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ABSTRACT: 

In the realm of economic (financial) time series analysis, accurate prediction holds paramount importance. However, these 

data often suffer from the presence of noise, particularly in highly random and non-stationary datasets like stock market 

data. Dealing with noisy data makes predicting noise-free economic models exceedingly challenging. This research paper 

introduces an innovative shrinkage (thresholding) function designed to improve the efficiency of wavelet shrinkage 

denoising in the context of financial time series data. The proposed function is constructed based on an arctangent model 

with adjustable parameters meticulously chosen to ensure the function maintains continuous differentiability. The 

application of this novel shrinkage function effectively reduces noise in stock data. Employing R program for data analysis 

and figure plotting, the performance of this approach is rigorously validated using closing price data from the Shanghai 

Composite Index, spanning the period from January 4, 2000 to August 28, 2023. The experimental results demonstrate that 

the proposed thresholding function outperforms classical shrinkage functions (hard, soft, and nonnegative garrote) in both 

continuous derivative property and denoising efficacy. 

KEYWORDS: Wavelet Shrinkage Denoising, Arctangent Model, Financial Time Series Data, Noise Reduction, Stock 

Data, Shanghai Composite Index. 

1. INTRODUCTION 

        Economic-mathematical modelling has established itself as 

an exceptionally potent approach for the characterization and 

examination of intricate socio-economic phenomena and 

operations. This methodology integrates mathematical models 

with innovative engineering solutions, thus ingraining it as an 

indispensable component of economics (Kolosinska and 

Kolosinskyi, 2013). Knowledge economics, as an abstract 

concept, necessitates translation into a tangible and concrete 

manifestation. This transformation is made achievable through 

the mathematical modelling of its processes as managerial 

entities (Svarc and Dabic, 2017).  

       Theoretical exploration and the formulation of mathematical 

models have yielded favourable results in addressing tangible 

economic and financial challenges. This includes tasks such as 

the analysis and prognosis of the flow of budgetary financial 

resources, the supervision of development, and operational 

support across varying budgetary tiers, as well as the evaluation 

of the quality and risk factors associated with the administration 

of economic systems (Neittaanmäki et al., 2016). 

In the wake of the advent of market-oriented economies, global 

finance, and rapid technological progress, the demand for more 

sophisticated theoretical underpinning and precise analytical 

methodologies has surged. Time series models for finance and 

economics are now leveraging modern signal processing and 

mathematical tools. These tools encompass time-frequency 

analysis and the time-scale technique, notably employing the 

wavelet transform (Tiwari, 2016; Jiang, 2017).  

       The wavelet transform emerges as a particularly apt choice 

for scrutinizing economic data due to the nonstationary nature of 

most economic and financial time series, which exhibit evolving 

spectral compositions over time. 

       Prediction stands as a pivotal facet within economics and 

finance. Long-term prediction is instrumental in governing 

dynamic economic systems, while short-term prediction seeks to 

accurately track economic trends. In the examination of 

economic and financial data for forecasting, the wavelet 

technique has drawn a lot of interest. Its applications extend to 

forecasts in areas like crude oil prices, stock market trends, 

commodity market projections, and more (de Souza, 2010; 

Tiwari, 2014; Vacha, 2012). However, economic data records 

frequently contain noise originating from measurement 

inaccuracies and other sources. Noise within economic and 

financial systems contributes to heightened uncertainty within 

financial markets, intensifying the complexity of prediction 

tasks. To enhance prediction precision, denoising techniques are 

employed to alleviate data noise. This paper centers its focus on 

denoising procedures, and harnessing the wavelet transform to 

purify stock price data for predictive purposes. 

        Stock price volatility is subject to influence by diverse 

stochastic elements, thereby generating noisy observations. 

Through the utilization of wavelet shrinkage denoising and 

thresholding methods, this paper seeks to formulate a new 

shrinkage function designed to augment denoising efficacy. The 

overarching objective is to mitigate the repercussions of noise 

and elevate the accuracy of stock price predictions. 

