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ABSTRACT: 

In the field of breast cancer diagnosis, the precise classification of benign images plays a pivotal role in ensuring effective 

patient care. This research undertakes a detailed examination of EfficientNetV2 models, specifically focusing on their ability 

to discern benign histopathology breast cancer images. The dataset were carefully curated to include diverse benign cases 

such as adenosis, fibroadenoma, phyllodes_tumor, and tubular_adenoma of image level for 40X magnification factor 

underwent thorough preprocessing before being divided into training and testing sets. Various variants of the EfficientNetV2 

model—EfficientNetV2B0, EfficientNetV2B1, EfficientNetV2B2, EfficientNetV2B3, EfficientNetV2S, EfficientNetV2M, 

and EfficientNetV2L—were trained on the designated dataset. The performance evaluation shows the intricacies of the 

efficiency of each model. Notably, EfficientNetV2L emerged as a standout performer, boasting impressive metrics such as 

Accuracy (0.97), Precision (0.97), Recall (0.97), F1-score (0.97). These findings underscore the potential of 

EfficientNetV2L as a robust tool for accurately discerning benign histopathology breast cancer images. This study 

contributes significant insights to the field of breast cancer diagnostics, particularly addressing the critical task of classifying 

benign cases accurately. The gained insights pave the way for improved decision-making in assessments, ultimately 

enhancing the overall efficacy of breast cancer diagnosis. 
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1. INTRODUCTION 

        Cancer is one of the deadliest diseases, annually claiming 

the lives of millions. Breast cancer is recognized as the 

predominant cancer and the primary cause of mortality in women 

(Anastasiadi et al., 2017). According to data from the World 

Health Organization (WHO), 460,000 individuals die of breast 

cancer each year out of a total of 1,350,000 reported cases (Wang 

et al., 2020). Breast cancer is a significant health concern 

originating from the uncontrolled growth of abnormal cells. It can 

initiate in various organs or tissues, exceeding their normal 

boundaries, infiltrating adjacent areas, and potentially spreading 

to other organs (WHO, 2018). Various imaging methods are 

employed for detecting breast cancer, including   Histopathology 

(Saha et al., 2018), Computed Tomography (Domingues et al., 

2020), Magnetic Resonance Imaging (Murtaza et al., 2020), 

Ultrasound (Pavithra et al., 2020), Mammograms (Moghbel et 

al., 2020) and Positron Emission Tomography. Research has 

demonstrated that histopathological images do not solely provide 

binary identification and classification but instead facilitate the 

multiclass identification and classification of different breast 

cancer subtypes. Given the high mortality rate associated with 

breast cancer, women are advised to undergo routine screenings, 

including mammograms and computerized tomography (CT).  

        In cases where abnormal cells are detected, a biopsy is 

conducted to assess the irregularity in the breast. Typically, the 

obtained sample undergoes staining with hematoxylin and eosin 

(H&E). Hematoxylin interacts with Deoxyribonucleic Acid 

(DNA), imparting a purple or blue hue to the nuclei, while Eosin 

reacts with proteins, resulting in a pink coloration in other 

structures (Bardou et al., 2018). Histopathological image 

diagnosis stands as the benchmark for diagnosing various 

cancers, including breast cancer. Nevertheless, this method is a 

labor-intensive process highly reliant on the pathologist's 

expertise, subject to factors like fatigue and diminished attention, 

making it time-consuming and potentially prone to variations. 

Hence, there is a need for computer-aided diagnosis (CAD) 

systems to offer an unbiased evaluation to pathologists and 

enhance diagnostic efficiency (Aresta et al., 2019). Nonetheless, 

traditional computerized diagnostic methods, spanning from 

rule-based systems to machine learning techniques, might 

struggle to effectively address the intra-class variation and inter-

class consistency found in histopathology images of breast cancer 

(Robertson et al., 2018). Furthermore, these methods primarily 

rely on feature extraction techniques like scale-invariant feature 

transform (Lowe, 1999), speed robust features (Bay et al., 2006), 

and local binary patterns (Ojala et al., 2002). These techniques 

are based on supervised information and may be prone to biased 

results when classifying histopathology images of breast cancer 

(Dimitriou et al., 2019). 

        In recent years, there has been a significant surge in 

developing and applying deep learning models, particularly in 

biomedical image processing, showcasing remarkable progress 

in computer vision. This advancement stems from the capability 

of deep learning models to autonomously learn advanced features 

directly from images, making them powerful tools across various 

domains. Researchers are keen on leveraging these models for 

image analysis and classification challenges. Based on their 

success, researchers are exploring the application of deep 

learning models in classifying breast cancer histopathology 

images. The complex nature of histopathological images which 

demands an understanding of cellular structures, poses a 

challenge for traditional methods. Deep learning models, with 

their ability to automatically discern and learn these features, 
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offer a promising avenue to enhance the accuracy of breast cancer 

classification. Researchers increasingly utilize these advanced 

models to contribute to ongoing efforts in improving diagnostic 

processes for breast cancer pathology (Dimitriou et al., 2019). 

