑟𝑒𝑞 in Table (3.2-

1) where the total availability should satisfy the total requirement. 

Step 5a: Solve DTLPP via the Simplex Algorithm Method. 

Step 5b: Solve DTLPP via the Vogel Approximation Algorithm 

Method. 

Step 6: Find optimal solution among 𝑛 cases of acceptance 

vectors that passes Step 3 for each two methods via the Modify 

Distribution Method (MODI). 

Step 7: Select the post optimal solution via deciding from 

decision maker DM recommendation for a certain case. 

Output: Optimal Solution that contain best basic feasible 

solution BFS with minimum total cost transporting electricity 

objective function, with selection post optimal solution value  ∎. 

 

3.3.2 The STLPPFI Problem Solver Technique MATLAB 

Program 

        The MATLAB code program of STLPPFI problem solver 

technique is as follows: 

% Alpha-cut technique part 

format short; disp('input vector b as a credibility degree of the 

DM about information on probability distribution space'), 

b=input('b=');disp('input vector d as a vagueness 

level'),d=input('d=');disp('input vector a as alpha-cut 

level'),a=input('a='); 

b=b';d=d';a=a';n=length(a);p=zeros(n,2); 

if length(b)==length(d) && length(b)==length(a) && 

length(d)==length(a) 
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    disp('The problem has a solution as follows:') 

    for k=1:1:n 

        p(k,[1,2])=[(b(k))-((d(k))*((1-a(k)))),(b(k))+((d(k))*((1-

a(k))))]; 

    end 

else 

disp('There is no solution since all vectors you inputted are not in 

the same dimension') 

end 

if length(b)==length(d) && length(b)==length(a) && 

length(d)==length(a) 

    disp('The credibility degree vector b is') 

    b=b';b 

    disp('The vagueness levels vector d is') 

    d=d';d 

    disp('The alpha-cut levels vector a is') 

    a=a';a 

else 

    disp('please input all vectors in same dimension') 

end 

% Truth Degrees technique part 

b=size(p);n=b(1);l=zeros(n,11);FN=zeros(n,24);RN=zeros(n,9);

TrFN1=0;TpFN2=0;TrFN3=0;TpFN4=0;TrFN5=0;TpFN6=0;T

rFN7=0;RN1=0;RN2=0;RN3=0;RN4=0;RN5=0;RN6=0;RN7=0

; 

if b(2)==2 

    disp('The solution will be as following') 

    for k=1:1:n 

       l(k,1:11)=linspace(p(k,1),p(k,2),11); 

TrFN1(k,1:3)=l(k,[2,1,3]);TpFN2(k,1:4)=l(k,[3,5,2,6]);TrFN3(k

,1:3)=l(k,[5,3,6]);TpFN4(k,1:4)=l(k,[5,7,4,8]);TrFN5(k,1:3)=l(k

,[7,6,9]);TpFN6(k,1:4)=l(k,[7,9,6,10]);TrFN7(k,1:3)=l(k,[10,9,1

1]);FN(k,1:24)=[TrFN1(k,:),TpFN2(k,:),TrFN3(k,:),TpFN4(k,:),

TrFN5(k,:),TpFN6(k,:),TrFN7(k,:)];RN1(k,1)=(FN(k,1))+((FN(

k,3)-FN(k,2))/4);RN2(k,1)=((FN(k,4)+FN(k,5))/2) +((FN(k,7)-

FN(k,6))/4);RN3(k,1)=(FN(k,8))+ ((FN(k,10)-

FN(k,9))/4);RN4(k,1)=((FN(k,11) +FN(k,12))/2)+((FN(k,14)-

FN(k,13))/4); RN5(k,1)=(FN(k,15))+((FN(k,17)-FN(k,16))/4); 

RN6(k,1)=((FN(k,18)+FN(k,19))/2)+((FN(k,21)-

FN(k,20))/4);RN7(k,1)=(FN(k,22))+((FN(k,24)-

FN(k,23))/4);RN(k,1:9)=[p(k,1),RN1(k,:),RN2(k,:),RN3(k,:),R

N4(k,:),RN5(k,:),RN6(k,:),RN7(k,:),p(k,2)]; 

    end 

else 

disp('There is no solution since p is not as a (n,2) dimension 

matrix') 

end 

if b(2)==2 

    disp('The Alpha-Cut Technique probability intervals of each pi 

for all i in each row of (n,2) matrix p i.e., after applying Fuzzy 

Transformation of Probability Distribution Space via Alpha-Cut 

Technique') 

    p 

    disp('The Truth Degrees Process as follows applies: First, The 

Alpha-Cut Technique Probability Intervals of each pi for all i 

divides to eleven equal distance points in each row of following 

Degrees of Truth of fuzzy logical value') 

    l 

        disp('Second, Converting Truth Degrees to both TrFN and 

TpFN in each row as following fuzzy Truth Degrees region 

FN(k,1:24)=[TrFN1, 

TpFN2,TrFN3,TpFN4,TrFN5,TpFN6,TrFN7] Where TrFN1(1st 

3 elements),TpFN2(2nd 4 elements),TrFN3(3rd 3 elements), 

TpFN4(4th 4 elements),TrFN5(5th 3 elements),TpFN6(6th 4 

elements),TrFN7(7th 3 elements) Where fuzzy vector forms 

contain TrFN as (a, alpha, betta), and for TpFN as (a-lower, a-

upper, alpha, betta)') 

    FN 

        disp('The deterministic vector values or nine important 

power points in each fuzzy Truth Degrees regions after applying 

linear fuzzy ranking function LFRF to deffuzzifier fuzzy for all 

column values for all i as each row of the following deterministic 

values matrix RN') 

    RN 

else 

    disp('please input p is a (n,2) dimension matrix') 

end 

% Acceptance P technique part 

kkk=size(RN); 

if kkk(1)==3 

    disp('from deterministic vector p in each row we take p1 p2 p3 

... pn vectors then we test 9^n cases via sum(pi)=1 for all pi>0') 

p1=RN(1,:);np1=length(p1);p2=RN(2,:);np2=length(p2);p3=RN

(3,:);np3=length(p3);p123=zeros(np3,np1,np2);pp123=zeros(np

3,np1,np2); 

    if length(p1)==length(p2)&& length(p1)==length(p3)&& 

length(p2)==length(p3) 

        for k=1:1:np3 

            for m=1:1:np1 

                for n=1:1:np2 

           p123(m,n,k)=p1(k)+p2(m)+p3(n);p123; 

                end 

            end 

        end 

    else 

        disp('There is not have solution') 

    end 

    p123 

    disp('we find and select each case equal one after sum(pi)=1 

for all pi>0 then we collect pi as acceptance vector'), 

pp123=logical(p123==1),[rowpp123,colpp123,volpp123]=find(

pp123);rowpp123=rowpp123';colpp123=colpp123';volpp123=v

olpp123';rowpp123,colpp123,volpp123 

else 

    disp('There is not have solution since rows of RN more than 

3') 

end 

% EWS technique part 

disp('input vector p as an acceptance vector from RN matrix in 

each row give one value where length of vector p is 

3/4/5'),p=input('p=');disp('input cs matrix 

(mm*nn,3)/(mm*nn,4)/(mm*nn,5) 2-D dimensions matrix as a 

estimates cost values where matrix cs is (m,n) distribution matrix 

with (1,k) stochastic vector face'),cs=input('cs='); disp('please 

input mm and nn as what is length of row and column of 

deterministic value matrix will be in final respectively Be 

attention should (mm*nn)/(kk) i.e., (mm*nn) divide over (kk) if 

not divided not have solution') 

mm=input('mm=');nn=input('nn=');kk=size(cs,2); 

if rem(mm*nn,kk)==0 

disp('we convert cs matrix (m*n,k) 2D matrix to css (m,k,n) 3D 

matrix') 

if length(p)==3 

css=cat(3,cs(1:mm,1:length(p)),cs((mm)+1:2*(mm),1:length(p))

,cs((2*(mm))+1:3*(mm),1:length(p))); 

elseif length(p)==4 

css=cat(4,cs(1:mm,1:length(p)),cs((mm)+1:2*(mm),1:length(p))

,cs((2*(mm))+1:3*(mm),1:length(p)),cs((3*(mm))+1:4*(mm),1:

length(p))); 

elseif length(p)==5 

css=cat(5,cs(1:mm,1:length(p)),cs((mm)+1:2*(mm),1:length(p))

,cs((2*(mm))+1:3*(mm),1:length(p)),cs((3*(mm))+1:4*(mm),1:

length(p)),cs((4*(mm))+1:5*(mm),1:length(p))); 

else 

    disp('There is not have solution') 

end 
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m=size(css,1);k=size(css,2);n=size(css,3);cd=zeros(m,k,n);css 

if length(p)==k 

    disp('The solution will be as following') 

    cd=pagetranspose(pagemtimes(css,p')); 

else 

disp('There is not have solution') 

end 

else 

disp('There is not have solution') 

end 

if length(p)==k && length(p)==3 

   disp('The deterministic value matrix cd 

is'),cd=[cd(:,:,1);cd(:,:,2);cd(:,:,3)];format long;cd 

elseif length(p)==k && length(p)==4 

    disp('The deterministic value matrix cd 

is'),cd=[cd(:,:,1);cd(:,:,2);cd(:,:,3);cd(:,:,4)];format long;cd 

elseif length(p)==k && length(p)==5 

    disp('The deterministic value matrix cd 

is'),cd=[cd(:,:,1);cd(:,:,2);cd(:,:,3);cd(:,:,4);cd(:,:,5)];format 

long;cd 

else 

   disp('please input (1,k) vector p that have same 3rd dimension 

of cs (m,n,k) 3D matrix') 

end 

% Solving Deterministic TLPP part 

disp('Now, we have deterministic matrix cd, please input 

availability vector avb and input requirement vector req where 

should be total availability satisfy total requirement') 

avb=input('avb=');req=input('req='); 

if sum(avb)==sum(req) 

    disp('The solution where uses dual-simplex 

method'),[sol,zval,exitflag, 

output]=DTLPPVogel(cd,avb,req);sol=reshape(sol,size(cd,1),si

ze(cd,2));exitflag, output, sol,format long;zval,disp('The solution 

where uses Vogel approximation method'), 

[ibfs,objCost]=VogelBeModi2(cd,avb,req) 

    else 

        disp('There is not have solution since total availability does 

not satisfy total requirement or sum(avb) not equal to sum(req)') 

end 

∎. 

Where three DTLPP problem solver MATLAB programs of 

previous works are as follows: 

function [sol,zval,exitflag,output]= DTLPPVogel(cost,avb,req) 

if sum(avb) ~= sum(req) 

   ...exc=MException('tp:unbalancedProblem', ... 'Cannot solve 

unbalanced problem.'); 

        throw(exc); 

end 

x=optimvar('x',size(cost,1),size(cost,2),'LowerBound',0);z=sum(

x.*cost,'all');numCons=size(cost,1)+size(cost,2);cons = 

optimconstr(numCons, 1);count = 1; 

for i=1:1:size(x,1) 

cons(count)=sum(x(i,:))==avb(i);count=count+1; 

end 

for i = 1:1:size(x, 2) 

cons(count)=sum(x(:,i))==req(i);count=count+1; 

end 

problem=optimproblem('Objective',z,'ObjectiveSense', 

'min');problem.Constraints = cons; 

show(problem),problem=prob2struct(problem); 

[sol,zval,exitflag,output]=linprog(problem); 

end 

(Appati, Justice Kwame;Gogovi, Gideon Kwadwo;Fosu, 

Gabriel Obed, 2015; Dharani, K;Selvi, D, 2018; 

Sengamalaselvi, 2017)∎. 

function[ibfs,objCost]=VogelModi(data) 

% ===DATA PREPARATION=== 

cost=data(1:end-1,1:end-1);demand=data(end,1: end-

1);supply=data(1:end-1,end)';ibfs=zeros(size(cost)); 

% ===VOGEL APPROXIMATION METHOD=== 

ctemp=cost; %temporal cost matrix 

while 

length(find(demand==0))<length(demand)||length(find(supply=

=0))<length(supply) 

prow=sort(ctemp,1);prow=prow(2,:)-prow(1,:); %row penalty 

pcol=sort(ctemp,2);pcol=pcol(:,2)-pcol(:,1); %column penalty 

  [rmax,rind]=max(prow);[cmax,cind]=max(pcol); 

    if rmax>cmax 

[~,mind]=min(ctemp(:,rind));[amt,demand,supply,ctemp]=chkd

emandsupply(demand,supply,rind,mind,ctemp);ibfs(mind,rind)

=amt; 

    elseif cmax>= rmax 

[~,mind]=min(ctemp(cind,:));[amt,demand,supply,ctemp]=chkd

emandsupply(demand,supply,mind,cind,ctemp);ibfs(cind,mind)

=amt; 

    end 

end 

objCost=sum(sum(ibfs.*cost)); 

%===MODIFIED DISTRIBUTION === 

val=-1; 

while val<0 

[prow,pcol]=find(ibfs>0);occupiedCells=[prow,pcol]';[prow,pc

ol]=find(ibfs==0);unoccupiedCells=[prow,pcol]';r=0;k =[]; 

    for i = 1:length(occupiedCells(1,:)) 

ri=occupiedCells(1,i);kj=occupiedCells(2,i);        

[r,k]=occupiedSystemSolve(r,k,ri,kj,cost); 

    end  

improvementIndex=zeros(length(unoccupiedCells(1,:)),3); 

    for i =1:length(unoccupiedCells(1,:)) 

ri=unoccupiedCells(1,i);kj=unoccupiedCells(2,i);e=cost(ri,kj)-

r(ri)-k(kj);improvementIndex(i ,:)=[ri,kj,e]; 

    end  

    [val,ind]=min(improvementIndex(:,end)); 

    if val< 0 %check whether improvement is required 

ri=improvementIndex(ind,1);kj=improvementIndex(ind,2);disp(

['Create a circuit around cell (' 

num2str(ri) ',' num2str(kj) ')' ]); 

circuitImproved=[ri,kj,0];n=input('Enter number of element that 

forms the circuit: '); 

        for i = 1:n 

nCells = input(['Enter the index of cell ' num2str(i) ' that forms 

the circuit: ']); 

            if mod(i,2) == 0 

circuitImproved(i+1,:)=[nCells,ibfs(nCells(1),nCells(2))]; 

            else 

circuitImproved(i+1,:)=[nCells,-ibfs(nCells(1),nCells(2))]; 

            end 

        end  

ibfs=reallocateDemand(ibfs,circuitImproved); 

disp(ibfs),objCost=sum(sum(ibfs.*cost)); 

    end 

end 

% ===OTHER REQUIRED FUNCTIONS===FUNCTION 

1=== 

function [r,k]=occupiedSystemSolve(r,k,ri,kj,cost) 

if length(r)>=ri 

    k(kj)=cost(ri,kj)-r(ri); 

else 

    r(ri)=cost(ri,kj)-k(kj); 

end 

% ===FUNCTION 2=== 

Function 

[y,demand,supply,ctemp]=chkdemandsupply(demand,supply,de

d,sud,ctem) 
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tempd=demand;temps=supply; 

if tempd(ded)>temps(sud) 

temps(sud)=0;tempd(ded)=demand(ded)-

supply(sud);y=supply(sud);ctem(sud,:)=inf; 

elseif tempd(ded)<temps(sud) 

tempd(ded)=0;temps(sud)=supply(sud)-

demand(ded);y=demand(ded);ctem(:,ded)=inf; 

elseif tempd(ded)==temps(sud) 

tempd(ded)=0;temps(sud)=0;y=demand(ded); 

ctem(:,ded)=inf;ctem(sud,:)=inf; 

end  

demand=tempd;supply=temps;ctemp = ctem; 

(Sengamalaselvi, 2017; Appati, Justice Kwame;Gogovi, Gideon 

Kwadwo;Fosu, Gabriel Obed, 2015)∎. 