2.  WAVELET TRANSFORM AND SHRINKAGE 

DENOISING 

        In the domain of processing and analyzing time series data 

in economics and finance, the ability to detect meaningful signals 

amidst noise and interference is paramount. To tackle this 

challenge, the wavelet transform (WT) has emerged as a valuable 

tool, leveraging its capacity to pinpoint transient features within 

signals. Essential properties like compression and sparsity are 

present in the WT, demonstrating that real-world signals often 

display sparsity—many smaller coefficients that can be 

disregarded, while a small number of significant coefficients 

carry the majority of the signal energy. With an output that rises 

when the input signal approaches the analysis template and falls 

when noise levels are higher, the WT essentially performs 
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correlation analysis. This underlying idea supports the idea of 

wavelet denoising. Importantly, it's imperative to differentiate 

between wavelet denoising and smoothing, despite some authors 

interchangeably using these terms. Smoothing is concerned with 

eliminating high frequencies while preserving low ones, whereas 

denoising is centered on eliminating noise while retaining the 

signal, irrespective of its frequency content. Noise energy is 

distributed across all coefficients in the wavelet domain. Hence, 

denoising within the wavelet domain is accomplished by 

applying thresholding to WT coefficients, introducing the notion 

of wavelet shrinkage. This procedure entails selecting an 

appropriate threshold value and a thresholding rule to effectively 

attenuate noise power while retaining essential signal 

characteristics. Diverse wavelet thresholding strategies have 

been shown to exhibit near-optimal qualities from a minimax 

perspective in several research concentrating on signal denoising 

by wavelet shrinkage (Donoho, 1998). 

        The WT is widely used in non-stationary time series 

analysis to extract data in both the frequency and time domains. 

It can be viewed as a multi-scale variant of the specialized 

Fourier transform that dissects signals into smaller and altered 

forms of the original "mother" wavelet. The convolution of a time 

series, represented as x(t), and a wavelet function, represented as 

w(t), is the formal definition of the continuous wavelet transform 

(CWT) (Gomes,2015) 

𝐶𝑊𝑇𝑥
𝜓 
  (𝑑, 𝑎)  =  𝜙𝑥

𝜓
 (𝑑, 𝑎)  =  

1

√|𝑎|
∫  𝑥(𝑡)𝜓∗

(𝑡 − 𝑎)

𝑑
 𝑑𝑡  (1)                                                    

The translational parameter is denoted by d=
𝑘

2𝑠
 , the scale 

parameter is represented by a= 
1

2𝑠
 , and the complex conjugate of 

ψ(t), is denoted by ψ*, where "s" and "k" are integers. At the 

coordinates (
𝑘

2𝑠
, 
1

2𝑠
) on the plane of time scale, the CWT of x(t) 

yields a numerical result. This outcome displays the relationship 

at that specific time-scale point between x(t) and ψ*(t). The 

discrete counterpart of equation (1) is known as the discrete 

wavelet transform (DWT): 

𝐶𝑊𝑇𝑥
𝜓 
  (𝑘, 𝑠)  =  𝜙𝑥

𝜓
 (
𝑘

2𝑠
,
1

2𝑠
)  =  ∫ 𝑥(𝑡)𝜓∗

(𝑡 − 
𝑘

2𝑠
)

1

2𝑠

 𝑑𝑡
∞

−∞
   (2)                 

The signal is broken down by DWT into components with 

different scales that correspond to successive frequencies. DWT 

plays a pivotal role in the multi-resolution approximation 

approach for analyzing signals across multiple scales or 

frequency bands. 

        In application, multi-resolution analysis starts with two-

channel filter banks made up of low-pass and high-pass filters, 

and each filter bank is sampled half as fast as the preceding 

frequency (1/2 down-sampling). The length of the data 

determines how many rounds there will be in this decomposition. 

This down-sampling technique sustains a constant scaling 

parameter of 1/2 across successive wavelet transformations (Li 

and Kuo, 2008), thereby streamlining the computational 

implementation. DWT has seen extensive development and 

application in signal analysis across diverse domains. 

       By creating a suitable shrinkage (thresholding) function, 

DWT is used in this work to remove noise from stock price data. 

Risk Shrink, a useful spatially adaptable technique that trims 

empirical wavelet coefficients, is a part of groundbreaking 

research on wavelet shrinkage denoising (Donoho, 1994). 