         In this study, we utilized different versions of the 

EfficientNetV2 model architecture to efficiently classify breast 

cancer histopathology. The analysis involved leveraging the 

BreakHis dataset, specifically focusing on benign subtypes, and 

employing images captured at a magnification level of 40X. The 

main contributions of this paper are: first, the augmentation of 

the images from BreakHis dataset; which helps in expanding the 

size of the training dataset by generating additional variations of 

existing images. It’s important to note that a larger dataset often 

leads to more robust models and helps prevent over fitting. Next, 

we evaluated the performance of EfficientNetV2 models on 

histopathological images using some standard computational 

metrics. Fig. (1) shows the breast cancer histopathology benign 

images with the following; sample A- adenosis, B - fibroadenoma 

, C - phylodes _tumor  and D - tubular_adenoma.   

Figure 1: Breast cancer histopathology benign images sample A 

- adenosis, B - fibroadenoma, C - phylodes tumor, and D - 

tubular adenoma 

         The remaining sections of this paper are provided as 

follows. Section 2  presents related work. Section 3 demonstrates 

the materials and methods used to conduct this research. Section 

4 illustrates the results along with discussion. Finally, Section 

5 highlights the conclusion and future direction of this study. 

2. LITERATURE REVIEW 

        Various studies have been conducted, leading to significant 

advancement in the automated classification of breast cancer 

histopathological images, the distinctive features of these images, 

encompassing factors like the inconsistent tissue and cell 

morphology, occurrences of cell overlapping, variations in the 

appearance of stained histological sections, and uneven color 

distribution shows important difficulties in image classification 

(Loukas et al., 2013).  

        These difficulties pose significant challenges for the 

automated and accurate classification of breast cancer 

pathological images. Additionally, it is important to acknowledge 

that pathological images have a very high resolution, rendering it 

impractical to directly apply certain methods that have proven 

successful in the field of natural images to the domain of 

pathological images. 

        Hirra et al. (2021) conducted research on the accurate 

detection and classification of breast cancer, recognizing its 

critical importance in medical imaging due to the intricacies of 

breast tissues. They highlighted the efficacy of deep learning 

methods in various domains, particularly in medical imaging, 

owing to their automatic feature extraction capabilities. The 

study introduced a novel patch-based deep learning approach 

named Pa-DBN-BC for detecting and classifying breast cancer in 

histopathology images, leveraging the Deep Belief Network 

(DBN). Through a combination of unsupervised pre-training and 

supervised fine-tuning phases, features were extracted from 

image patches automatically. Logistic regression was then 

employed to classify patches within histopathology images. The 

extracted features served as inputs to the model, which generated 

a probability matrix indicating positive (cancer) or negative 

(background) samples. Their proposed model underwent training 

and testing on a comprehensive dataset of whole-slide 

histopathology images encompassing images from four distinct 

data cohorts, achieving an accuracy of 86%. The study concluded 

that their approach surpassed traditional methods by 

automatically learning optimal features, demonstrating superior 

performance compared to previously proposed deep learning 

methods. 

        Zhou et al. (2022) presented a novel approach aimed at 

assisting pathologists in efficiently and accurately diagnosing 

breast cancer through histopathological analysis. Their method 

comprises two modules: the Anomaly Detection with Support 

Vector Machine (ADSVM) method and the Resolution Adaptive 

Network (RANet) model. The ADSVM method is designed to 

identify mislabeled patches, thereby enhancing the training 

performance of the RANet model. Within the RANet model, 

subnetworks with variable resolutions and depths are utilized to 

classify images based on their classification difficulty, 

potentially improving computational efficiency and prediction 

accuracy. The proposed RANet-ADSVM approach was 

evaluated using two publicly available datasets: BreaKHis and 

BACH 2018. Binary and multiclass classifications were 

conducted at both patient and image levels across different 

magnification factors on the BreaKHis dataset. The highest 

accuracies of 98.83% and 99.14% were achieved for binary 

classification at 200× magnification at the patient and image 

levels, respectively. For the BACH 2018 dataset, binary and 

multiclass classifications were performed at patch and image 

levels. Experimental results revealed the best accuracies for 

multiclass and binary classifications at the image level to be 

97.75% and 99.25%, respectively. Furthermore, comparative 

experiments demonstrated that the proposed approach 

significantly improved both classification accuracy and 

computational efficiency. Compared with similar networks such 

as ResNet and DenseNet, the proposed method reduced 

computational time by approximately 50% .Top of Form 

         Joseph et al. (2022) discussed the importance of breast 

cancer (BC) classification in biomedical informatics, 

emphasizing its significant impact on women's health as a leading 

cause of cancer-related deaths. They highlighted the growing 

interest in utilizing machine learning techniques, particularly 

Deep Learning algorithms like Convolutional Neural Networks, 

for BC detection and monitoring through pathological image 

analysis. While binary classification methods have been 

explored, few approaches exist for multi-classification of 

histopathological images, often limited by inefficient feature 

extraction and overfitting issues. To address these challenges, 

Joseph et al. (2022) proposed a method combining handcrafted 

feature extraction techniques (Hu moment, Haralick textures, and 

color histogram) with Deep Neural Network (DNN) classifiers, 

trained on the BreakHis dataset. Augmentation of data is 

employed to mitigate overfitting. Their approach achieves 

superior performance in breast cancer multi-classification, with 

accuracy scores of 97.87% for 40x, 97.60% for 100x, 96.10% for 

200x, and 96.84% for 400x magnification-dependent 

histopathological images. The results underscore the 

effectiveness of their method in comparison to existing literature, 

highlighting the crucial role of data augmentation in enhancing 

classification accuracy. 