4. TECHNIQUE APPROACHES FOR SOLVING 

STLPPFI 

         This section describes the necessary technique approaches 

for solving STLPPFI. The algorithm program outlines of those 

technique approaches and MATLAB code programs of those 

technique approaches are stated in appendix section 7. Those 

algorithms and MATLAB code programs are used for solving 

STLPPFI and then converting it to DTLPP followed bt obtaining 

the g post optimal solution of STLPPFI with illustrations via 

application example of section 5 for each step of the solution 

process.  

        The solution process contains several stages. First stage 

involves fuzzy transformation on probability distribution space 

via alpha-cut technique approach applies, which is 

defuzzification of fuzzy on probability distribution space of the 

original STLPPFI problem. This process converts it to its 

corresponding equivalent to Stochastic Transportation Linear 

Programming Problems with Certainty Known Information on 

Probability Distribution Space (STLPP) by creating bounded 

interval with unlimited possible known values from unknown 

probably/stochastic values. Then the second stage uses the truth 

degrees technique approach for creating fuzzy probability 

subintervals from the obtained interval, then Linear Fuzzy 

Membership Functions (LFMF) will be found from fuzzy truth 

degrees set. This will be followed by sketching them in one 

combinational figure for separating various different fuzzy truth 

degrees regions. After that, the fuzzy truth degrees regions will 

be defuzzified to stochastic truth degrees regions via Linear 

Fuzzy Ranking Function (LFRF) to get finite discrete determined 

value set. Then cases via testing second condition of alpha-cut 

technique polyhedral set are analyzed to obtain acceptances’ 

vectors for the preparation of applying stochastic transformation. 

The third stage is stochastic transformation of formulation 

problem, which is derandomization of probably randomness 

value set of random variables towards its corresponding 

equivalent deterministic values, where stochastic transformation 

of objective function via EWS technique approach applies to 

transforming STLPP to DTLPP. Then the fourth stage is solving 

obtained DTLPP via Dual-Simplex Algorithm Method and 

VAM, then finding optimal solution via the Modify Distribution 

Method (MODI), where the optimal solution of an DTLPP model 

problems has the minimum objective function value (i.e., have 

minimum objective total transportation costs). Finally, selecting 

post optimal solution as a final result by deciding commands 

from decision makers (DM) among the entire exit intervals for a 

certain case or analyzing results by answering what is the perfect 

solution of STLPPFI entirely in a certain case. 

4.1 Fuzzy Transformation on Probability Distribution 

Space via Alpha-Cut Technique 

        The first transforming on an STLPPFI Formulation (3.1-1) 

with Formulation (2.2-1) to STLPP Formulation (3.1-1) with 

Formulation (2.2-2) involves transforming of the third 

component of probability distribution space (Ω, 2Ω, 𝑃) from 

fuzzy uncertainty unknown information on probability 

distribution space that is generated by fuzzy/inexact inequalities 

on 𝜋 ̃and crisp of 𝑃 to stochastic inequalities on 𝜋 and crisp of 𝑃 

i.e., 𝑃 is in Formulation (2.2-1) fuzzy polyhedral set 𝜋̃ . Then it 

should be converted to Formulation (2.2-2) 

stochastic/default/known polyhedral set 𝜋 or default probability 

distribution space which is the probabilities generated by 

stochastic inequalities on 𝜋 via using alpha-cut technique 

approach (Abdelaziz, 2012; Abdelaziz, F Ben;Masri, Hatem, 

2005; Ameen, 2015). In general alpha-cut technique works on 

polyhedral sets to convert them from probably estimated 

unknown values to bounded interval with unlimited possible 

determined known values to obtain STLPP. Now, all fuzzy 

inequalities ∑ 𝑎𝑖𝑗𝑝𝑗
𝑛
𝑗=1 ≼ 𝑏𝑖 , 𝑖 = 1,… , 𝑠 of fuzzy polyhedral set 

Formulation (2.2-1) could be shown as a Linear Fuzzy 

Membership Function (LFMF) 𝜇𝑖 , 𝑖 = 1,… , 𝑠 for 𝑇𝑟𝐹𝑁 and 

𝑇𝑝𝐹𝑁 as following two LFMF’s: 

𝜇𝑖(𝑝) = 

{
  
 

  
 1 ∑ 𝑎𝑖𝑗𝑝𝑗

𝑁

𝑗=1
≤ 𝑏𝑖

(𝑏𝑖 + 𝑑𝑖) − ∑ 𝑎𝑖𝑗𝑝𝑗
𝑁
𝑗=1

𝑑𝑖
𝑏𝑖 ≤∑ 𝑎𝑖𝑗𝑝𝑗

𝑁

𝑗=1
≤ 𝑏𝑖 + 𝑑𝑖

0 ∑ 𝑎𝑖𝑗𝑝𝑗
𝑁

𝑗=1
≥ 𝑏𝑖 + 𝑑𝑖

 

Formulation 4.1-1: The 𝑻𝒓𝑭𝑵 Linear Fuzzy Membership 

Function (RLFMF) 

 

𝜇𝑖(𝑝) = 

{
 
 
 
 

 
 
 
 
∑ 𝑎𝑖𝑗𝑝𝑗
𝑁
𝑗=1 − (−𝑏𝑖 + 𝑑𝑖)

2(𝑏𝑖 − 𝑑𝑖)
−𝑏𝑖 + 𝑑𝑖 ≤∑ 𝑎𝑖𝑗𝑝𝑗

𝑁

𝑗=1
≤ 𝑏𝑖 − 𝑑𝑖

1 𝑏𝑖 − 𝑑𝑖 ≤∑ 𝑎𝑖𝑗𝑝𝑗
𝑁

𝑗=1
≤ 𝑏𝑖

(𝑏𝑖 + 𝑑𝑖) − ∑ 𝑎𝑖𝑗𝑝𝑗
𝑁
𝑗=1

𝑑𝑖
𝑏𝑖 ≤∑ 𝑎𝑖𝑗𝑝𝑗

𝑁

𝑗=1
≤ 𝑏𝑖 + 𝑑𝑖

0 ∑ 𝑎𝑖𝑗𝑝𝑗
𝑁

𝑗=1
≥ 𝑏𝑖 + 𝑑𝑖

 

Formulation 4.1-2: The 𝑇𝑝𝐹𝑁 Linear Fuzzy Membership 

Function (PLFMF) 

 

Where 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑁)
𝑇 ∈ ℝ𝑁 is a probability distribution 

space vector, 𝑑 = (𝑑1, 𝑑2, … , 𝑑𝑁) is a vagueness level vector and 

it is used with each value of 𝑝 exceeding 𝑏 + 𝑑 should be 

neglected (Ameen, 2015), alpha-cut level vectors are 

(𝛼1, 𝛼2, … , 𝛼𝑁) and the credibility degree of DM about 

information on probability distribution of 𝑝1, 𝑝2, … , 𝑝𝑁 are 

around determinated values respectively i.e., 𝑃(𝑝1) ≈

𝑏1, 𝑃(𝑝2) ≈ 𝑏2, … , 𝑎𝑛𝑑  𝑃(𝑝𝑁) ≈ 𝑏𝑁 then we obtain 

(𝑃(𝑝1), 𝑃(𝑝2), … , 𝑃(𝑝𝑁)) ≈ (𝑏1, 𝑏2, … , 𝑏𝑁). The following 

alpha-cut technique will be applying for each fuzzy inequalities 

in Formulation (2.2-1) as follows: 

𝜋𝑘 =

{
 

 
𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑁)

𝑇 ∈ ℝ𝑁;

𝑏𝑘 − 𝑑𝑘(1 − 𝛼𝑘) ≤ 𝑝𝑘 ≤ 𝑏𝑘 + 𝑑𝑘(1 − 𝛼𝑘);

∑ 𝑝𝑘 = 1
𝑁

𝑘=1
, ∀𝑝𝑘 ≥ 0, 𝑘 = 1,… , 𝑁 }

 

 

 

Formulation 4.1-3: The Alpha-Cut Technique Formula 

 

        Therefore, immediately after applying fuzzy transformation 

on probability distribution space by transferring polyhedral set 

from fuzzy polyhedral set (2.2-1) to stochastic polyhedral set 

(2.2-2), we could apply the truth degrees technique approach on 

probability distribution space, then analyzing cases and finally 
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stochastic transformation of objective function problem 

formulation via EWS techniques approach (Ameen, 2015). 

4.1.1 The Alpha-Cut Technique Algorithm Program 

Outline 

        The program outline of Alpha-cut technique will be stated 

in subsection (7.1.1). 

4.1.2 The Alpha-Cut Technique MATLAB Program 

        The MATLAB code program of Alpha-Cut technique will 

be stated in subsection (7.1.2). 

4.2 The Truth Degrees Technique on Probability 

Distribution Space 

        In this subsection as subsection (4.1) also focuses is on 

probability distribution space. After converting fuzzy uncertainty 

unknown information on probability distribution space 

(Ω, 2Ω, 𝑃) to certainty known information on probability 

distribution space, the obtained probability intervals could be 

defined as a fuzzy set of the truth degrees technique approach on 

probability distribution space, where truth degrees technique 

improves from fuzzy set of optimistic and pessimistic in 

probability distribution space of researcher (Ameen, 2015). In 

addition, continuous interval of fuzzy probability distribution 

polyhedral set is classified to ten equal subintervals or eleven 

elementary equally distanced points, from which seven efficient 

points are given via defuzzifying those eleven points by LFRF 

technique Formulation (4.2-4) and Formulation (4.2-5) with two 

boundary points. Then we obtain nine efficient points and 

mistake other unnecessary points (i.e., using LFRF technique 

algorithm as a part of truth degrees technique algorithm). Note 

that the obtained nine points from defuzzifying are different from 

first eleven points since those eleven points in the first time were 

not necessarily to be effective points but surely the obtained 

points are efficient ones. 

         The truth degrees technique obtained from logic fuzziness 

of human normal languages via degrees value of truth in numeric 

logical answering of a question. For example, when anyone is 

asked to give opinions on the expected result of a random subject, 

phenomenon, job, routine or health status, then the answers will 

be fuzzy logic values, as this question (Are you fine?) the answer 

set is {1.0 Yes/Perfect, 0.9 Excellent, 0.8 Very Good, 0.7 Good, 

0.6 Well, 0.5 Moderate, 0.4 Some, 0.3 Somewhat, 0.2 Little, 0.1 

Very Little, 0 No/Bad}. In general, the truth degrees technique 

on probability distribution space used for dividing continuous 

intervals to deterministic discrete values set of efficient points. 

So, the truth degree variable value 𝑥 contain 𝑛 terms 𝑥1, 𝑥2, … , 𝑥𝑛 

and the series of those terms are {𝑥1, 𝑥2, … , 𝑥𝑛} (Abdelaziz, F 

Ben;Masri, Hatem, 2005; Guo, Haiying;Wang, Xiaosheng;Zhou, 

Shaoling, 2015; Ameen, 2015; Ben Abdelaziz, F;Masmoudi, 

Meryem, 2012; Dharani, K;Selvi, D, 2018; Hamadameen, 

Abdulqader Othman;Zainuddin, Zaitul Marlizawati, 2015; 

Hamadameen, Abdulqader Othman;Hassan, Nasruddin, 2018). 

Then splitting each continuous interval of the default probability 

distribution 𝜋 in (2.2-2) into ten continuous subintervals as 

shown as following: 

𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑁)
𝑇 ∈ ℝ𝑁:∑ 𝑝𝑖 = 1

𝑁

𝑖=1
, 

∀𝑝𝑖 ≥ 0, 𝛼 ≤ 𝑝𝑖 ≤ 𝛽, 𝑖 = 1,… , 𝑁 

Where 𝛼, 𝛽, 𝜑 ∈ ℝ, with 𝜑 = 𝑎5 = 𝑏5, and 
[𝛼, 𝛽] = [𝛼, 𝑎1] ∪ [𝑎1, 𝑎2] ∪ [𝑎2, 𝑎3] ∪ [𝑎3, 𝑎4] ∪ [𝑎4, 𝜑] 

∪ [𝜑, 𝑏4] ∪ [𝑏4, 𝑏3] ∪ [𝑏3, 𝑏2] ∪ [𝑏2, 𝑏1] ∪ [𝑏1, 𝛽] 

Formulation 4.2-1: The Splitting Original Interval of Probability 

Distribution Space 

 

Such that those ten continuous subintervals classified into seven 

stochastic truth degrees regions: 

 

𝐴 = {{𝛼, 𝑎2}, {𝑎1, 𝜑}, {𝑎2, 𝜑}, {𝑎3, 𝑏3}, {𝜑, 𝑏2}, {𝜑, 𝑏1}, {𝑏2, 𝛽}} 

= {
𝐿𝑖𝑡𝑡𝑙𝑒, 𝑆𝑜𝑚𝑒,𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒,𝑊𝑒𝑙𝑙,
𝐺𝑜𝑜𝑑, 𝑉𝑒𝑟𝑦 𝐺𝑜𝑜𝑑, 𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡

} 

= {𝐿𝑖, 𝑆𝑜,𝑀𝑜,𝑊𝑒, 𝐺𝑜, 𝑉𝑒, 𝐸𝑥}; ∀𝑝𝑖 ∈ 𝜋, 𝑖 = 1,… , 𝑁 

Formulation 4.2-2: Stochastic Truth Degrees Regions Set 

 

        Where 𝐿𝑖, 𝑆𝑜,𝑀𝑜,𝑊𝑒, 𝐺𝑜, 𝑉𝑒 𝑎𝑛𝑑 𝐸𝑥 are Little, Some, 

Moderate, Well, Good, Very Good and Excellent respectively, 

and also [𝛼, 𝜑] and [𝜑, 𝛽] are pessimistic/fail region and 

optimistic/pass region probability distribution respectively, and 

𝜑 = 𝑎5 = 𝑏5, as shown in the following Figure (4.2-1). 

When 𝑝𝑖 ∈ 𝜋 ̃ then we obtain fuzzy truth degrees set of 𝑝𝑖 that 

could be shown as: 

 

𝐴 ̃ = {{𝛼, 𝑎2}̃ , {𝑎1, 𝜑}̃ ,{𝑎2, 𝜑}̃ , {𝑎3, 𝑏3}̃ , {𝜑, 𝑏2}̃ , {𝜑, 𝑏1}̃ , {𝑏2, 𝛽}̃ } 

= {

𝐹𝑢𝑧𝑧𝑦 𝐿𝑖𝑡𝑡𝑙𝑒, 𝐹𝑢𝑧𝑧𝑦 𝑆𝑜𝑚𝑒, 𝐹𝑢𝑧𝑧𝑦 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒,
𝐹𝑢𝑧𝑧𝑦 𝑊𝑒𝑙𝑙, 𝐹𝑢𝑧𝑧𝑦 𝐺𝑜𝑜𝑑,

𝐹𝑢𝑧𝑧𝑦 𝑉𝑒𝑟𝑦 𝐺𝑜𝑜𝑑, 𝐹𝑢𝑧𝑧𝑦 𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡
} 

= {𝐿𝑖̃, 𝑆𝑜̃,𝑀𝑜̃,𝑊𝑒̃, 𝐺𝑜̃, 𝑉𝑒̃, 𝐸𝑥̃};  ∀𝑝𝑖 ∈ 𝜋 ̃, 𝑖 = 1,… , 𝑁 

Formulation 4.2-3: Fuzzy Truth Degrees Regions Set 

 

Note that fuzzy truth degrees set Formulation (4.2-3) should be 

converted to stochastic truth degrees set Formulation (4.2-2) via 

linear fuzzy ranking function LFRF technique Formulation (4.2-

5) and Formulation (4.2-6). 