Another well-known technique is the asymptotically minimax 

approach, which, when applied to curve estimation in the 

presence of noisy data, moves empirical wavelet coefficients 

toward the origin. Furthermore, Donoho and Johnstone (1995) 

describe Sure Shrink, as a technique for reducing noise by 

thresholding empirical wavelet coefficients. All these techniques 

are combined under the name "Wave Shrink," which is based on 

the idea of eliminating noise by setting wavelet coefficients to 

zero. A widely accepted technique for removing noise from 

distorted signals is called Wave Shrink. 

        Numerous scholars have employed wavelets in diverse 

applications in economics and finance, deploying DWT to dissect 

economic and financial data. This opened the door for wavelet 

analysis to be used in empirical economics and finance. The 

quasi-periodic components of signals are extracted using the 

Ensemble-Empirical-Model Decomposition (EEMD) and 

ensemble version of Empirical-Model-Decomposition (EMD) 

methods (Huang, 1998) in order to construct features. By using 

these nonparametrically produced components as inputs for 

classification models, human bias in feature generation can be 

minimized. Many fields have successfully used EEMD and 

DWT, particularly when dealing with non-stationary time series. 

         Non-stationary time series and highly oscillatory, 

connected to financial instruments like stock prices and market 

indices have been forecasted in a number of studies using EEMD 

and DWT. 

        Wavelet analysis is well known for its ability to examine the 

frequency content of analyzed processes with high joint time–

frequency resolution and for estimating economic and financial 

time series using particular wavelet–based techniques. This 

method, which is based on an endogenously variable time 

window, allows for accurate identification of events that impact 

economic fluctuations, effective computational analysis, and the 

examination of economic relationships across various time 

horizons. In conclusion, wavelet analysis is crucial for economic 

forecasting even beyond its use in signal denoising. Conventional 

DWT has an advantageous decorrelation property, which 

suggests that it could be useful for financial and economic 

process forecasting. Surprisingly, the choice of analysis scale has 

a significant impact on the outcomes of forecasting methods used 

for financial and real economic variables. Wavelet transforms 

(CWT and DWT) simplify the analysis of simpler univariate and 

multivariate processes, which makes it easier to apply 

customized forecasting methods. 

In the context of this analysis, we introduce data (time series) 

denoted as 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛)
𝑇, defined as follows: 

𝑦𝑘 =  𝑓(𝑡𝑘) +  𝜎𝑧𝑘 ,    𝑘 =  1, 2, … , 𝑛                                        (3)                                                                  

𝑡𝑘 represents normalized time in this equation, f(·) is a 

deterministic function with potential complexity and spatial 

inhomogeneity, The Gaussian noise standard deviation is 

represented by the variable{𝑧𝑘}, with 𝜎𝑧𝑘 ~N(0,1). The 

objective is to minimize the 𝐿2   risk when estimating f(·)  

(Donoho, 1994; 1995): 

𝑅(𝑓, 𝑓)  =  (1/𝑛) ∑ [𝑓(𝑡𝑘) −  𝑓(𝑡𝑘)]
2𝑛

𝑘=1                                         (4)                                                                      

        The estimated sample value of f 𝑓(𝑡𝑘) is denoted by 𝑓(𝑡𝑘). 
The mean square error (MSE) is represented by the 𝐿2 risk. A 

well-liked tool for estimating the function f(·) is WaveShrink. It 

achieves nearly optimal minimax risk within a logarithmic factor 

of n across a broad range of smoothness classes and loss 

functions, including 𝐿2risk, and has broad asymptotic near-

optimality properties. The following steps are involved in the 

WaveShrink method is done in three steps: a) Wavelet coefficient 

thresholding, which involves shrinking empirical wavelet 

coefficients to zero, is done in three steps: (b) forward wavelet 

transform of observed data, which turns data y into the wavelet 

domain; (c) the reduced coefficients' inverse wavelet transform, 

which returns the shrunken coefficients to the data domain. 

The efficiency of shrinking empirical wavelet coefficients 

depends on the sparsity of the true coefficients of f(·).  

        This translates to practice as most coefficients (the non-

important ones) have little effect on the functional form of f(), 

while a small number (the important ones) have a significant 

effect. A shrinkage function, sometimes referred to as a 

thresholding function, needs to have two characteristics to be 

accepted: a) It must retain large and significant coefficients and 

b) It must eliminate small and insignificant ones. 

        Hard shrinkage and soft shrinkage are the two basic 

shrinkage functions that Wave Shrink uses. Important 
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coefficients are retained by the hard shrinkage function, but non-

important coefficients are set to zero if their absolute values fall 

below a predetermined threshold ζ: 

𝛿ζ
𝐻(𝑥)  =  {

0  |𝑥|  ≤  ζ 
𝑥  |𝑥|  >  ζ

                                                 (5)                                                                          

       Here, ζ denotes the threshold value, with ζ  ∈ [0, ∞). 

Expanding upon the hard shrinkage function is the soft shrinkage 

function. Non-essential coefficients are set to zero and crucial 

coefficients that are not zero are reduced to zero if their absolute 

values fall below the threshold.: 

𝛿ζ
𝐻(𝑥) = {

0 |𝑥|  ≤  ζ
𝑥 −  ζ 𝑥 >  ζ
𝑥 +  ζ 𝑥 <  −ζ

                                           (6)                                                                            

        There are advantages and disadvantages to both soft and 

hard shrinking. Large coefficients' shrinkage may cause a larger 

bias since the soft shrinkage is continuous but its derivative is 

discontinuous. Hard thresholding estimates, on the other hand, 

may have a higher variance and be unstable due to discontinuities 

in the shrinkage function (Gao 1998). The Wave Shrink 

denoising technique utilizes Breiman's (1995) non-negative 

garrote shrinkage function to solve the drawbacks of hard and 

soft shrinkages. The following is the definition of the non-

negative garrote shrinkage function: 

𝛿ζ
𝐺(𝑥) = {

0  |𝑥|  ≤  ζ

𝑥 − ζ2 𝑥⁄ |𝑥|  >  ζ 
                                     (7)                                                                                      

        Several conclusions can be drawn from the three shrinkage 

functions discussed: At the threshold ζ, the hard functional 

shrinkage shows a discontinuity. The soft shrinkage function 

maintains consistency across its entire range. Since it is 

continuous, the non-negative garrote shrinkage function is better 

than hard shrinkage. Moreover, the positive garrote shrinkage 

function reaches the identity line as |x| increases (just like hard 

shrinkage does), resulting in a lower bias for high coefficients 

than soft shrinkage. These findings suggest that a good 

compromise between hard and soft shrinkage functions is the 

non-negative garrote shrinkage function. 

        It is worth noting, however, that all three functions share the 

property of having a single threshold. (Gao, 1997) proposed a 

more general shrinkage function known as the firm (or semisoft) 

shrinkage function, which includes two thresholds (ζ1 and ζ2): 

𝜹ζ1,ζ2(𝒙) = {

𝟎                               |x|  ≤  ζ1

sgn(x) 
ζ2(|x| − ζ1)

(ζ2 − ζ1)
ζ1 < |x| ≤ ζ2

𝒙                             |x|  >  ζ2

             (8)                                                  

        The sign function is represented by "sgn()" here. When x is 

close to the lower threshold ζ1, the firm shrinkage 𝜹ζ1,ζ(𝒙) 

behaves similarly to the soft shrinkage 𝛿ζ1
𝑠 (𝑥). In contrast, for x 

values greater than the upper limit ζ2, 𝜹ζ1,ζ2(𝒙) equates to 𝛿ζ2
𝐻(𝑥), 

which is equivalent to x. Notably, firm shrinkage with ζ1 equal to 

ζ2 corresponds to hard shrinkage, whereas firm shrinkage with ζ2 

approaching infinity mimics soft shrinkage. As a result, the firm 

shrinkage function extends and generalizes the hard and soft 

shrinkage functions found in Wave-Shrink. Semisoft shrinkage 

can outperform both hard and soft shrinkage methods by 

carefully selecting thresholds (ζ1, ζ2), incorporating the benefits 

of both while avoiding their drawbacks (Gao 1998). The 

requirement for two thresholds, however, is a major drawback of 

semisoft shrinkage and can make threshold selection more 

difficult as well as increase computational complexity in adaptive 

threshold selection processes. 