 
Figure: 4.2-1: Fuzzy Truth Degree Regions Set of Probability 

Distribution Space 𝑷 

The 𝜇𝑘(𝑝𝑖), 𝑘 = 1,2, . . ,7; 𝑖 = 1,2,… , 𝑁 are linear fuzzy 

membership functions LFMFs for entire both types trapezoidal 

fuzzy number 𝑇𝑝𝐹𝑁 regions and triangular fuzzy number 𝑇𝑟𝐹𝑁 

regions of fuzzy truth degrees set 𝐴 ̃ =

{𝐿𝑖̃, 𝑆𝑜̃,𝑀𝑜̃,𝑊𝑒̃, 𝐺𝑜̃, 𝑉𝑒̃, 𝐸𝑥̃} of each 𝑝𝑖 respectively on 

information of probability distribution space will be as follows 

that defined in 𝑇𝑟𝐹𝑁 and 𝑇𝑝𝐹𝑁 (Abdelaziz, F Ben;Masri, Hatem, 

2005; Abdelaziz, Fouad Ben;Masri, Hatem, 2009; Ameen, 2015) 

were obtained from two Formulations (4.1-1) and (4.1-2): 

 

𝜇1(𝑝𝑖) = {

1 𝛼 ≤ 𝑝𝑖 ≤ 𝑎1
𝑎2 − 𝑃

𝑎2 − 𝑎1
𝑎1 ≤ 𝑝𝑖 ≤ 𝑎2

0 𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

 

𝜇2(𝑝𝑖) =

{
 
 

 
 
𝑃 − 𝑎1
𝑎2 − 𝑎1

𝑎1 ≤ 𝑝𝑖 ≤ 𝑎2

1 𝑎2 ≤ 𝑝𝑖 ≤ 𝑎4
𝜑 − 𝑃

𝜑 − 𝑎4
𝑎4 ≤ 𝑝𝑖 ≤ 𝜑

0 𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒
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𝜇3(𝑝𝑖) =

{
 
 

 
 
𝑃 − 𝑎2
𝑎4 − 𝑎2

𝑎2 ≤ 𝑝𝑖 ≤ 𝑎4

1 𝑝𝑖 = 𝑎4
𝜑 − 𝑃

𝜑 − 𝑎4
𝑎4 ≤ 𝑝𝑖 ≤ 𝜑

0 𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

 

𝜇4(𝑝𝑖) =

{
 
 

 
 
𝑃 − 𝑎3
𝑎4 − 𝑎3

𝑎3 ≤ 𝑝𝑖 ≤ 𝑎4

1 𝑎4 ≤ 𝑝𝑖 ≤ 𝑏4
𝑏3 − 𝑃

𝑏3 − 𝑏4
𝑏4 ≤ 𝑝𝑖 ≤ 𝑏3

0 𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

 

𝜇5(𝑝𝑖) =

{
 
 

 
 
𝑃 − 𝜑

𝑏4 − 𝜑
𝜑 ≤ 𝑝𝑖 ≤ 𝑏4

1 𝑝𝑖 = 𝑏4
𝑏2 − 𝑃

𝑏2 − 𝑏4
𝑏4 ≤ 𝑝𝑖 ≤ 𝑏2

0 𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

 

𝜇6(𝑝𝑖) =

{
 
 

 
 
𝑃 − 𝜑

𝑏4 − 𝜑
𝜑 ≤ 𝑝𝑖 ≤ 𝑏4

1 𝑏4 ≤ 𝑝𝑖 ≤ 𝑏2
𝑏1 − 𝑃

𝑏1 − 𝑏2
𝑏2 ≤ 𝑝𝑖 ≤ 𝑏1

0 𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

 

𝜇7(𝑝𝑖) = {

𝑃 − 𝑏2
𝑏1 − 𝑏2

𝑏2 ≤ 𝑝𝑖 ≤ 𝑏1

1 𝑏1 ≤ 𝑝𝑖 ≤ 𝛽
0 𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

 

Formulation 4.2-4: The 𝝁𝒌(𝒑𝒊) Linear Fuzzy Membership 

Functions 

 

        Since LFRF is used as a technical tool of fuzzy 

transformation of problem formulation, and also it is used as 

particular step process of the truth degrees technique on 

probability distribution to deffuzzifier fuzzy truth degrees 

intervals to stochastic truth degrees intervals, then via LFRF 

technique finite deterministic bounded discreate values set are 

obtained. In addition, to achieve fuzzy transformation, LFRF to 

defuzzify fuzzy coefficients and parameters in Fuzzy Programing 

Problems (FPP) is used. So, one of the most useful ranking 

functions proposed by various researchers is (Mahdavi-Amiri, 

N;Nasseri, SH, 2006; Mahdavi-Amiri;NezamNasseri;Seyed 

Hadi, 2007) since it could use for entire types of 𝑇𝑝𝐹𝑁 because 

immediately after transforming fuzzy numbers to real number, its 

value will remain in the same interval and could be shown as 

average of fuzzy number components (Ameen, 2015). Therefore, 

LFRF uses in converting intervals of truth degrees to power 

useful important efficient points of its intervals. 

For a 𝑇𝑝𝐹𝑁 𝑎 ̃ = (𝑎𝐿, 𝑎𝑈, 𝛼, 𝛽), we could formulate 𝑅(𝐹)(𝑎 ̃) as 

following: 

𝑅(𝐹)(𝑎 ̃) =
1

2
∫ (inf(𝑎𝜆̃) + 𝑠𝑢𝑝(𝑎𝜆̃))𝑑𝜆
1

0

 

=
𝑎𝐿 + 𝑎𝑈

2
+
𝛽 − 𝛼

4
 

Formulation 4.2-5: The Linear Fuzzy Ranking Function 

Technique Formula For 𝑻𝒑𝑭𝑵 

 

Also, for a 𝑇𝑟𝐹𝑁 𝑎 ̃ = (𝑎, 𝛼, 𝛽), we could formulate 𝑅(𝐹)(𝑎 ̃) as 

following: 

𝑅(𝐹)(𝑎 ̃) =
1

2
∫ (inf(𝑎𝜆̃) + 𝑠𝑢𝑝(𝑎𝜆̃))𝑑𝜆
1

0

= 𝑎 +
𝛽 − 𝛼

4
 

Formulation 4.2-6: The Linear Fuzzy Ranking Function 

Technique Formula For 𝑻𝒓𝑭𝑵 

 

Now, by using the above linear fuzzy ranking function LFRF 

technique Formulation (4.2-4) and Formulation (4.2-5) we 

defuzzifying those 𝜇𝑘(𝑝𝑖), 𝑘 = 1,2, . . ,7; 𝑖 = 1,2, … ,𝑁 linear 

fuzzy membership functions LFMF Formulation (4.2-3) for 

obtaining deterministic discrete values for each 𝑝𝑖. 
 

4.2.1 The Ranking Function Technique Program Outline 

         The program outline of linear fuzzy ranking function LFRF 

technique approach will be stated in subsection (7.1.3). 

 

4.2.2 The Ranking Function Technique MATLAB 

Program 

        The MATLAB Program of linear fuzzy ranking function 

LFRF technique approach will be stated in subsection (7.1.4). 

 

4.2.3 The Truth Degrees Technique Program Outline 

        The program outline of truth degrees technique approach 

will be stated in subsection (7.1.5). 

 

4.2.4 The Truth Degrees Technique MATLAB Program:                      

The MATLAB Program of the truth degrees technique approach 

will be stated in subsection (7.1.6). 

 

4.2.5 Analyzing Cases: Analyzing cases starts after all 𝑝𝑖 of 

𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑁)
𝑇 ∈ ℝ𝑁 of probability distribution space 

vector convert to crisp values, and then each caseq that does not 

apply ∑ 𝑝𝑘 = 1
𝑁
𝑘=1 , 𝑝𝑘 ≥ 0, 𝑘 = 1,… , 𝑁 of Formulation (4.1-3) 

should be neglected to get acceptance to stochastic 

transformation. 

 

4.2.6 The Analyzing Cases Test Program Outline 

        The program outline of Analyzing Cases Test will be stated 

in subsection (7.1.7). 

 

4.2.7 The Analyzing Cases Test MATLAB Program 

        The MATLAB code program of analysing cases test will be 

stated in subsection (7.1.8). 

 

4.3 Stochastic Transformation of Objective Function 

Problem Formulation via The Expectation Weighted 

Summation EWS Technique 

        The stochastic transformation of objective functions of 

Formulation (3.1-1) via expected weighted summation EWS 

technique approach on random objective coefficients applies to 

convert STLPP to DTLPP, for a probability distribution space 

𝑝 = (𝑝1, 𝑝2, … . , 𝑝Ν)
𝑇 ∈ ℝΝ, then stochastic transformation of 

objective function coefficients as following applies: 

𝑀𝑖𝑛 𝐸𝑥𝑝𝑃∈𝜋 𝑧(𝜔, 𝑥) = 𝑀𝑖𝑛 𝐸𝑥𝑝𝑃∈𝜋∑∑𝑐𝑖𝑗(𝜔)𝑥𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 

= 𝑀𝑖𝑛 ∑∑𝑥𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 (𝐸𝑥𝑝𝑃∈𝜋 𝑐𝑖𝑗(𝜔)) 

= 𝑀𝑖𝑛 ∑∑𝑥𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

(∑𝑐𝑖𝑗(𝜔𝑘)𝑝𝑘

𝛮

𝑘=1

) 

= 𝑀𝑖𝑛 ∑∑𝑥𝑖𝑗

𝑛

𝑗=1

𝑐𝑖𝑗

𝑚

𝑖=1

= 𝑀𝑖𝑛 𝑧(𝑥) 

∀𝑘 ∈ ℕ; 𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2,… , 𝑛, 𝑘 = 1,2, … , 𝑁 
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Formulation 4.3-1: The Expected Weighted Summation EWS 

Technique Procedure 

 

4.3.1 The EWS Technique Program Outline 

The program outline of expected weighted summation EWS 

technique will be stated in subsection (7.1.9). 

 

4.3.2 The EWS Technique MATLAB Program 

The MATLAB Program of the expected weighted summation 

EWS technique will be stated in subsection (7.1.10). 

 

4.4 Finding Basic Feasible Solution BFS for DTLPP via 

Dual-Simplex and Vogel Algorithm 

        When STLPPFI is converted to DTLPP, its Basic Feasible 

Solution BFS can be found via various methods such as North-

West Corner Method, MMCM, Dual-Simplex Method and 

VAM. So, Dual-Simplex with VAM are used, and both methods 

will be illustrated in the following real-problem example (Reeb, 

James Edmund;Leavengood, Scott A, 2002; Winston, Wayne 

L;Goldberg, Jeffrey B, 2004; Sharma, 1974; Sengamalaselvi, 

2017). Where algorithms of both methods are stated in a part of 

STLPPFI problem solver MATLAB code program. 

4.5 Finding Optimal Solution for DTLPP via Modify 

Distribution Method MODI 

        When Basic Feasible Solution BFS for DTLLP is found via 

Dual-Simplex and VAM, then Stepping Stone Method SSM and 

Modify Distribution Method MODI are used to check if BFS is 

optimal or not. Both methods are used to find the optimal solution 

when BFS is not optimal. MODI is recommended for use in such 

cases, and it will be illustrated in the following real-problem 

example as well (Reeb, James Edmund;Leavengood, Scott A, 

2002; Winston, Wayne L;Goldberg, Jeffrey B, 2004; Sharma, 

1974; Sengamalaselvi, 2017). MODI algorithms are stated in a 

part of STLPPFI problem solver MATLAB code program. 

4.6 Selecting Post Optimal Result for DTLPP 

Selecting post optimal solution as a final result via deciding 

commands from decision makers (DM) among the entire exit 

intervals for a certain case or analyzing results by answering what 

perfect solution is entirely in certain cases. 

5. THE REAL-LIFE APPLICATION PROBLEM 

EXAMPLE USING MATLAB 

5.1 Illustrate Example 

        Suppose that three electricity power production stations in 

Kurdistan region-Iraq namely: G1, G2 and G3 with four cities 

need to be supplied with electricity namely Hawler City, Duhok 

City, Sulaymani City and Halabja City (Government, 2020; TV, 

2021) as following balanced STLPPFI problem table: 

Table : 5.1-1: The Data Distribution Table of an Electricity 

STLPPFI Real-Life Problem 

Power 

Plants 

Cites Supply 

Million 

Kw/h 
HR DK SI HA 

𝐺1 𝑐11(𝜔) 𝑐12(𝜔) 𝑐13(𝜔) 𝑐14(𝜔) 36 

𝐺2 𝑐21(𝜔) 𝑐22(𝜔) 𝑐23(𝜔) 𝑐24(𝜔) 51 

𝐺3 𝑐31(𝜔) 𝑐32(𝜔) 𝑐33(𝜔) 𝑐34(𝜔) 42 

Deman

d 

Million 

Kw/h 

46 22 31 30 

Total = 

129 M 

Kw/h 

Balance

d 

Where prices of transporting costs are stochastically, and 

estimated cost values of random matrix of each 𝑐𝑖𝑗(𝜔) will be 

(Government, 2020; TV, 2021) as follows: 

Table: 5.1-2: The Probably Estimated Cost Values of 

Probability Distribution Space 

𝜔 𝜔1 𝜔2 𝜔3 

𝑐11(𝜔) 7.980 IQD 7.990 IQD 8.000 IQD 

𝑐12(𝜔) 6.000 IQD 5.990 IQD 5.980 IQD 

𝑐13(𝜔) 9.990 IQD 9.980 IQD 10.00 IQD 

𝑐14(𝜔) 8.880 IQD 8.890 IQD 9.000 IQD 

𝑐21(𝜔) 9.000 IQD 8.980 IQD 8.960 IQD 

𝑐22(𝜔) 11.98 IQD 11.96 IQD 12.00 IQD 

𝑐23(𝜔) 13.00 IQD 12.98 IQD 12.96 IQD 

𝑐24(𝜔) 6.980 IQD 6.960 IQD 7.000 IQD 

𝑐31(𝜔) 13.96 IQD 13.98 IQD 14.00 IQD 

𝑐32(𝜔) 9.000 IQD 8.980 IQD 8.960 IQD 

𝑐33(𝜔) 15.96 IQD 15.98 IQD 16.00 IQD 

𝑐34(𝜔) 4.990 IQD 5.000 IQD 4.980 IQD 

 

        Where information regarding the response of cities on 

electricity power plants is distributed as fuzzy polyhedral set 𝜋 ̃ 
of uncertainty unknown information on probability distribution 

(Government, 2020; TV, 2021) as follows: 

𝜋 ̃ = {𝑝 = (𝑝1, 𝑝2, 𝑝3)
𝑇 ∈ ℝ3; 𝐴𝑝 ≼ 𝑏;∑ 𝑝𝑖 = 1

3

𝑖=1
; ∀𝑝𝑖 ≥ 0; 𝑖

= 1,2,3} 

Formulation 5.1-1: The Fuzzy Polyhedral Information Set 𝝅 ̃of 

Real-Life Problem 

5.2 Solution Process 

        The problem could formulate as follows: Objective 

Function: 

𝑀𝑖𝑛 𝑧(𝜔, 𝑥) = 𝑥11𝑐11(𝜔) + 𝑥12𝑐12(𝜔) + 𝑥13𝑐13(𝜔) + 

𝑥14𝑐14(𝜔) + 𝑥21𝑐21(𝜔) + 𝑥22𝑐22(𝜔) + 𝑥23𝑐23(𝜔) + 

𝑥24𝑐24(𝜔) + 𝑥31𝑐31(𝜔) + 𝑥32𝑐32(𝜔) + 𝑥33𝑐33(𝜔)

+ 𝑥34𝑐34(𝜔) 

Subject to both availability and requirement constraints 

𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 = 36, 𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 = 51 

𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 = 42 

𝑥11 + 𝑥21 + 𝑥31 = 46, 𝑥12 + 𝑥22 + 𝑥32 = 22 

𝑥13 + 𝑥23 + 𝑥33 = 31, 𝑥14 + 𝑥24 + 𝑥34 = 30 

Where balanced condition with domain condition satisfies 

respectively 

∑𝑎𝑖

3

𝑖=1

= 36 + 51 + 42 =∑𝑏𝑗

4

𝑗=1

= 46 + 22 + 31 + 30 = 129 

𝑥𝑖𝑗 ≥ 0,∀𝑖 = 1,2,3, ; ∀𝑗 = 1,2,3,4;  𝑥 ∈ 𝑋, 𝜔 ∈ Ω 

Formulation 5.2-1: The STLPPFI Real-Life Application 

Problem 

       The problem has uncertainty unknown expression in both 

randomness for objective function coefficients and fuzziness for 

information probability distribution space (Ω, 2Ω, 𝑃). The 

STLPPFI solution’s process starts from deffuzzifier fuzziness 

and derandomizing randomness of it respectively via two main 

transformations followed by analyzing cases, solving using Dual-

Simplex and VAM, finding the optimal solution via MODI and 

selecting post optimal solution. Where 𝑎𝑖 , 𝑏𝑗  are crisp and do not 

appear scholastically and they are (3,1) and (1,4) known vectors 

as shown in Table (5.1-1) respectively, and 𝑐𝑖𝑗  is not crisp and 

appears scholastically which needs to be determined via suitable 

transformations, and 𝑐𝑖𝑗(𝜔) is (3,4) random matrix as shown in 

Table (5.1-1) with estimated probably values for each 𝑐𝑖𝑗(𝜔) 

shown in Table (5.1-2)The matrix 𝑥𝑖𝑗  is (3,4) unknown matrix 

should be determined via Dual-Simplex and VAM, under fuzzy 

uncertainty unknown information on probability distribution 𝑃. 