        The waveforms of the hard (ζ = 3.41), soft (ζ = 3.41), 

positive garrote (ζ = 3.41), and semisoft (ζ1 = 2.341, ζ2 = 7.264) 

shrinkage functions are shown in Figure 1. Although 

thresholding functions with improved performance, such as the 

non-negative garrote and semisoft, which strike a balance 

between hard and soft functions and have advantages over both, 

can occasionally lack higher-order differentiability and have 

fixed structures that limit their adaptability and flexibility. As a 

result, alternative thresholding functions with continuous higher-

order derivatives must be investigated. 

3. DEVELOPMENT OF NOVEL NONLINEAR 

THRESHOLDING FUNCTIONS 

        To streamline the process of threshold selection and 

alleviate computational complexity, we aim to devise a novel 

shrinkage function that relies on a single threshold parameter, 

denoted as ζ. Simultaneously, this designed t thresholding 

function should endeavor to address the limitations observed in 

both the hard and soft shrinkage functions to the greatest extent 

possible. 

Figure 1: Waveform Characteristics of the Shrinkage Functions. 

        The development of the novel thresholding function adheres 

to foundational principles. To address shortcomings in existing 

shrinkage functions, the proposed function prioritizes continuous 

derivatives, ensuring adaptability for gradient-based algorithms. 

Additionally, it maintains wavelet coefficients unchanged when 

their absolute values exceed the threshold, approximating a linear 

function (y=x). Crucially, the function zeroes coefficients below 

a given threshold (ζ), akin to y=0. These principles aim to 

minimize estimation variance and bias, overcoming limitations 

in conventional hard and soft shrinkage methods. The desired 

properties include yielding y=0 for coefficients within [-ζ, ζ], and 

y=x for coefficients beyond this range. These specifications 

guide the search for a function aligning with these criteria, 

ensuring the theoretical efficacy of the proposed shrinkage 

function. 

        The arctangent function is widely utilized for improved 

approximation when approximating a function is close to the 

origin. The arctangent function is the inverse of the tangent 

function, denoted as = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑥). It has the domain of real 

numbers and the range of {𝑦 |  − 𝜋/2 <  𝑦 <  𝜋/2}. The 

horizontal asymptotes of the arctangent function are 𝑦 = 𝜋/2 and 

𝑦 = −𝜋/2. It is a one-to-one relationship. Figure 2 depicts the 

arctangent function's waveform. 

Figure 2: The Arctangent Function Waveform 
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When the x value is very small, the arctangent function should be 

passes through the origin, i.e., 𝑦 = 0, as shown in Figure 2.  

        When the x value moves away from the origin, 𝑦 ≈ 𝑥 

increases. These traits match the intended criteria of the 

thresholding function. As a result, arctan(x) can be used as the 

starting point for constructing the new shrinkage function with 

continuous derivatives. To rase the adaptability and functionality 

of the suggested shrinkage (thresholding) function, three shape-

tuning parameters are included: 

ξ(ζ, 𝑥, 𝛼, 𝛽, 𝑘) =

{
𝑥 −  𝑠𝑔𝑛(𝑥)[ ζ −  𝛽 ·  𝑎𝑟𝑐𝑡𝑎𝑛(𝑘 · ζ2𝛼+1)] |𝑥|  ≥ ζ 

𝛽 ·  𝑎𝑟𝑐𝑡𝑎𝑛(𝑘 ·  𝑥2𝛼+1) |𝑥|  < ζ 
(9)           

        In this context, determining real numbers α, β, and k is 

essential. A nonzero positive integer for k ensures the 

thresholding function's odd symmetry. To accommodate a 

diverse signal range, the suggested shrinkage function is not only 

continuous but possesses higher-order derivatives. Examining 

differentiability, the continuity and equality of left and right 

derivatives at x=ζ are both necessary and sufficient conditions for 

the function's differentiability concerning the threshold variable. 

3.1 The Proposed Shrinkage Function's Partial Derivative 

       The ∂ξ(ζ, x, α, β, k) is the partial derivative of the presented 

shrinkage function.  