The Formulation (5.2-1) is defined in terms of some probability 
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distribution space (Ω, 2Ω, 𝑃), where Ω = {𝜔1, 𝜔2, 𝜔3} =
{𝜔𝑖}, 𝑖 = 1,2,3 is a discrete set of events or a finite set of possible 

states of nature, 2Ω is power set of Ω, and 𝑃 is fuzzy uncertainty 

unknown information on probability distribution space. Where 

that 𝑃 assigns to each 𝐴 ∈ 2Ω is the probability of occurrence 

𝑃(𝐴) (i.e., 𝑃 is the (12,3) matrix of probabilities 𝑝𝑖 =
𝑃({𝜔 = 𝜔𝑖}), 𝑖 = 1,2,… , 12, 𝑝𝑖 ∈ 𝜋 ̃, ∀𝑖), with fuzzy distribution 

information of response cities on electricity power plants are as 

fuzzy polyhedral set 𝜋 ̃ Formulation (5.1-1). Also, the set 𝑋 is a 

polyhedral set of feasible solutions that includes determined 

constraints of problem on probability distribution space 

(Ω, 2Ω, 𝑃). To solve Formulation (5.2-1) we need to find a set of 

non-negatives 𝑥𝑖𝑗 , ∀𝑖, 𝑗 that minimize objective function, satisfies 

constraints, balances condition and domain conditions. 

Now, the solution process classified over steps/stations as 

follows: 

5.2.1 Station 1: Suppositions of Stochastics: Suppose that 

the credibility degree of DM about information on probability 

distribution of 𝑝1, 𝑝2, 𝑝3 are around 
1

2
,
1

5
,
1

10
 respectively, where 

𝑃(𝑝1) ≅ 𝑏1 =
1

2
, 𝑃(𝑝2) ≅ 𝑏2 =

1

5
, 𝑃(𝑝3) ≅ 𝑏3 =

1

10
 which is 

mean (𝑏1, 𝑏2, 𝑏3) = (
1

2
,
1

5
,
1

10
), since the information on 

probability distribution are fuzzy. So, the suppositions have been 

started, where the vagueness levels are (𝑑1, 𝑑2, 𝑑3) = (
1

6
,
1

6
,
1

6
) 

and the alpha-cut levels are (𝛼1, 𝛼2, 𝛼3) = (
1

2
,
1

2
,
1

2
). Note that the 

vagueness levels and the alpha-cut levels control the length of 

interval in each 𝑝𝑖 allowing for their reuse 𝑘-times as necessary 

to obtain most close approximate values from exact values till we 

discover which values have efficient on solution process results. 

 

5.2.2 Station 2: Fuzzy Transformation on Probability 

Distribution Space: Fuzzy transformation on probability 

distribution will be applied via alpha-cut technique Formulation 

(4.1-3) for each fuzzy inequalities polyhedral set Formulation 

(5.1-1) as follows: 

𝜋1,2,3 =

{
 

 
𝑝 = (𝑝1, 𝑝2, 𝑝3)

𝑇 ∈ ℝ3;

𝑏𝑖 − 𝑑𝑖(1 − 𝛼𝑖) ≤ 𝑝𝑖 ≤ 𝑏𝑖 + 𝑑𝑖(1 − 𝛼𝑖);

∑ 𝑝𝑖 = 1
3

𝑖=1
, ∀𝑝𝑖 ≥ 0, 𝑖 = 1,2,3 }

 

 

 

Then convert Formulation (5.2-1) from STLPPFI to STLPP via 

apply above alpha-cut formula for each 𝑝1,2,3, we get: 

𝑏1 − 𝑑1(1 − 𝛼1) ≤ 𝑝1 ≤ 𝑏1 + 𝑑1(1 − 𝛼1)  

⇒ 
1

2
 −
1

6
(1 −

1

2
) ≤ 𝑝1 ≤

1

2
+
1

6
(1 −

1

2
) ⇒

25

60
≤ 𝑝1 ≤

35

60
 

 

𝑏2 − 𝑑2(1 − 𝛼2) ≤ 𝑝2 ≤ 𝑏2 + 𝑑2(1 − 𝛼2)  

⇒ 
1

5
 −
1

6
(1 −

1

2
) ≤ 𝑝2 ≤

1

5
+
1

6
(1 −

1

2
) ⇒

7

60
≤ 𝑝2 ≤

17

60
 

 

𝑏3 − 𝑑3(1 − 𝛼3) ≤ 𝑝3 ≤ 𝑏3 + 𝑑3(1 − 𝛼3)  

⇒ 
1

10
 −
1

6
(1 −

1

2
) ≤ 𝑝3 ≤

1

10
+
1

6
(1 −

1

2
) ⇒

1

60
≤ 𝑝3 ≤

11

60
 

       Now, the fuzzy transformation on the probability distribution 

space via alpha-cut technique is applied, in which the fuzziness 

of probability distribution of STLPPFI is removed, and STLPPFI 

transfers to STLPP by creating bounded interval with unlimited 

possible known values from unknown probably/stochastic value 

i.e., 𝑏𝑖; ∀𝑖 = 1,2,3 converted from stochastic values 𝑏1,2,3 =
1

2
,
1

5
,
1

10
 to bounded interval with unlimited possible known values 

𝑝𝑖=1,2,3 as 
25

60
≤ 𝑝1 ≤

35

60
,
7

60
≤ 𝑝2 ≤

17

60
, 
1

60
≤ 𝑝1 ≤

11

60
. Then fuzzy 

polyhedral set Formulation (5.1-1) of STLPPFI Formulation 

(5.2-1) convert to stochastic polyhedral version set as follows: 

𝜋 = {
𝑝 = (𝑝1, 𝑝2, 𝑝3)

𝑇 ∈ ℝ3; 𝐴𝑝 ≤ 𝑏;∑ 𝑝𝑖 = 1
3

𝑖=1
;

∀𝑝𝑖 ≥ 0; 𝑖 = 1,2,3

} 

 

5.2.3 Station 3: The Truth Degrees Technique on 

Probability Distribution Intervals: The current step will be 

converting each bounded interval with unlimited possible known 

values to bounded discrete finite possible known values set via 

truth degrees technique approach, to choose the best effective 

values for each 𝑝1,2,3 in each interval we use truth degrees logical 

values. First, we divide each interval into ten parts as follows: 
25

60
≤ 𝑝1 ≤

35

60
 ⇒  {[

25

60
,
35

60
]} 

= {
25

60
,
26

60
,
27

60
,
28

60
,
29

60
,
30

60
,
31

60
,
32

60
,
33

60
,
34

60
,
35

60
} 

7

60
≤ 𝑝2 ≤

17

60
 ⇒  {[

7

60
,
17

60
]} 

= {
7

60
,
8

60
,
9

60
,
10

60
,
11

60
,
12

60
,
13

60
,
14

60
,
15

60
,
16

60
,
17

60
} 

1

60
≤ 𝑝3 ≤

11

60
 ⇒  {[

1

60
,
11

60
]} 

= {
1

60
,
2

60
,
3

60
,
4

60
,
5

60
,
6

60
,
7

60
,
8

60
,
9

60
,
10

60
,
11

60
} 

 

5.2.4 Station 4: Finding Modulus/Membership Function of 

Truth Degrees Set: Formulation (4.2-3) with Figure (4.2-1) will 

be used to fuzzifier truth degrees set and to find seven LFMF for 

each 𝑝1,2,3 as follows: 

𝜇1(𝑝1) =

{
  
 

  
 1

25

60
≤ 𝑝1 ≤

26

60
27
60
− 𝑃

27
60
−
26
60

26

60
≤ 𝑝1 ≤

27

60

0 𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

 

𝜇2(𝑝1) =

{
 
 
 
 

 
 
 
 𝑃 −

26
60

27
60
−
26
60

;
26

60
≤ 𝑝1 ≤

27

60

1; 
27

60
≤ 𝑝1 ≤

30

60
30
60
− 𝑃

30
60 −

29
60

 ;  
29

60
≤ 𝑝1 ≤

30

60

0;  𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 

 

𝜇3(𝑝1) =

{
 
 
 
 

 
 
 
 𝑃 −

27
60

29
60
−
27
60

;
27

60
≤ 𝑝1 ≤

29

60

1; 𝑝1 =
29

60
30
60
− 𝑃

30
60 −

29
60

 ;  
29

60
≤ 𝑝1 ≤

30

60

0;  𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 

 

𝜇4(𝑝1) =

{
 
 
 
 

 
 
 
 𝑃 −

28
60

29
60
−
28
60

;
28

60
≤ 𝑝1 ≤

29

60

1; 
29

60
≤ 𝑝1 ≤

31

60
33
60
− 𝑃

33
60 −

31
60

 ;  
31

60
≤ 𝑝1 ≤

33

60

0;  𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 
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𝜇5(𝑝1) =

{
 
 
 
 

 
 
 
 𝑃 −

30
60

31
60
−
30
60

;
30

60
≤ 𝑝1 ≤

31

60

1; 𝑝1 =
31

60
33
60
− 𝑃

33
60 −

31
60

 ;  
31

60
≤ 𝑝1 ≤

33

60

0;  𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 

 

𝜇6(𝑝1) =

{
 
 
 
 

 
 
 
 𝑃 −

30
60

31
60
−
30
60

;
30

60
≤ 𝑝1 ≤

31

60

1; 
31

60
≤ 𝑝1 ≤

33

60
34
60
− 𝑃

34
60 −

33
60

 ;  
33

60
≤ 𝑝1 ≤

34

60

0;  𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 

 

𝜇7(𝑝1) =

{
  
 

  
 𝑃 −

33
60

34
60
−
33
60

; 
33

60
≤ 𝑝1 ≤

34

60

1;  
34

60
≤ 𝑝1 ≤

35

60
0;  𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 

 

𝜇1(𝑝2) =

{
  
 

  
 1; 

7

60
≤ 𝑝2 ≤

8

60
9
60
− 𝑃

9
60
−
8
60

;  
8

60
≤ 𝑝2 ≤

9

60

0;  𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 

 

𝜇2(𝑝2) =

{
 
 
 
 

 
 
 
 𝑃 −

8
60

9
60
−
8
60

;
8

60
≤ 𝑝2 ≤

9

60

1; 
9

60
≤ 𝑝2 ≤

11

60
12
60
− 𝑃

12
60 −

11
60

 ;  
11

60
≤ 𝑝2 ≤

12

60

0;  𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 

 

𝜇3(𝑝2) =

{
 
 
 
 

 
 
 
 𝑃 −

9
60

11
60
−
9
60

;
9

60
≤ 𝑝2 ≤

11

60

1; 𝑝2 =
11

60
12
60
− 𝑃

12
60 −

11
60

 ;  
11

60
≤ 𝑝2 ≤

12

60

0;  𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 

 

𝜇4(𝑝2) =

{
 
 
 
 

 
 
 
 𝑃 −

10
60

11
60
−
10
60

;
10

60
≤ 𝑝2 ≤

11

60

1; 
11

60
≤ 𝑝2 ≤

13

60
14
60
− 𝑃

14
60 −

13
60

 ;  
13

60
≤ 𝑝2 ≤

14

60

0;  𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 

 

𝜇5(𝑝2) =

{
 
 
 
 

 
 
 
 𝑃 −

12
60

13
60
−
12
60

;
12

60
≤ 𝑝2 ≤

13

60

1; 𝑝2 =
13

60
15
60
− 𝑃

15
60
−
13
60

 ;  
13

60
≤ 𝑝2 ≤

15

60

0;  𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 

 

𝜇6(𝑝2) =

{
 
 
 
 

 
 
 
 𝑃 −

12
60

13
60
−
12
60

;
12

60
≤ 𝑝2 ≤

13

60

1; 
13

60
≤ 𝑝2 ≤

15

60
16
60
− 𝑃

16
60
−
15
60

 ;  
15

60
≤ 𝑝2 ≤

16

60

0;  𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 

 

𝜇7(𝑝2) =

{
  
 

  
 𝑃 −

15
60

16
60
−
15
60

; 
15

60
≤ 𝑝2 ≤

16

60

1;  
16

60
≤ 𝑝2 ≤

17

60
0;  𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 

 

𝜇1(𝑝3) =

{
  
 

  
 1; 

1

60
≤ 𝑝3 ≤

2

60
3
60
− 𝑃

3
60
−
2
60

;  
2

60
≤ 𝑝3 ≤

3

60

0;  𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 

 

𝜇2(𝑝3) =

{
 
 
 
 

 
 
 
 𝑃 −

2
60

3
60
−
2
60

;
2

60
≤ 𝑝3 ≤

3

60

1; 
3

60
≤ 𝑝3 ≤

5

60
6
60
− 𝑃

6
60
−
5
60

 ;  
5

60
≤ 𝑝3 ≤

6

60

0;  𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 

 

𝜇3(𝑝3) =

{
 
 
 
 

 
 
 
 𝑃 −

3
60

5
60
−
3
60

;
3

60
≤ 𝑝3 ≤

5

60

1; 𝑝3 =
5

60
6
60
− 𝑃

6
60
−
5
60

 ;  
5

60
≤ 𝑝3 ≤

6

60

0;  𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 

 

𝜇4(𝑝3) =

{
 
 
 
 

 
 
 
 𝑃 −

4
60

5
60
−
4
60

;
4

60
≤ 𝑝3 ≤

5

60

1; 
5

60
≤ 𝑝3 ≤

7

60
8
60
− 𝑃

8
60
−
7
60

 ;  
7

60
≤ 𝑝3 ≤

8

60

0;  𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 

 



Azeez and Ameen / Science Journal of the University of Zakho, 12(1), 116 – 137, January -March, 2024 

 

129 

 

𝜇5(𝑝3) =

{
 
 
 
 

 
 
 
 𝑃 −

6
60

7
60
−
6
60

;
6

60
≤ 𝑝3 ≤

7

60

1; 𝑝3 =
7

60
9
60
− 𝑃

9
60
−
7
60

 ;  
7

60
≤ 𝑝3 ≤

9

60

0;  𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 

 

𝜇6(𝑝3) =

{
 
 
 
 

 
 
 
 𝑃 −

6
60

7
60
−
6
60

;
6

60
≤ 𝑝3 ≤

7

60

1; 
7

60
≤ 𝑝3 ≤

9

60
10
60
− 𝑃

10
60 −

9
60

 ;  
9

60
≤ 𝑝3 ≤

10

60

0;  𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 

 

𝜇7(𝑝3) =

{
  
 

  
 𝑃 −

9
60

10
60
−
9
60

; 
9

60
≤ 𝑝3 ≤

10

60

1;  
10

60
≤ 𝑝3 ≤

11

60
0;  𝑂𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 

 

Now, both kinds of fuzzy numbers are obtaining from above 

LFMFs’ of truth degrees set as follows: 