∂ξ(ζ,x,α,β,k)

∂x
= {

1                       |x| ≥ ζ

β
(2αk⋅x2α+k⋅x2α)

1+(k⋅x2α+1)2
∣ x ∣< ζ

                     (10)                                                                         

        This derivative ensures continuity and is necessary for the 

proposed shrinkage function to be smooth. The parameter β can 

be calculated as follows: 

β =
1+(k⋅x2α+1)2

(2α+1)k⋅x2α
                                                               (11)                                                                                                      

3.2 The Proposed Shrinkage Function's Second-Order 

Partial Derivative 

        The presented shrinkage function's second-order partial 

derivative is as follows: 
∂ξ
2(ζ,x,α,β,k)

∂x2
=

{
0                                                                        |x| ≥ ζ

2(2𝛼 + 1)𝑘β
αx2α−1−k2(α+1)x6α+1(2α+1)k⋅x2α

[1+(k⋅x2α+1)2]2
∣ x ∣< ζ

   (12)                        

The parameter k can be determined as: 

 𝑘 = √
𝛼

𝛼+1

1

ζ2a+1
                                                    (13)                                                                 

3.3 The Final Shrinkage Function: 

        Taking into consideration the above equations and 

parameters, the differentiable shrinkage function can be 

expressed as: 

ξ(ζ, x, α) =

{
 

 𝑥 − sgn(x) [ζ −
λ

√α(α+1)
arctan (√

α

α+1
) ] |x| ≥ ζ

ζ

√α(α+1)
arctan (√

α

α+1

1

ζ2a+1
x2α+1)                ∣ x ∣< ζ

 (14)       

3.4 Parameter α Optimization: 

        Prior to putting the shrinking function into use, the value of 

the parameter must be predetermined. The formula (14) can be 

simplified to determine the optimal value of 

: ξ(ζ, x, α) =

{
 

 𝑥 − sgn(x) [1 −
1

√α(α+1)
arctan (√

α

α+1
) ] |x| ≥ ζ

ζ

√α(α+1)
arctan (√

α

α+1
(
𝑥

ζ
)
2α+1

)                ∣ x ∣< ζ

    (15)                     

        Upon analyzing the formula (15), two critical results 

emerge: 

(a) When |x| ≥ ζ , the shrinkage function should closely resemble 

hard thresholding, making the value of α as small as possible. 

Notably, when α=1, the value 𝑞1 reaches a minimum 

(specifically, 𝑞1=0.57). This implies that the priested shrinkage 

function is similar to non-negative garrote shrinkage for 

significant wavelet coefficients. 

        (b) When ∣ x ∣< ζ, The non-important wavelet coefficients 

should be set to zero by the shrinkage function. in order to reduce 

noise. α  should be as large as possible in this case. 

To reconcile these contradictory results, the optimal α value 

should take into account both conditions thoroughly. 

Furthermore, because it balances estimate variance and bias, the 

𝐿2 risk, or (MSE) will be used as a criterion for determining the 

optimal α value. The optimal value and the formulas for bias, 

variance, and 𝐿2 risk of the suggested shrinkage estimate for a 

normal random variable are discussed in the section that follows. 

𝟒.  𝑳𝟐  RISK ANALYSIS AND DETERMINATION OF 

OPTIMAL THRESHOLDS 

        For convenience, we represent the proposed shrinkage 

function as 𝜂𝜆(𝑥). Let X follow a Gaussian distribution, X~N(θ, 

1). We determine the mean, variance, and 𝐿2 risk functions for 

the shrinkage estimate of θ under the shrinkage function 𝜂ζ  (·) 

and threshold ζ, as follows (Gao 1998): Mean: 

𝑀ζ(𝜃) =  𝐸[ξζ(𝑋)]    ,Variance:𝑉ζ (𝜃) =  𝑣𝑎𝑟[ξζ(𝑋)] 

𝐿2Risk:𝑅ζ(𝜃) =  𝐸[ξζ(𝑋) −  𝜃]
2
=  𝑉ζ (𝜃) + [𝑀ζ(𝜃)  −  𝜃]² 

((16)                                

        Here, [𝑀ζ(𝜃)  −  𝜃]² represents the square bias. We can 

further    simplify Equation (16) to: 𝑅ζ(𝜃) = 𝑉ζ (𝜃). θ
2− 2θ 

·𝑀ζ(𝜃) 

       According to Equation (16), the bias component contributes 

more to the 𝐿2 than the variance component. As a result, 

minimising bias by selecting an optimal α value reduces the 

𝐿2risk function. The 𝐿2 risk function can nevertheless 

accomplish an ideal trade-off between bias and variance even 

when the variance is not at its lowest in this situation. To find the 

parameter value that minimizes the 𝐿2risk, the 𝐿2risk functions 

for various values of can be computed and compared. For 

example, we could take = 1, 2, 3, 5, 7 and set the threshold to = 

3.41. Figure 3 depicts the resulting waveforms of the 𝐿2risk 

functions for the presented shrinkage function. 