𝑇𝑟𝐹𝑁 𝑎 ̃(𝜇1(𝑝1)) = (𝑎, 𝛼, 𝛽) = (
26

60
,
25

60
,
27

60
), 

𝑇𝑝𝐹𝑁 𝑎 ̃(𝜇2(𝑝1)) = (𝑎
𝐿, 𝑎𝑈 , 𝛼, 𝛽) = (

27

60
,
29

60
,
26

60
,
30

60
), 

𝑇𝑟𝐹𝑁 𝑎 ̃(𝜇3(𝑝1)) = (
29

60
,
27

60
,
30

60
),𝑇𝑝𝐹𝑁 𝑎 ̃(𝜇4(𝑝1)) =

(
29

60
,
31

60
,
28

60
,
32

60
),𝑇𝑟𝐹𝑁 𝑎 ̃(𝜇5(𝑝1)) = (

31

60
,
30

60
,
33

60
), 

𝑇𝑝𝐹𝑁 𝑎 ̃(𝜇6(𝑝1)) = (
31

60
,
33

60
,
30

60
,
34

60
),𝑇𝑟𝐹𝑁 𝑎 ̃(𝜇7(𝑝1)) =

(
34

60
,
33

60
,
35

60
),𝑇𝑟𝐹𝑁 𝑎 ̃(𝜇1(𝑝2)) = (𝑎, 𝛼, 𝛽) = (

8

60
,
7

60
,
9

60
), 

𝑇𝑝𝐹𝑁 𝑎 ̃(𝜇2(𝑝2)) = (𝑎
𝐿, 𝑎𝑈, 𝛼, 𝛽) = (

9

60
,
11

60
,
8

60
,
12

60
), 

𝑇𝑟𝐹𝑁 𝑎 ̃(𝜇3(𝑝2)) = (
11

60
,
9

60
,
12

60
),𝑇𝑝𝐹𝑁 𝑎 ̃(𝜇4(𝑝2)) =

(
11

60
,
13

60
,
10

60
,
14

60
),𝑇𝑟𝐹𝑁 𝑎 ̃(𝜇5(𝑝2)) = (

13

60
,
12

60
,
15

60
), 

𝑇𝑝𝐹𝑁 𝑎 ̃(𝜇6(𝑝2)) = (
13

60
,
15

60
,
12

60
,
16

60
),𝑇𝑟𝐹𝑁 𝑎 ̃(𝜇7(𝑝2)) =

(
16

60
,
15

60
,
17

60
),𝑇𝑟𝐹𝑁 𝑎 ̃(𝜇1(𝑝3)) = (𝑎, 𝛼, 𝛽) = (

2

60
,
1

60
,
3

60
), 

𝑇𝑝𝐹𝑁 𝑎 ̃(𝜇2(𝑝3)) = (𝑎
𝐿, 𝑎𝑈, 𝛼, 𝛽) = (

3

60
,
5

60
,
2

60
,
6

60
), 

𝑇𝑟𝐹𝑁 𝑎 ̃(𝜇3(𝑝3)) = (
5

60
,
3

60
,
6

60
),𝑇𝑝𝐹𝑁 𝑎 ̃(𝜇4(𝑝3)) =

(
5

60
,
7

60
,
4

60
,
8

60
),𝑇𝑟𝐹𝑁 𝑎 ̃(𝜇5(𝑝3)) = (

7

60
,
6

60
,
9

60
), 

𝑇𝑝𝐹𝑁 𝑎 ̃(𝜇6(𝑝3)) = (
7

60
,
9

60
,
6

60
,
10

60
),𝑇𝑟𝐹𝑁 𝑎 ̃(𝜇7(𝑝3)) =

(
10

60
,
9

60
,
11

60
) 

Now, Linear Fuzzy Ranking Function LFRF Formulation (4.2-4) 

and Formulation (4.2-5) will be used to defuzzify fuzzily above 

fuzzy numbers of LFMFs’ of truth degrees set as follows: 

𝑅(𝑇𝑟𝐹𝑁) (𝑎 ̃(𝜇1(𝑝1))) = 𝑎 +
𝛽 − 𝛼

4
 

=
26

60
+

27
60
−
25
60

4
=
26.5

60
 

𝑅(𝑇𝑝𝐹𝑁)(𝑎 ̃(𝜇2(𝑝1))) =
𝑎𝐿 + 𝑎𝑈

2
+
𝛽 − 𝛼

4
 

=

27
60
+
29
60

2
+
(
30
60
−
26
60
)

4
=
29

60
 

𝑅(𝑇𝑟𝐹𝑁)(𝑎 ̃(𝜇3(𝑝1))) =
29

60
+
(
30
60
−
27
60
)

4
=
29.75

60
 

𝑅(𝑇𝑝𝐹𝑁)(𝑎 ̃(𝜇4(𝑝1))) =

29
60
+
31
60

2
+
(
32
60
−
28
60
)

4
=
31

60
 

𝑅(𝑇𝑟𝐹𝑁)(𝑎 ̃(𝜇5(𝑝1))) =
31

60
+
(
33
60
−
30
60
)

4
=
31.75

60
 

𝑅(𝑇𝑝𝐹𝑁)(𝑎 ̃(𝜇6(𝑝1))) =

31
60
+
33
60

2
+
(
34
60
−
30
60
)

4
=
33

60
 

𝑅(𝑇𝑟𝐹𝑁)(𝑎 ̃(𝜇7(𝑝1))) =
34

60
+
(
35
60
−
33
60
)

4
=
34.5

60
 

𝑅(𝑇𝑟𝐹𝑁) (𝑎 ̃(𝜇1(𝑝2))) =
8

60
+
(
9
60
−
7
60
)

4
=
8.5

60
 

𝑅(𝑇𝑝𝐹𝑁)(𝑎 ̃(𝜇2(𝑝2))) =

9
60
+
11
60

2
+
(
12
60
−
8
60
)

4
=
11

60
 

𝑅(𝑇𝑟𝐹𝑁) (𝑎 ̃(𝜇3(𝑝2))) =
11

60
+
(
12
60
−
9
60
)

4
=
11.75

60
 

𝑅(𝑇𝑝𝐹𝑁)(𝑎 ̃(𝜇4(𝑝2))) =

11
60
+
13
60

2
+
(
14
60
−
10
60
)

4
=
13

60
 

𝑅(𝑇𝑟𝐹𝑁) (𝑎 ̃(𝜇5(𝑝2))) =
13

60
+
(
15
60
−
12
60
)

4
=
13.75

60
 

𝑅(𝑇𝑝𝐹𝑁)(𝑎 ̃(𝜇6(𝑝2))) =

13
60
+
15
60

2
+
(
16
60
−
12
60
)

4
=
15

60
 

𝑅(𝑇𝑟𝐹𝑁)(𝑎 ̃(𝜇7(𝑝2))) =
16

60
+
(
17
60
−
15
60
)

4
=
16.5

60
 

𝑅(𝑇𝑟𝐹𝑁) (𝑎 ̃(𝜇1(𝑝3))) =
2

60
+

3
60
−
1
60

4
=
2.5

60
 

𝑅(𝑇𝑝𝐹𝑁)(𝑎 ̃(𝜇2(𝑝3))) =

3
60
+
5
60

2
+
(
6
60
−
2
60
)

4
=
5

60
 

𝑅(𝑇𝑟𝐹𝑁)(𝑎 ̃(𝜇3(𝑝3))) =
5

60
+
(
6
60
−
3
60
)

4
=
5.75

60
 

𝑅(𝑇𝑝𝐹𝑁)(𝑎 ̃(𝜇4(𝑝3))) =

5
60
+
7
60

2
+
(
8
60
−
4
60
)

4
=
7

60
 

𝑅(𝑇𝑟𝐹𝑁)(𝑎 ̃(𝜇5(𝑝3))) =
7

60
+
(
9
60
−
6
60
)

4
=
7.75

60
 

𝑅(𝑇𝑝𝐹𝑁)(𝑎 ̃(𝜇6(𝑝3))) =

7
60
+
9
60

2
+
(
10
60
−
6
60
)

4
=
9

60
 

𝑅(𝑇𝑟𝐹𝑁)(𝑎 ̃(𝜇7(𝑝3))) =
10

60
+
(
11
60
−
9
60
)

4
=
10.5

60
 

Finally, nine efficient points are obtained for each 𝑝1,2,3 in each 

interval as follows: 

25

60
≤ 𝑝1 ≤

35

60
 ⇒ 

𝑝1 ∈ {
25

60
,
26.5

60
,
29

60
,
29.75

60
,
31

60
,
31.75

60
,
33

60
,
34.5

60
,
35

60
} 

7

60
≤ 𝑝2 ≤

17

60
 ⇒ 

𝑝2 ∈ {
7

60
,
8.5

60
,
11

60
,
11.75

60
,
13

60
,
13.75

60
,
15

60
,
16.5

60
,
17

60
} 

1

60
≤ 𝑝3 ≤

11

60
 ⇒ 

𝑝3 ∈ {
1

60
,
2.5

60
,
5

60
,
5.75

60
,
7

60
,
7.75

60
,
9

60
,
10.5

60
,
11

60
} 
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5.2.5 Station 5: Analyzing Cases: We have 9 cases for each 

𝑝𝑖, then totally obtain 9𝑖; 𝑖 ∈ ℕ cases to check. So, for the current 

example 93 = 729 cases are existed. Now, to check all cases to 

state condition 𝑝 = (𝑝1ℎ, 𝑝2ℎ, 𝑝3ℎ)
𝑇 ∈ ℝ3, ∑ 𝑝𝑖ℎ = 1

𝑁
𝑖=1 , 𝑝𝑖ℎ ≥

0, 𝑖 = 1,2,3, ℎ = 1,2,… ,9 of alpha-cut technique as follows: 

For case (1,1,1): let (𝑝11, 𝑝21, 𝑝31) = (
25

60
,
7

60
,
1

60
) then 

∀𝑝1, 𝑝2, 𝑝3 ≥ 0 and 𝑝1 + 𝑝2 + 𝑝3 =
25+7+1

60
=

33

60
≠ 1, that is 

failed. 

For case (7,8,8): let (𝑝17, 𝑝28, 𝑝38) = (
33

60
,
16.5

60
,
10.5

60
) then 

∀𝑝1, 𝑝2, 𝑝3 ≥ 0 and 𝑝1 + 𝑝2 + 𝑝3 =
33+16.5+10.5

60
=

60

60
= 1, that 

is pass and so on for entire other cases. So, all of them failed 

except 3 cases which are (𝑝17, 𝑝28, 𝑝38), (𝑝18, 𝑝27, 𝑝38) and 

(𝑝18, 𝑝28, 𝑝37) are passes as follows: 

(𝑝17, 𝑝28, 𝑝38) = (
33

60
,
16.5

60
,
10.5

60
) 

(𝑝18, 𝑝27, 𝑝38) = (
34.5

60
,
15

60
,
10.5

60
) 

(𝑝18, 𝑝28, 𝑝37) = (
34.5

60
,
16.5

60
,
9

60
) 

 

5.2.6 Station 6: Stochastic Transformation of Objective 

Coefficients via Expected Weighted Summation Technique 

Approach: We have 3 acceptance cases to apply stochastic 

transformation of objective coefficients on it to convert from 

STLPP to DTLPP by applying Formulation (4.3-1) on Table (5.1-

2) with entire 3 accepted cases of 𝑝 = (𝑝17, 𝑝28, 𝑝38) =

(
33

60
,
16.5

60
,
10.5

60
) ∈ ℝ3, 𝑝 = (𝑝18, 𝑝27, 𝑝38) = (

34.5

60
,
15

60
,
10.5

60
) ∈

ℝ3, 𝑝 = (𝑝18, 𝑝28, 𝑝37) = (
34.5

60
,
16.5

60
,
9

60
) ∈ ℝ3. The expectation 

weighted summation Formulation (4.3-1) for each three above 

probability spaces 𝑝 = (𝑝1, 𝑝2, 𝑝3) ∈ ℝ
3, then transformation of 

objective coefficients will be as follows: 

𝐸𝑥𝑝 𝑐𝑖𝑗(𝜔) = ∑𝑐𝑖𝑗(𝜔𝑘)𝑝𝑘

3

𝑘=1

= 𝑐𝑖𝑗  ; 𝑖 = 1,2,3; 𝑗 = 1,2,3,4 

𝐸𝑥𝑝 𝑐11(𝜔) = 𝑐11(𝜔1)𝑝1 + 𝑐11(𝜔2)𝑝2 + 𝑐11(𝜔3)𝑝3 = 𝑐11 

= (7.98) (
33

60
) + (7.99) (

16.5

60
) + (8) (

10.5

60
) = 7.98625 

𝐸𝑥𝑝 𝑐12(𝜔) = 𝑐12(𝜔1)𝑝1 + 𝑐12(𝜔2)𝑝2 + 𝑐12(𝜔3)𝑝3 = 𝑐12 

= (6) (
33

60
) + (5.99) (

16.5

60
) + (5.98) (

10.5

60
) = 5.99375 

𝐸𝑥𝑝 𝑐13(𝜔) = 𝑐13(𝜔1)𝑝1 + 𝑐13(𝜔2)𝑝2 + 𝑐13(𝜔3)𝑝3 = 𝑐13 

= (9.99) (
33

60
) + (9.98) (

16.5

60
) + (10) (

10.5

60
) = 9.989 

𝐸𝑥𝑝 𝑐14(𝜔) = 𝑐14(𝜔1)𝑝1 + 𝑐14(𝜔2)𝑝2 + 𝑐14(𝜔3)𝑝3 = 𝑐14 

= (8.88) (
33

60
) + (8.89) (

16.5

60
) + (9) (

10.5

60
) = 8.90375 

𝐸𝑥𝑝 𝑐21(𝜔) = 𝑐21(𝜔1)𝑝1 + 𝑐21(𝜔2)𝑝2 + 𝑐21(𝜔3)𝑝3 = 𝑐21 

= (9) (
33

60
) + (8.98) (

16.5

60
) + (8.96) (

10.5

60
) = 8.9875 

𝐸𝑥𝑝 𝑐22(𝜔) = 𝑐22(𝜔1)𝑝1 + 𝑐22(𝜔2)𝑝2 + 𝑐22(𝜔3)𝑝3 = 𝑐22 

= (11.98) (
33

60
) + (11.96) (

16.5

60
) + (12) (

10.5

60
) = 11.978 

𝐸𝑥𝑝 𝑐23(𝜔) = 𝑐23(𝜔1)𝑝1 + 𝑐23(𝜔2)𝑝2 + 𝑐23(𝜔3)𝑝3 = 𝑐23 

= (13)(
33

60
) + (12.98) (

16.5

60
) + (12.96) (

10.5

60
) = 12.9875 

𝐸𝑥𝑝 𝑐24(𝜔) = 𝑐24(𝜔1)𝑝1 + 𝑐24(𝜔2)𝑝2 + 𝑐24(𝜔3)𝑝3 = 𝑐24 

= (6.98) (
33

60
) + (6.96) (

16.5

60
) + (7) (

10.5

60
) = 6.978 

𝐸𝑥𝑝 𝑐31(𝜔) = 𝑐31(𝜔1)𝑝1 + 𝑐31(𝜔2)𝑝2 + 𝑐31(𝜔3)𝑝3 = 𝑐31 

= (13.96) (
33

60
) + (13.98) (

16.5

60
) + (14) (

10.5

60
) = 13.9725 

𝐸𝑥𝑝 𝑐32(𝜔) = 𝑐32(𝜔1)𝑝1 + 𝑐32(𝜔2)𝑝2 + 𝑐32(𝜔3)𝑝3 = 𝑐32 

= (9) (
33

60
) + (8.98) (

16.5

60
) + (8.96) (

10.5

60
) = 8.9875 

𝐸𝑥𝑝 𝑐33(𝜔) = 𝑐33(𝜔1)𝑝1 + 𝑐33(𝜔2)𝑝2 + 𝑐33(𝜔3)𝑝3 = 𝑐33 

= (15.96) (
33

60
) + (15.98) (

16.5

60
) + (16) (

10.5

60
) = 15.9725 

𝐸𝑥𝑝 𝑐34(𝜔) = 𝑐34(𝜔1)𝑝1 + 𝑐34(𝜔2)𝑝2 + 𝑐34(𝜔3)𝑝3 = 𝑐34 

= (4.99) (
33

60
) + (5) (

16.5

60
) + (4.98) (

10.5

60
) = 4.991 

 