Figure 3: shows the𝐿2 risk profiles of the presented shrinkage 

function at variate α values. 

Figure 4: depicts the 𝐿2 risk functions for the hard, soft, and 

proposed functions 
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        In Figure 4. we have included 𝐿2 for hard shrinkage (ζ = 

3.41), soft shrinkage (ζ = 3.41) have been included, and the study 

presented shrinkage functions (ζ = 4.31) to facilitate comparison.  

        This implies that the proposed function with α = 1 offers an 

advantage in the VisuShrink method, which employs the 

universal threshold. According to the VisuShrink method, the 

threshold ζ is given by: 

ζ =  𝜎 ·  √(2 𝑙𝑜𝑔2𝑁)                                                               (17)                                                                                         

        Where σ is the normal white noise standard deviation, and 

N is the total number of wavelet coefficients, which is typically 

equal to the number of samples in the noisy data. The universal 

threshold helps avoid unwanted artifacts in the reconstructed data 

by setting small coefficients to zero. The universal threshold, on 

the other hand, is dependent on knowing the noise intensity, 

which is frequently unknown in practical scenarios. To address 

this, the intensity σ of the noise from the data itself can be 

estimated. The finest scale empirical wavelet coefficients yield 

the following estimate for σ: 

�̂� =  
𝑚𝑒𝑑𝑖𝑎𝑛{|𝑥𝐽−1,𝑘|}

 0.6745
             (0 ≤  k <  2J−1)                (18)                                                              

        In this case, {𝑥𝑖𝑗} denotes the noisy wavelet coefficients, and 

2𝐽 =  𝑁 denotes the number of noisy data points. In addition to 

the VisuShrink method, we consider the SureShrink procedure, 

which uses empirical wavelet coefficient thresholding to 

suppress noise (Donoho,1995). The adaptive thresholding aims 

to minimise the Stein unbiased estimate of risk (Sure) for 

threshold estimates. This execution's computational effort is 

proportional to N·log(N), where N is the sample size. 

5. APPLICATION METHODOLOGY 

        We a dataset comprising closing prices of the Shanghai 

Composite Index (SCI) was utilized and sourced from the 

Shanghai Stock Exchange (SSE) for our numerical analysis. This 

dataset encompasses a total of 5789 trading days, equivalent to 

approximately 283 trading months, spanning from Jan. 4, 2000, 

to Aug. 28, 2023. The raw data series illustrating the closing 

prices for each trading day are presented in Figure 5. 

 

Figure 5: Plots Depicting the Original Daily Stock Price Data 

Series. 

Figure 5 visually demonstrates that the observed data exhibit 

significant noise contamination (Wang et al., 2011). These noise 

sources could potentially include classical sources of noise as 

well as noise unique to the financial system. To mitigate the 

impact of these noises, - - various wavelet shrinkage 

(thresholding) functions were employed 

 

To evaluate the performance of denoising techniques on actual 

stock price data, we can express the data as follows 

(Alrumaih,2022): 

𝑦 =  𝑠 +  𝑛                                                                                    (19)                                                                                        

Here, s represents the underlying clean signal, and n denotes the 

additive noise. As previously discussed, various factors can 

contribute to the noise, including market fluctuations due to 

economic or political events, investor expectations, and 

psychological factors. To comprehensively account for these 

factors, we consider the noise n to behave like white noise. two 

metrics to assess denoising performance concerning actual stock 

prices are used: the Signal-to-Noise Ratio (SNR) and the Root 

Mean Square Error (RMSE), defined as follows (Jarrah,2023): 

𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10
||𝑠||2

2

‖𝑠−�̂�‖2
2                                                                      (20)                                                                                   

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
 ‖𝑠 − �̂�‖2

2                                                                        (21)                                                                             