5.2.7 Station 7: Form Problem as DTLPP Standard 

Version: DTLPP is obtained for 𝑐𝑎𝑠𝑒 (7,8,8) as following table: 

Table 5.2-1: The Obtain DTLPP Data Distribution Table of an 

Electricity STLPPFI Real-Life Problem for Case (7,8,8) 

Power 

Plants 

Cites Supply 

Million 

Kw/h 
HR DK SI HA 

𝐺1 
7.9862

5 

5.993

75 

9.989 8.903

75 
36 

𝐺2 
8.9875 11.97

8 

12.98

75 

6.978 
51 

𝐺3 
13.972

5 

8.987

5 

15.97

25 

4.991 
42 

Dema

nd 

Millio

n 

Kw/h 

46 22 31 30 

Total = 

129 M 

Kw/h 

Balanc

ed 

 

5.2.8 Station 8: Finding BFS for DTLPP via VAM 

Method: VAM will be applied to find BFS for the above DTLPP 

via the difference of both least minimum cost in each row and 

column of matrix 𝑐𝑖𝑗  as penalty values, then enter maximum 

penalty in row or column, then select minimum cost value cell 

for this maximum penalty value in row or column reduce the 

same value for other costs that is not enter, repeat this till the end 

to get BFS (Reeb, James Edmund;Leavengood, Scott A, 2002; 

Winston, Wayne L;Goldberg, Jeffrey B, 2004; Sharma, 1974; 

Sengamalaselvi, 2017; Karagul, Kenan;Sahin, Yusuf, 2020) as 

follows: 

Table 5.2-2: The DLPP Solution Steps via VAM to Get BFS for 

Case (7,8,8) 

7.9862

5 

5.993

75&1

0 

9.989

&26 

8.903

75 

36//26//

0 

1.9925/

/2.0027

5 

8.9875

&46 

11.97

8 

12.98

75&5 
6.978 51//5//0 

2.0095/

/2.9905

//4 

13.972

5 

8.987

5&12 

15.97

25 

4.991

&30 

42//12//

0 

3.9965/

/4.985//

0 

46//0 
22//10

//0 

31//5//

0 
30//0 129 

---- 

1.0012

5//0 

2.993

75//5.

98425

//0 

2.998

5 

1.987/

/0 
----- 

Penalty 

values 

 

Therefore, BFS is obtained based on (Reeb, James 

Edmund;Leavengood, Scott A, 2002; Winston, Wayne 

L;Goldberg, Jeffrey B, 2004; Sharma, 1974; Sengamalaselvi, 

2017) as follows: 

Table 5.2-3: The BFS Table of An Electricity STLPPFI Real-

Life Problem for Case (7,8,8) 

0 10 26 0 

46 0 5 0 

0 12 0 30 
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5.2.9 Station 9: Finding Optimal Solution for DTLPP via 

MODI Method: The current solution is optimal, so the total 

transporting cost is as follows: 
(8.9875 ∗ 46) + (5.99375 ∗ 10) + (8.9875 ∗ 12) 
+(9.989 ∗ 26) + (12.9875 ∗ 5) + (4.991 ∗ 30) 

= 1055.594 𝐼𝑄𝐷 

Now, MODI is not necessary to be used to find the optimal 

solution since immediately BFS is optimal solution based on 

(Reeb, James Edmund;Leavengood, Scott A, 2002; Winston, 

Wayne L;Goldberg, Jeffrey B, 2004; Sharma, 1974; 

Sengamalaselvi, 2017). 

Now, via using MATLAB code program to solve the above 

example this process is explained in MATLAB as follows: 

• Run STLPPFI problem solver MATLAB program in Editor 

window of MATLAB Application. 

• In command window: input fuzzy information on probability 

distribution via three vectors 𝑏𝑖 , 𝑑𝑖 and 𝛼𝑖 as credibility degree of 

the DM about information on probability distribution space, 

vagueness level vector and alpha-cut level vector respectively, 

then input an acceptance vector via vector 𝑝 from 𝑅𝑁 matrix in 

each row select one value where length of vector 𝑝 is 3/4/5, then 

input 𝑐𝑠 matrix (𝑚𝑚 ∗ 𝑛𝑛, 3)/(𝑚𝑚 ∗ 𝑛𝑛, 4)/(𝑚𝑚 ∗ 𝑛𝑛, 5) 2𝐷 

dimensions’ matrix as estimates cost values where matrix 𝑐𝑠 is 

(𝑚, 𝑛) estimates distribution matrix with (1, 𝑘) deterministic 

acceptance vector face, then input 𝑚𝑚 value and 𝑛𝑛 value 

respectively as length of row and column of deterministic cost 

values of matrix 𝑐𝑑 will be in final where should (𝑚𝑚 ∗

𝑛𝑛)/(𝑘𝑘) i.e., (𝑚𝑚 ∗ 𝑛𝑛) divide over (𝑘𝑘) if it is not divided 

then the problem does not have solution, then finally input 

availability constraints vector 𝑎𝑣𝑏 and input requirement 

constraints vector 𝑟𝑒𝑞 where should be total availability satisfy 

total requirement. 

• In command window: The solution will be shown optimal 

solution that contains the best BFS with minimum total cost 

transporting electricity objective function, with selection post 

optimal solution value. 

Command Window 

input vector b as a credibility degree of the DM about information 

on probability distribution space, input vector d as a vagueness 

level, input vector a as alpha-cut level respectively 

b=[1/2 1/5 1/10];d=[1/6 1/6 1/6];a=[1/2 1/2 1/2]; 

The problem has solution as follows: The Alpha-Cut Technique 

probability intervals of each pi for all i in each row of (n,2) matrix 

p after applying Fuzzy Transformation of Probability 

Distribution Space via Alpha-Cut Technique 

p= 

0.4167    0.5833 

0.1167    0.2833 

0.0167    0.1833 

The Truth Degrees process is applied as follows: First, Alpha-

Cut technique probability intervals of each pi divides to eleven 

equals distance points in each row of following Degrees of Truth 

of fuzzy logical value 

l= 

0.4167 0.4333 0.4500 0.4667 0.4833 0.5000 0.5167 0.5333 

0.5500 0.5667 0.5833 

 

0.1167 0.1333 0.1500 0.1667 0.1833 0.2000 0.2167 0.2333 

0.2500 0.2667 0.2833 

 

0.0167 0.0333 0.0500 0.0667 0.0833 0.1000 0.1167 0.1333 

0.1500 0.1667    0.1833 

 

Second, converting Truth Degrees to both TrFN and TpFN in 

each row as follow: fuzzy Truth Degrees region 

FN(k,1:24)=[TrFN1, TpFN2, TrFN3, TpFN4, TrFN5, TpFN6, 

TrFN7] Where TrFN1(1st 3 elements), TpFN2(2nd 4 elements), 

TrFN3(3rd 3 elements), TpFN4(4th 4 elements), TrFN5(5th 3 

elements), TpFN6(6th 4 elements), TrFN7(7th 3 elements). 

Where fuzzy vector forms contain TrFN as (a, alpha, betta), and 

for TpFN as (a-lower, a-upper, alpha, betta) 

FN= 

Columns 1 through 12 

0.4333 0.4167 0.4500 0.4500 0.4833 0.4333 0.5000 0.4833 

0.4500 0.5000 0.4833 0.5167 

 

0.1333 0.1167 0.1500 0.1500 0.1833 0.1333 0.2000 0.1833 

0.1500 0.2000 0.1833 0.2167 

 

0.0333 0.0167 0.0500 0.0500 0.0833 0.0333 0.1000 0.0833 

0.0500 0.1000 0.0833 0.1167 

Columns 13 through 24 

0.4667 0.5333 0.5167 0.5000 0.5500 0.5167 0.5500 0.5000 

0.5667 0.5667 0.5500 0.5833 

 

0.1667 0.2333 0.2167 0.2000 0.2500 0.2167 0.2500 0.2000 

0.2667 0.2667 0.2500 0.2833 

 

0.0667 0.1333 0.1167 0.1000 0.1500 0.1167 0.1500 0.1000 

0.1667 0.1667 0.1500 0.1833 

The deterministic vector values or nine importance power points 

in each fuzzy truth degrees regions after applying LFRF to 

deffuzzifier fuzzy for all column values for all i as each row of 

following deterministic values RN matrix 

RN= 

0.4167 0.4417 0.4833 0.4958 0.5167 0.5292 0.5500 0.5750 

0.5833 

 

0.1167 0.1417 0.1833 0.1958 0.2167 0.2292 0.2500 0.2750 

0.2833 

 

0.0167 0.0417 0.0833 0.0958 0.1167 0.1292 0.1500 0.1750 

0.1833 

from deterministic vector p in each row, we take p1 p2 p3 ... pn 

vectors then we test 9^n cases via sum(pi)=1 for all pi>0 

 

p123(:,:,1)= 

0.5500 0.5750 0.6167 0.6292 0.6500 0.6625 0.6833 0.7083 

0.7167 

0.5750 0.6000 0.6417 0.6542 0.6750 0.6875 0.7083 0.7333 

0.7417 

0.6167 0.6417 0.6833 0.6958 0.7167 0.7292 0.7500 0.7750 

0.7833 

0.6292 0.6542 0.6958 0.7083 0.7292 0.7417 0.7625 0.7875 

0.7958 

0.6500 0.6750 0.7167 0.7292 0.7500 0.7625 0.7833 0.8083 

0.8167 

0.6625 0.6875 0.7292 0.7417 0.7625 0.7750 0.7958 0.8208 

0.8292 

0.6833 0.7083 0.7500 0.7625 0.7833 0.7958 0.8167 0.8417 

0.8500 

0.7083 0.7333 0.7750 0.7875 0.8083 0.8208 0.8417 0.8667 

0.8750 

0.7167 0.7417 0.7833 0.7958 0.8167 0.8292 0.8500 0.8750 

0.8833 

 

p123(:,:,2)= 

0.5750 0.6000 0.6417 0.6542 0.6750 0.6875 0.7083 0.7333 

0.7417 

0.6000 0.6250 0.6667 0.6792 0.7000 0.7125 0.7333 0.7583 

0.7667 

0.6417 0.6667 0.7083 0.7208 0.7417 0.7542 0.7750 0.8000 

0.8083 
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0.6542 0.6792 0.7208 0.7333 0.7542 0.7667 0.7875 0.8125 

0.8208 

0.6750 0.7000 0.7417 0.7542 0.7750 0.7875 0.8083 0.8333 

0.8417 

0.6875 0.7125 0.7542 0.7667 0.7875 0.8000 0.8208 0.8458 

0.8542 

0.7083 0.7333 0.7750 0.7875 0.8083 0.8208 0.8417 0.8667 

0.8750 

0.7333 0.7583 0.8000 0.8125 0.8333 0.8458 0.8667 0.8917 

0.9000 

0.7417 0.7667 0.8083 0.8208 0.8417 0.8542 0.8750 0.9000 

0.9083 

 

p123(:,:,3)= 

0.6167 0.6417 0.6833 0.6958 0.7167 0.7292 0.7500 0.7750 

0.7833 

0.6417 0.6667 0.7083 0.7208 0.7417 0.7542 0.7750 0.8000 

0.8083 

0.6833 0.7083 0.7500 0.7625 0.7833 0.7958 0.8167 0.8417 

0.8500 

0.6958 0.7208 0.7625 0.7750 0.7958 0.8083 0.8292 0.8542 

0.8625 

0.7167 0.7417 0.7833 0.7958 0.8167 0.8292 0.8500 0.8750 

0.8833 

0.7292 0.7542 0.7958 0.8083 0.8292 0.8417 0.8625 0.8875 

0.8958 

0.7500 0.7750 0.8167 0.8292 0.8500 0.8625 0.8833 0.9083 

0.9167 

0.7750 0.8000 0.8417 0.8542 0.8750 0.8875 0.9083 0.9333 

0.9417 

0.7833 0.8083 0.8500 0.8625 0.8833 0.8958 0.9167 0.9417 

0.9500 

 

p123(:,:,4)= 

0.6292 0.6542 0.6958 0.7083 0.7292 0.7417 0.7625 0.7875 

0.7958 

0.6542 0.6792 0.7208 0.7333 0.7542 0.7667 0.7875 0.8125 

0.8208 

0.6958 0.7208 0.7625 0.7750 0.7958 0.8083 0.8292 0.8542 

0.8625 

0.7083 0.7333 0.7750 0.7875 0.8083 0.8208 0.8417 0.8667 

0.8750 

0.7292 0.7542 0.7958 0.8083 0.8292 0.8417 0.8625 0.8875 

0.8958 

0.7417 0.7667 0.8083 0.8208 0.8417 0.8542 0.8750 0.9000 

0.9083 

0.7625 0.7875 0.8292 0.8417 0.8625 0.8750 0.8958 0.9208 

0.9292 

0.7875 0.8125 0.8542 0.8667 0.8875 0.9000 0.9208 0.9458 

0.9542 

0.7958 0.8208 0.8625 0.8750 0.8958 0.9083 0.9292 0.9542 

0.9625 

 

p123(:,:,5)= 

0.6500 0.6750 0.7167 0.7292 0.7500 0.7625 0.7833 0.8083 

0.8167 

0.6750 0.7000 0.7417 0.7542 0.7750 0.7875 0.8083 0.8333 

0.8417 

0.7167 0.7417 0.7833 0.7958 0.8167 0.8292 0.8500 0.8750 

0.8833 

0.7292 0.7542 0.7958 0.8083 0.8292 0.8417 0.8625 0.8875 

0.8958 

0.7500 0.7750 0.8167 0.8292 0.8500 0.8625 0.8833 0.9083 

0.9167 

0.7625 0.7875 0.8292 0.8417 0.8625 0.8750 0.8958 0.9208 

0.9292 

0.7833 0.8083 0.8500 0.8625 0.8833 0.8958 0.9167 0.9417 

0.9500 

0.8083 0.8333 0.8750 0.8875 0.9083 0.9208 0.9417 0.9667 

0.9750 

0.8167 0.8417 0.8833 0.8958 0.9167 0.9292 0.9500 0.9750 

0.9833 

 

p123(:,:,6)= 

0.6625 0.6875 0.7292 0.7417 0.7625 0.7750 0.7958 0.8208 

0.8292 

0.6875 0.7125 0.7542 0.7667 0.7875 0.8000 0.8208 0.8458 

0.8542 

0.7292 0.7542 0.7958 0.8083 0.8292 0.8417 0.8625 0.8875 

0.8958 

0.7417 0.7667 0.8083 0.8208 0.8417 0.8542 0.8750 0.9000 

0.9083 

0.7625 0.7875 0.8292 0.8417 0.8625 0.8750 0.8958 0.9208 

0.9292 

0.7750 0.8000 0.8417 0.8542 0.8750 0.8875 0.9083 0.9333 

0.9417 

0.7958 0.8208 0.8625 0.8750 0.8958 0.9083 0.9292 0.9542 

0.9625 

0.8208 0.8458 0.8875 0.9000 0.9208 0.9333 0.9542 0.9792 

0.9875 

0.8292 0.8542 0.8958 0.9083 0.9292 0.9417 0.9625 0.9875 

0.9958 

 

p123(:,:,7)= 

0.6833 0.7083 0.7500 0.7625 0.7833 0.7958 0.8167 0.8417 

0.8500 

0.7083 0.7333 0.7750 0.7875 0.8083 0.8208 0.8417 0.8667 

0.8750 

0.7500 0.7750 0.8167 0.8292 0.8500 0.8625 0.8833 0.9083 

0.9167 

0.7625 0.7875 0.8292 0.8417 0.8625 0.8750 0.8958 0.9208 

0.9292 

0.7833 0.8083 0.8500 0.8625 0.8833 0.8958 0.9167 0.9417 

0.9500 

0.7958 0.8208 0.8625 0.8750 0.8958 0.9083 0.9292 0.9542 

0.9625 

0.8167 0.8417 0.8833 0.8958 0.9167 0.9292 0.9500 0.9750 

0.9833 

0.8417 0.8667 0.9083 0.9208 0.9417 0.9542 0.9750 1.0000 

1.0083 

0.8500 0.8750 0.9167 0.9292 0.9500 0.9625 0.9833 1.0083 

1.0167 

 

p123(:,:,8)= 

0.7083 0.7333 0.7750 0.7875 0.8083 0.8208 0.8417 0.8667 

0.8750 

0.7333 0.7583 0.8000 0.8125 0.8333 0.8458 0.8667 0.8917 

0.9000 

0.7750 0.8000 0.8417 0.8542 0.8750 0.8875 0.9083 0.9333 

0.9417 

0.7875 0.8125 0.8542 0.8667 0.8875 0.9000 0.9208 0.9458 

0.9542 

0.8083 0.8333 0.8750 0.8875 0.9083 0.9208 0.9417 0.9667 

0.9750 

0.8208 0.8458 0.8875 0.9000 0.9208 0.9333 0.9542 0.9792 

0.9875 

0.8417 0.8667 0.9083 0.9208 0.9417 0.9542 0.9750 1.0000 

1.0083 

0.8667 0.8917 0.9333 0.9458 0.9667 0.9792 1.0000 1.0250 

1.0333 

0.8750 0.9000 0.9417 0.9542 0.9750 0.9875 1.0083 1.0333 

1.0417 

 

p123(:9) = 

0.7167 0.7417 0.7833 0.7958 0.8167 0.8292 0.8500 0.8750 

0.8833 
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0.7417 0.7667 0.8083 0.8208 0.8417 0.8542 0.8750 0.9000 