In these equations, �̂�  denotes the denoised signal, and N denotes 

the number of samples in the signal s. Better denoising 

performance is indicated by a higher SNR value and a lower 

RMSE value. While, in practice, it is complex to distinguish the 

clean signal s and the noise n from the observed signal y. As a 

result, in this paper, we will estimate the performance metrics 

SNR and RMSE using actual data y rather than clean data s, albeit 

with some inherent estimation error. 

a series of experiments to identify the most suitable wavelet type 

for analyzing the SCI data was demeanoured, which comprises 

closing prices. To facilitate a meaningful comparison, we  both 

the hard thresholding function and the minimax threshold rule to 

denoise a subset of the SCI data were employed, consisting of 

approximately 5000 closing price records. The wavelet 

decomposition was carried out at level 6, utilizing a range of 

wavelet types denoted as "db1," "db2," and so forth up to "db12." 

The outcomes of these experiments are presented in Table 1 for 

reference.  

 

Table 1: Comparative Analysis of Various Wavelet Types for the Subset of Daily Data 

 

 db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 db11 db12 

SNR 26.607 23.54 23.64 22.85 22.77 22.73 22.71 22.69 22.68 22.66 22.66 22.65 

RMSE 13.429 12.973 12.895 13.382 11.479 13.526 13.548 13.568 13.584 13.59 13.59 13.60 

Table 2: Evaluating Different Decomposition Levels for Daily Data Subset 

Level 1 2 3 4 5 6 7 8 

Period 2–4 4–8 8–16 16–32 32–64 64–128 128–256 256–512 

SNR 25.5 19.78 19.17 19.02 19 22.90 19.10 19.20 

RMSE 14.7 14.52 15.60 15.81 15.86 9.87 15.86 15.86 

        Table 1 reveals that "db5" surpasses other wavelets with 

slightly higher SNR and lower RMSE, highlighting its 

effectiveness for denoising SCI data. Wavelet analysis's outcome 

depends heavily on the selected decomposition level. Through 

experimentation, we identify six levels as optimal for denoising 

SCI data, providing the highest SNR and lowest RMSE in Table 

2. In subsequent analyses, A six-level analysis and "db5" are 

employed, estimating a noise variance of approximately 𝜎2≈ 

17.32 (σ ≈ 4.16) using Eq. (18). To assess denoising efficacy, we 

employed various shrinkage techniques and thresholding rules to 
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eliminate noise from the original data, considering noise levels of 

𝜎2≈ 17.32 (σ ≈ 4.16). Initially,  

         we focused on the universal threshold rule, conducting 

experiments to calculate and register the SNR and RMSE values 

for various thresholding functions. These outcomes are presented 

in Table 3. 

Table 3 shows the results of the universal threshold rule 

experiment, and the hard shrinkage function performs the best in 

terms of denoising performance, as indicated by SNR and RMSE 

metrics. The soft shrinkage function, on the other hand, performs 

the worst. Furthermore, the proposed thresholding function 

outperforms the soft and nonnegative garrote shrinkage methods 

in denoising, though it lags slightly behind the hard shrinkage 

function. In conclusion, the presented shrinkage function's 

denoising performance is very close to the best-performing 

method. 

Table 3: Evaluation of the Universal Threshold Rule for Daily Data. 

 Hard  Soft  Non-negative 

garrote  

Proposed 

SNR 35.3289            31.2558   33.0593 34. 9226 

RMSE 7. 467 11. 3490 10. 3461 9.5070 

CONCLUSION 

        In the realm of predicting economic indicators from noisy 

time series data, neglecting denoising processes hampers 

prediction accuracy. Noisy data are commonly denoised using 

wavelet shrinkage, yet traditional methods like soft shrinkage fall 

short with financial data. We aimed to enhance denoising by 

introducing a continuous derivative-based thresholding function 

for an adaptive gradient-based algorithm. Experimentation 

revealed "db5" as the superior wavelet for denoising SCI data, 

and a six-level decomposition yielded optimal results. Assessing 

denoising performance, hard shrinkage excelled, with our 

proposed function also outperforming soft and non-negative 

garrote methods. Denoising is vital for accurate economic 

predictions, and our proposed function shows promise for future 

applications. 
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