0.9083 

0.7833 0.8083 0.8500 0.8625 0.8833 0.8958 0.9167 0.9417 

0.9500 

0.7958 0.8208 0.8625 0.8750 0.8958 0.9083 0.9292 0.9542 

0.9625 

0.8167 0.8417 0.8833 0.8958 0.9167 0.9292 0.9500 0.9750 

0.9833 

0.8292 0.8542 0.8958 0.9083 0.9292 0.9417 0.9625 0.9875 

0.9958 

0.8500 0.8750 0.9167 0.9292 0.9500 0.9625 0.9833 1.0083 

1.0167 

0.8750 0.9000 0.9417 0.9542 0.9750 0.9875 1.0083 1.0333 

1.0417 

0.8833 0.9083 0.9500 0.9625 0.9833 0.9958 1.0167 1.0417 

1.0500 

 

Now, we need to find and select each case equal one after 

sum(pi)=1 for all pi>0 then we collect pi as acceptance vector 

9×9×9 logical array 

pp123(:,:,7)=        pp123(:,:,8)= 

0 0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 1 0    0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 

rowpp123=      colpp123=         volpp123= 

8   8   7      62   70   71      1   1   1 

input vector p as deterministic acceptance vector from RN matrix 

in each row give one value where length of vector p is 3/4/5 

p=[0.55,0.275,0.175] 

input cs matrix (mm*nn,3)/(mm*nn,4)/(mm*nn,5) 2-D 

dimensions matrix as estimates cost values where matrix cs is 

(m,n) distribution matrix with (1,k) deterministic acceptance 

vector face. 

cs=[7.980,7.990,8.000;6.000,5.990,5.980;9.990,9.980,10.00;8.8

80,8.890,9.000;9.000,8.980,8.960;11.98,11.96,12.00;13.00,12.9

8,12.96;6.980,6.960,7.000;13.96,13.98,14.00;9.000,8.980,8.960

;15.96,15.98,16.00;4.990,5.000,4.980] 

please input mm and nn as length of obtain row and column of 

deterministic value matrix must be in final respectively. Be 

attention should (mm*nn)/(kk) since if (mm*nn) does not divide 

over (kk) then we do not have solution. 

mm=4, nn=3, we convert cs (m*n,k) 2D matrix to css (m,k,n) 3D 

matrix 

css(:,:,1)=             css(:,:,2)=              

7.9800 7.9900 8.0000    9.0000 8.9800 8.9600     

6.0000 5.9900 5.9800    11.980 11.960 12.000      

9.9900 9.9800 10.000    13.000 12.980 12.960      

8.8800 8.8900 9.0000    6.9800 6.9600 7.0000      

css(:,:,3)= 

13.960 13.980 14.000 

9.0000 8.9800 8.9600 

15.960 15.980 16.000 

4.9900 5.0000 4.9800 

The deterministic value of cd matrix well be 

cd= 

7.98625   5.99375   9.98900   8.90375 

8.98750   11.9780   12.9875   6.97800 

13.9725   8.98750   15.9725   4.99100 

Now, we have deterministic cd matrix, please input availability 

vector avb and input requirement vector req where should be total 

availability satisfy total requirement. 

avb=[36 51 42], req=[46 22 31 30] 

The solution where uses Vogel method 

Optimization Problem: Solve for:   x 

minimize:7.98625*x(1,1)+8.9875*x(2,1)+13.9725*x(3,1)+5.99

375*x(1,2)+11.978*x(2,2)+8.9875*x(3,2)+9.989*x(1,3)+12.98

75*x(2,3)+15.9725*x(3,3)+8.90375*x(1,4)+6.978*x(2,4)+4.99

1*x(3,4) 

subject to: 

x(1,1)+x(1,2)+x(1,3)+x(1,4)==36;x(2,1)+x(2,2)+x(2,3)+x(2,4)=

=51;x(3,1)+x(3,2)+x(3,3)+x(3,4)==42;x(1,1)+x(2,1)+x(3,1)==4

6;x(1,2)+x(2,2)+x(3,2)==22;x(1,3)+x(2,3)+x(3,3)==31;x(1,4)+x

(2,4)+x(3,4)==30; 

variable bounds: 

0<=x(1,1);0<=x(2,1);0<=x(3,1);0<=x(1,2);0<=x(2,2);0<=x(3,2)

;0<=x(1,3);0<=x(2,3);0<=x(3,3);0<=x(1,4);0<=x(2,4);0<=x(3,4

); 

Optimal solution found: 

BFS= 

 0   10   26    0 

46    0    5    0 

 0   12    0   30 

Zval ObjCost Optimal= 1055.594 

5.2.10 Station 10: Selecting Post Optimal Solution for 

DTLPP via Deciding from DM: By repeating steps from station 

6 tell getting optimal solution for 𝑝 = (𝑝18, 𝑝27, 𝑝38) =

(
34.5

60
,
15

60
,
10.5

60
), then optimal solution is obtained, where the total 

transporting cost is as follows: 

 
(8.988 ∗ 46) + (5.994 ∗ 10) + (8.988 ∗ 12) + 
(9.9893 ∗ 26) + (12.988 ∗ 5) + (4.9908 ∗ 30) 

= 1055.627 𝐼𝑄𝐷 

Also, by repeating steps from station 6 tell getting optimal 

solution for 𝑝 = (𝑝18, 𝑝28, 𝑝37) = (
34.5

60
,
16.5

60
,
9

60
), then optimal 

solution is obtained, where the total transporting cost is as 

follows: 
(8.9885 ∗ 46) + (5.9943 ∗ 10) + (8.9885 ∗ 12) + 
(9.9887 ∗ 26) + (12.9885 ∗ 5) + (4.9912 ∗ 30) 

= 1055.663 𝐼𝑄𝐷 

Finally, we have the optimal solution among three cases which 

are 𝑐𝑎𝑠𝑒𝑠 (7,8,8), where the total transporting cost is 

1055.594 𝐼𝑄𝐷, where analytic optimal solution for the above 

problem via crisp values version is 1057 𝐼𝑄𝐷.This solution 

shows efficiency of STLPPFI algorithm via closing numerical 

solution from analytic/exact solution. 

Now, to selecting post optimal solution for a certain amount 

among obtained solutions will be as follows: 

 

1. If importance rank of probability problem is 𝑝2 then 𝑝3 then 𝑝1 

from 𝑝 = (𝑝1, 𝑝2, 𝑝3) =∈ ℝ
3, then DM should select 

𝑐𝑎𝑠𝑒 (7,8,8) as a post optimal solution for certain problem. 

2. If importance rank of probability problem is 𝑝1 then 𝑝3 then 𝑝2 

from 𝑝 = (𝑝1, 𝑝2, 𝑝3) =∈ ℝ
3, then DM should select 

𝑐𝑎𝑠𝑒 (8,7,8) as a post optimal solution for certain problem with 

little additional penalty cost which is 0.033 𝐼𝑄𝐷. 

3. If importance rank of probability problem is 𝑝2 then 𝑝1 then 𝑝3 

from 𝑝 = (𝑝1, 𝑝2, 𝑝3) =∈ ℝ
3, then DM should select 

𝑐𝑎𝑠𝑒 (8,8,7) as a post optimal solution for certain problem with 

little additional penalty cost which is 0.069 𝐼𝑄𝐷. 

Note that comparative comments on both methods Dual-Simplex 

and VAM is that the Dual-Simplex Method immediately gives 

the optimal solution without using MODI method after finding 

IBFS with more elapsed time and more iterations and it is a more 

difficult way in great problems, where VAM sometimes does not 

give optimal solution without using MODI method with less 

elapsed time and less iterations and it is easy way in great 

problems. 
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CONCLUSION 

        In this study, the MATLAB code program with its algorithm 

program of solving STLPPFI model problems are proposed. The 

proposed method to solve the STLPPFI model problems was 

based on several stages of solution process. The study considered 

STLPPFI models. The method utilized concepts such as LFMF, 

𝑇𝑝𝐹𝑁, 𝑇𝑟𝐹𝑁, LFRF, Alpha-Cut technique on probability 

distribution, Truth Degrees technique on probability distribution, 

EWS technique  and analyzing cases via second condition test of 

alpha-cut technique. The study showed that STLPPFI model 

problem solver is more efficient and has so close solution to 

analytic/exact solution. The STLPPFI problem solver is used to 

convert STLPPFI into its corresponding equivalent DTLPP via 

defuzzifying the probability distribution and derandomization 

randomness of problem formulation respectively. The solution of 

numerical example in electricity field was shown to find the 

optimal solution of it and selecting post optimality solution for it. 

The result is evaluated and supports the entire stated technique 

approaches, algorithms, and it supports MATLAB code program 

of STLPPFI problem solver. The study showed that the theory 

was paralell with the algorithm and its MATLAB program. The 

MATLAB code programs of both transformations with followed 

technique approaches as Alpha-Cut technique, Truth Degrees 

technique, 𝑇𝑝𝐹𝑁, 𝑇𝑟𝐹𝑁, LFMF, LFRF, EWS technique and 

analyzing/filtering cases test were simplified process of finding 

the optimal solution to STLPPFI, and it issued the emerge of the 

entire actual real-life problem situations. The study illustrates 

that the proposed method implemented via MATLAB 

programming is practical, easy and applicable to practical 

applications in the fields of energy and industry. Moreover, the 

proposed method takes solution of the problem at the lowest cost, 

least time running, maximum transporting amounts and 

maximum profits. 
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6. APPENDEX 

Technique approach algorithm program outlines with its 

MATLAB code programs of them: 

 

6.1.1 The Alpha-Cut Technique Algorithm Program 

Outline 

The program outline of Alpha-cut technique will be as follows: 
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Input: Fuzzy Probability Polyhedral Set 𝑝 ̃ 

Step 1: For 𝑘 = 1,2, …𝑁 , Do Steps 2-6 

Step 2: 𝑝 ̃ ∈ 𝜋 ̃, then define 𝑝 ̃ as a 𝐹(𝑅) 

Step 3: Fuzzifier 𝑝 ̃ in F(𝑅) via Triangle or Trapezoid Linear 

Fuzzy Membership Function 𝜇𝑘(𝑝) 

Step 4: Use Alpha-cut technique formula 

𝑏 − 𝑑(1 − 𝛼) ≤ 𝑝 ≤ 𝑏 + 𝑑(1 − 𝛼) 

Step 5: Defuzzifier 𝑝 which 𝑝 is stochastic now i.e., 𝑝 ∈ 𝜋 

Step 6: 𝑘 = 𝑘 + 1 

Step 7: If (𝑘 ≠ 𝑁), then (Return to Step 1) 

Step 8: If (𝑘 = 𝑁), then (End of Process) 

Output: Stochastic Probability Polyhedral Set 𝑝 ∎. 

 

6.1.2 The Alpha-Cut Technique MATLAB Code Program 

The MATLAB Program of the alpha-cut technique is as 

following: 

format short;disp('input vector b as credibility degree of DM 

about information on probability distribution space'),b=input 

('b=');disp('input vector d as vagueness level'),d=input('d='); 

disp(' input vector a as alpha-cut level'), 

a=input('a=');b=b';d=d';a=a';n=length(a);p=zeros(n,2); 

if length(b)==length(d) && length(b)==length(a) && 

length(d)==length(a) 

    disp('The solution will be as following') 

    for k=1:1:n 

p(k,[1,2])=[(b(k))-((d(k))*((1-a(k)))),(b(k))+((d(k))*((1-a(k))))]; 

    end 

else 

disp('There is not have solution since all vectors are you inputted 

are not in same dimension') 

end 

if length(b)==length(d) && length(b)==length(a) && 

length(d)==length(a) 

disp('The credibility degree vector b is'), b=b';b,disp('The 

vagueness levels vector d is'), 

d=d';d,disp('The alpha-cut levels vector a is'), 

a=a';a,disp('The probability intervals of each pi for all i as each 

row of following probability interval matrix p i.e., applying 

Fuzzy Transformation of Probability Distribution Space via 

Alpha-Cut Technique'),p 

else 

    disp('please input all vectors in same dimension') 

end 

6.1.3 The Ranking Function Technique Program Outline 

The program outline of linear fuzzy ranking function LFRF 

technique approach will be as follows: 

Input: Fuzzy Numbers 𝑎 ̃ ∈ 𝐹(𝑅) 
Step 1: For 𝑘 = 1,2, …𝑁 , Do Steps 2-7 

Step 2: Define Fuzzy 𝑎 ̃ ∈ 𝐹(𝑅) 
Step 3: Fuzzifier 𝑎 ̃in F(𝑅) via Parametric Form then Ranking 

Function 𝑅(𝐹)(𝑎 ̃) respectively 

Step 4: Use Parametric Form for Trapezoidal 𝑎 ̃ 

[𝑎 ̃]𝜆 = [𝛼(𝜆 − 1) + 𝑎𝐿,  𝑎𝑈 + (1 − 𝜆)𝛽] 

Or Use Parametric Form for Triangular 𝑎 ̃ 

[𝑎 ̃]𝜆 = [𝛼(𝜆 − 1) + 𝑎,  𝑎 + (1 − 𝜆)𝛽] 

Step 5: Use LFRF Technique for Trapezoidal 𝑎 ̃ 

𝑅(𝐹)(𝑎 ̃) = 𝑅(𝐹)(𝑎𝐿, 𝑎𝑈, 𝛼, 𝛽) =
𝑎𝐿 + 𝑎𝑈

2
+
𝛽 − 𝛼

4
 

Or Use LFRF Technique for Triangular 𝑎 ̃ 

𝑅(𝐹)(𝑎 ̃) = 𝑅(𝐹)(𝑎, 𝛼, 𝛽) = 𝑎 +
𝛽 − 𝛼

4
 

Step 6: Deffuzzifier 𝑎 which is 𝑎 is deterministic now i.e., 𝑎 ∈ ℝ 

Step 7: 𝑘 = 𝑘 + 1 

Step 8: If 𝑘 ≠ 𝑁, then (Return to Step 1) 

Step 9: If 𝑘 = 𝑁, then (End of the Process) 

Output: Real values of 𝑎 ∎. 

 

6.1.4 The Ranking Function Technique MATLAB 

Program 

        The MATLAB Program of Linear Fuzzy Ranking Function 

technique is as following: 

format short;disp('input n * 3 or n * 4 matrix (FN) as a vectors of 

TpFN or TrFN in each row where each row of n * 3 matrix (FN) 

contains (a, alpha, betta) as a vector of TrFN or each row of n * 

4 matrix (FN) contains (aL, aU, alpha, betta) as a vector of 

TpFN'),FN=input ('FN=');b=size(FN);n=b(1);RN=zeros(n,1); 

if b(2)==3 

    disp('it is TrFN') 

    for k=1:1:n 

    RN(k,1)=(FN(k,1))+((FN(k,3)-FN(k,2))/4); 

    end 

elseif b(2)==4 

    disp('it is TpFN') 

    for k=1:1:n 

    RN(k,1)=((FN(k,1)+FN(k,2))/2)+((FN(k,4)-FN(k,3))/4); 

    end 

else 

    disp('There is not have solution since FN is not TpFN nor 

TrFN') 

end 

if b(2)==3 || b(2)==4 

    disp('The fuzzy number values before converting will be as 

follows vector/matrix'),FN,disp('The deterministic real values 

after converting from fuzzy numbers will be as follows 

vector'),RN 

else 

    disp('please input RN vector/matrix as a TpFN or TrFN, or 

correct your input matrix into n * 3 or n * 4 matrix (FN) as a 

vector of TpFN or TrFN') 

end 

 

6.1.5 The Truth Degrees Technique Program Outline: The 

program outline of truth degrees technique will be as follows: 

Input: Stochastic Probability Polyhedral Set 𝑝 

Step 1: For 𝑘 = 1,2, …𝑁 , Do Steps 2-8 

Step 2: Define each 𝑝 ∈ 𝜋 as a continuous interval [𝛼, 𝛽] 
Step 3: Divide [𝛼, 𝛽] of each 𝑝 ∈ 𝜋 as ten continuous subintervals 
[𝛼, 𝛽] = [𝛼, 𝑎1] … [𝑏1, 𝛽] 
Step 4: Replace 𝑝 at each ten subintervals as fuzzy truth degrees 

regions membership functions 𝜇𝑘(𝑝𝑖) 
Step 5: 𝑝 is fuzzy number i.e., 𝑝 ∈ 𝐴 ̃ 
Step 6: Deffuzzifier 𝑝 ̃ via linear fuzzy ranking function 

technique formula to get stochastic truth degrees regions from 

fuzzy truth degrees regions i.e., 𝑝 ∈ 𝐴 

Step 7: Deffuzzifier 𝑝 i.e., 𝑝 ∈ ℝ or 𝑝 is deterministic discrete 

value now 

Step 8: 𝑘 = 𝑘 + 1 

Step 9: If 𝑘 ≠ 𝑁, then (Return to Step 1) 

Step 10: If 𝑘 = 𝑁, then (End of Process) 

Output: Real values of 𝑝 ∎. 

 

6.1.6 The Truth Degrees Technique MATLAB Program 

        The MATLAB code program of the truth degrees technique 

is as follows: 

format short;disp('input (n,2) matrix p as Alpha-Cut Technique 

probability intervals of each pi for all i in each row of matrix p 

after applying Fuzzy Transformation of Probability Distribution 

Space via Alpha-Cut 

Technique'),p=input('p=');b=size(p);n=b(1);l=zeros(n,11);FN=z
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eros(n,24);RN=zeros(n,9);TrFN1=0;TpFN2=0;TrFN3=0;TpFN

4=0;TrFN5=0;TpFN6=0;TrFN7=0;RN1=0;RN2=0;RN3=0;RN4

=0;RN5=0;RN6=0;RN7=0; 

if b(2)==2 

    disp('The solution will be as following') 

    for k=1:1:n 

l(k,1:11)=linspace(p(k,1),p(k,2),11);TrFN1(k,1:3)=l(k,[2,1,3]);T

pFN2(k,1:4)=l(k,[3,5,2,6]);TrFN3(k,1:3)=l(k,[5,3,6]);TpFN4(k,

1:4)=l(k,[5,7,4,8]);TrFN5(k,1:3)=l(k,[7,6,9]);TpFN6(k,1:4)=l(k,

[7,9,6,10]);TrFN7(k,1:3)=l(k,[10,9,11]);FN(k,1:24)=[TrFN1(k,:

),TpFN2(k,:),TrFN3(k,:),TpFN4(k,:),TrFN5(k,:),TpFN6(k,:),Tr

FN7(k,:)];RN1(k,1)=(FN(k,1))+((FN(k,3)-

FN(k,2))/4);RN2(k,1)= ((FN(k,4)+FN(k,5))/2)+((FN(k,7)-

FN(k,6))/4); RN3(k,1)=(FN(k,8))+((FN(k,10)-FN(k,9))/4); 

RN4(k,1)=((FN(k,11)+FN(k,12))/2)+((FN(k,14)-

FN(k,13))/4);RN5(k,1)=(FN(k,15))+((FN(k,17)-

FN(k,16))/4);RN6(k,1)=((FN(k,18)+FN(k,19))/2)+((FN(k,21)-

FN(k,20))/4);RN7(k,1)=(FN(k,22)) +((FN(k,24)-

FN(k,23))/4);RN(k,1:9)=[p(k,1), 

RN1(k,:),RN2(k,:),RN3(k,:),RN4(k,:),RN5(k,:),RN6(k,:),RN7(k

,:),p(k,2)]; 

    end 

else 

disp('There is not have solution since p is not as a (n,2) dimension 

matrix') 

end 

if b(2)==2 

disp('The Alpha-Cut Technique probability intervals of each pi 

for all i in each row of matrix p'),p,disp('The Truth Degrees 

Process as follows applies: First, The Alpha-Cut Technique 

Probability Intervals of each pi for all i divides to 11 points in 

each row of following Degrees of Truth of fuzzy logical value'),l, 

disp('Second, Converting Truth Degrees to both TrFN and TpFN 

in each row as following fuzzy Truth Degrees region 

FN(k,1:24)=[TrFN1,TpFN2, 

TrFN3,TpFN4,TrFN5,TpFN6,TrFN7] Where TrFN1(1st 3 

elements),TpFN2(2nd 4 elements), TrFN3(3rd 3 elements), 

TpFN4(4th 4 elements), TrFN5(5th 3 elements), TpFN6(6th 4 

elements), TrFN7(7th 3 elements). Where fuzzy vector forms for 

TrFN is (a, alpha, betta),for TpFN is (a-lower, a-upper, alpha, 

betta)'),FN,disp('The deterministic vector values or importance 

power points in each fuzzy Truth Degrees regions after applying 

linear fuzzy ranking function LFRF to deffuzzifier fuzzy for all 

column values for all i as each row of the following deterministic 

values matrix rf'),RN 

else 

disp('please input p is a (n,2) dimension matrix') 

end 

6.1.7 The Analyzing Cases Test Program Outline 

        The program outline of Analyzing Cases Test will be as 

follows: 

Input: Deterministic matrix RN values or importance efficient 

points that divides as each row of matrix RN are deterministic 

vector values Probability Polyhedral Set 𝑝. 

Step 1: Define 𝑅𝑁 = [𝑃1; 𝑃2; 𝑃3], and each 𝑝𝑘 ∈ 𝑃1 ⊆ ℝ
𝑁, 𝑝𝑚 ∈

𝑃2 ⊆ ℝ
𝑁, 𝑝𝑛 ∈ 𝑃3 ⊆ ℝ

𝑁;  ∀𝑘,𝑚, 𝑛 = 1,2, …𝑁. 

Step 2: For 𝑘 = 1,2, …𝑁, for 𝑚 = 1,2,…𝑁, for 𝑛 = 1,2,…𝑁 , 

Do Steps 3-8. 

Step 3: Do 𝑝𝑘𝑚𝑛 = 𝑝𝑘 + 𝑝𝑚 + 𝑝𝑛 , ∀𝑚, 𝑛, 𝑘 = 1,2,…𝑁 of entire 

location (𝑚, 𝑛, 𝑘) of 3𝐷 matrix 𝑃. 

Step 4: Replace 𝑝𝑘𝑚𝑛 at place (𝑚, 𝑛, 𝑘) of 3𝐷 matrix 𝑃. 

Step 5: Create comparative (𝑚, 𝑛, 𝑘) 3𝐷 matrix 𝑃𝑃 as logical 

answer of question is 𝑝𝑘𝑚𝑛 = 1 or not, if yes take logical value 

1 and if no take logical value 0. 

Step 6: Find entire locations of logical matrix 𝑃𝑃 that have value 

1, to getting and finding location of 𝑝𝑘𝑚𝑛 of 3𝐷 matrix 𝑃, then 

separate location 𝑝𝑘𝑚𝑛 to 𝑝𝑘, 𝑝𝑚 and 𝑝𝑛. 

Step 7: Create entire acceptance vectors 𝑃1, 𝑃2,…𝑃𝑖 , 𝑖 ∈ ℕ, 

where each 𝑃𝑖 = (𝑝𝑘𝑖 , 𝑝𝑚𝑖 , 𝑝𝑛𝑖) ⊆ ℝ
ℕ. 

Step 8: 𝑘 = 𝑘 + 1 if loop 𝑘 applies, or 𝑚 = 𝑚+ 1 if loop 𝑚 

applies, or 𝑛 = 𝑛 + 1 if loop 𝑛 applies. 

Step 9: If 𝑘 ≠ 𝑁 and 𝑚 ≠ 𝑁 and 𝑛 ≠ 𝑁, then (Return to Step 2). 

Step 10: If 𝑘 = 𝑁 and 𝑚 = 𝑁 and 𝑛 = 𝑁, then (End of Process). 

Output: Real values of acceptance vectors 𝑃𝑖 = (𝑝𝑘𝑖 , 𝑝𝑚𝑖 , 𝑝𝑛𝑖) ⊆
ℝℕ ∎. 

 

6.1.8 The Analyzing Cases Test MATLAB Program The 

MATLAB code program of analyzing cases test is as follows: 

format short;disp('input (3,n) matrix RN as 3 obtained 

deterministic vectors p in each row take p1 p2 p3 ... pn as n-

dimensional vectors'),RN=input('RN=');kkk=size(RN); 

if kkk(1)==3 

disp('from deterministic vector p in each row take p1 p2 p3 ... pn 

vectors then we test 9^n cases via sum(pi)=1 for all pi>0'),p1= 

RN(1,:);np1=length(p1);p2=RN(2,:);np2=length(p2);p3=RN(3,:

);np3=length(p3);p123=zeros(np3,np1,np2);pp123=zeros(np3,n

p1,np2); 

    if length(p1)==length(p2)&&length(p1) 

==length(p3)&&length(p2)==length(p3) 

        for k=1:1:np3 

            for m=1:1:np1 

                for n=1:1:np2 

         p123(m,n,k)=p1(k)+p2(m)+p3(n);p123; 

                end 

            end 

        end 

    else 

        disp('There is not have solution') 

    end 

p123,disp('we find and select each case equal one after sum(pi)=1 

for all pi>0 then we collect pi as acceptance 

vector'),pp123=logical 

(p123==1),[rowpp123,colpp123,volpp123]=find(pp123);rowpp

123=rowpp123';colpp123=colpp123';volpp123=volpp123';rowp

p123,colpp123,volpp123 

else 

    disp('There is not have solution since rows of RN more than 3 

or less than 3') 

end 

6.1.9 The EWS Technique Program Outline 

        The program outline of expected weighted summation EWS 

technique will be as follows: 

Input: Stochastic objective function coefficients equation 

Step 1: For 𝑘 = 1,2, …𝑁 , Do Steps 2-5 

Step 2: Define stochastic objective coefficients 

𝑀𝑖𝑛 𝑧(𝑥, 𝜔) = 𝑀𝑖𝑛 ∑ ∑ 𝑐𝑖𝑗(𝜔) 𝑥𝑖𝑗
𝑛

𝑗=1

𝑚

𝑖=1
 

Step 3: Fuzzifier stochastic objective coefficients via the EWS 

approach ∀𝑃 = (𝑝1, 𝑝2, … , 𝑝𝑁)
𝑇  

𝑀𝑖𝑛 𝐸𝑥𝑝𝑝∈𝜋 𝑧(𝑥, 𝜔) = 𝑀𝑖𝑛 𝐸𝑥𝑝𝑝∈𝜋 ∑ ∑ 𝑐𝑖𝑗(𝜔) 𝑥𝑖𝑗
𝑛

𝑗=1

𝑚

𝑖=1

= 𝑀𝑖𝑛 ∑ ∑  𝑥𝑖𝑗
𝑛

𝑗=1
(𝐸𝑥𝑝𝑝∈𝜋∑ 𝑐𝑖𝑗(𝜔𝑘) 𝑝𝑘

𝑁

𝑘=1
)

𝑚

𝑖=1
;  ∀𝑝 ∈ 𝜋 

Step 4: Deffuzzifier stochastic objective coefficients to 

deterministic 

𝑀𝑖𝑛 𝑧(𝑥) = 𝑀𝑖𝑛 ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑛

𝑗=1

𝑚

𝑖=1
 

Step 5: 𝑘 = 𝑘 + 1 

Step 6: If 𝑘 ≠ 𝑁, then (Return to Step 1) 

Step 7: If 𝑘 = 𝑁, then (End of Process) 

Output: Deterministic objective function coefficients equation ∎. 
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6.1.10 The EWS Technique MATLAB Program 

        The MATLAB Program of the expected weighted 

summation EWS technique is as following: 

format short;disp('input (1,3)/(1,4)/(1,5) vector p as acceptance 

probability distribution vector'),p=input('p=');disp(' input cs 

matrix (mm*nn,3)/(mm*nn,4)/(mm*nn,5) 2D matrix as estimate 

cost values where cs matrix contains (m,n) distribution matrix 

with (1,k) acceptance weighted vector face'),cs=input('cs='); 

disp('please input mm and nn as what is length of row and column 

of deterministic value matrix will be in final respectively Be 

attention should (mm*nn)/(kk) i.e., (mm*nn) divided over (kk) if 

not divided not have solution'),mm=input 

('mm=');nn=input('nn=');kk=size(cs,2); 

if rem(mm*nn,kk)==0 

disp('we convert cs matrix (m*n,k) 2D matrix to css (m,k,n) 3D 

matrix') 

if length(p)==3 

css=cat(3,cs(1:mm,1:length(p)),cs((mm)+1:2*(mm),1:length(p))

,cs((2*(mm))+1:3*(mm),1:length(p))); 

elseif length(p)==4 

css=cat(4,cs(1:mm,1:length(p)),cs((mm)+1:2*(mm),1:length(p))

,cs((2*(mm))+1:3*(mm),1:length(p)),cs((3*(mm))+1:4*(mm),1:

length(p))); 

elseif length(p)==5 

css=cat(5,cs(1:mm,1:length(p)),cs((mm)+1:2*(mm),1:length(p))

,cs((2*(mm))+1:3*(mm),1:length(p)),cs((3*(mm))+1:4*(mm),1:

length(p)),cs((4*(mm))+1:5*(mm),1:length(p))); 

else 

    disp('There is not have solution') 

end 

m=size(css,1);k=size(css,2);n=size(css,3);cd=zeros(m,k,n);css 

if length(p)==k 

    disp('The solution will be as following') 

    cd=pagetranspose(pagemtimes(css,p')); 

else 

disp('There is not have solution') 

end 

else 

disp('There is not have solution') 

end 

if length(p)==k && length(p)==3 

disp('The deterministic value matrix cd is'), 

cd=[cd(:,:,1);cd(:,:,2);cd(:,:,3)];cd 

elseif length(p)==k && length(p)==4 

disp('The deterministic value matrix cd is'), 

cd=[cd(:,:,1);cd(:,:,2);cd(:,:,3);cd(:,:,4)];cd 

elseif length(p)==k && length(p)==5 

disp('The deterministic value matrix cd is'), 

cd=[cd(:,:,1);cd(:,:,2);cd(:,:,3);cd(:,:,4);cd(:,:,5)];cd 

else 

disp('please input (1,k) vector p that have same 3rd dimension of 

cs (m,n,k) 3D matrix') 

end 

 