        Alkassar et al., (2021) tackled the pressing need for 

improved breast cancer diagnosis, particularly emphasizing early 

detection given its high fatality rate among women. They 

underscored the efficiency of histopathology slides over 

traditional screening methods, despite challenges in the 

diagnostic process due to human errors during slide preparation. 

To overcome these obstacles, they proposed a novel method for 
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diagnosing breast cancer, categorizing it into benign or malignant 

classes using magnification-specific binary (MSB) classification. 

Moreover, their approach further refines classification by 

subdividing each type into four subclasses using magnification-

specific multi-category (MSM) classification.  

        The method involves stain normalization to enhance color 

separation and contrast, followed by the extraction of deep and 

shallow features using DenseNet and Xception-based deep 

structure networks. They employed a multi-classifier method 

based on the maximum value to optimize performance. 

Evaluation on the BreakHis histopathology dataset demonstrates 

promising diagnostic accuracies of 99% for MSB and 92% for 

MSM, surpassing recent state-of-the-art methods in the literature. 

         Zewdie et al. (2021) tackled the pressing issue of improving 

breast cancer diagnosis, given its status as the most prevalent and 

fatal cancer among women globally. They underscored the 

critical role of advancements in screening and early detection to 

bolster survival rates. While clinical examination and imaging 

techniques aid in diagnosis, pathological assessment remains the 

gold standard due to its ability to discern cancer type, sub-type, 

and stage. However, current diagnostic methods relying on visual 

inspection of microscopic images are time-consuming, laborious, 

and subjective, potentially resulting in misdiagnosis. 

         To surmount these challenges, the authors proposed a 

multi-class classification system based on deep learning. By 

harnessing histopathological images from various sources and 

magnifications and applying pre-processing techniques to 

enhance image quality, they employ a pre-trained ResNet 50 

model. This system adeptly categorizes breast cancer into binary 

(benign and malignant) and multi-classes (sub-types) while also 

identifying cancer grade for invasive ductal carcinomas. Test 

results showcased impressive accuracy rates, including 96.75% 

for binary classification, 96.7% for benign sub-type 

classification, 95.78% for malignant sub-type classification, and 

93.86% for grade identification. The proposed method serves as 

a decision support system, particularly valuable in resource-

constrained settings, facilitating early and precise cancer 

detection, thereby contributing to a reduction in breast cancer 

mortality rates. 

        Behar et al. (2021) addressed the urgency of breast cancer 

detection, highlighting its status as a leading cause of female 

mortality. Their study introduces a convolutional neural network 

(CNN)-based model for automatic classification of 

histopathology images into malignant and benign tumours. 

Leveraging transfer learning with the ResNet50 architecture, the 

model achieves remarkable training, validation, and test 

accuracies of 99.70%, 99.24%, and 99.24%, respectively. 

Compared to recent studies, the model demonstrates enhanced 

classification accuracy, average precision, F1 score, and receiver 

operating characteristic (ROC) area, reaching 99.1%. This 

reliable and accurate CNN model offers significant potential for 

improving breast cancer diagnosis and treatment outcomes. 

        Wang et al., (2021) proposed a novel approach, FE-

BkCapsNet, for automatic classification of breast cancer 

histopathological images. This method combines the strengths of 

convolutional neural networks (CNN) and capsule networks 

(CapsNet) to enhance classification performance. By integrating 

semantic features from CNN and spatial features from CapsNet 

into new capsules, the model extracts more discriminative 

information. The authors introduced a dual-channel structure to 

extract convolution and capsule features simultaneously. 

Additionally, they optimize routing coefficients adaptively by 

modifying the loss function and embedding the routing process 

into the entire optimization process. Testing on the BreaKHis 

dataset yields promising results, with classification accuracies of 

92.71% (40×), 94.52% (100×), 94.03% (200×), and 93.54% 

(400×). These findings underscore the efficiency of FE-

BkCapsNet for breast cancer classification in clinical settings. 

       Wakili et al. (2022) addressed the complexities of breast 

cancer analysis, emphasizing its prevalence and the challenges it 

poses for experts. Despite the potential of deep learning in 

histopathological image classification, current methods are 

computationally intensive and prone to overfitting. Through a 

survey, the authors identified an optimal training-testing ratio of 

80%:20%, outperforming the common 70%:30% split. They 

introduced DenTnet, leveraging transfer learning with DenseNet 

as a backbone model to overcome feature extraction challenges. 

DenTnet achieves detection accuracies of up to 99.28% on the 

BreaKHis dataset, showcasing superior generalization and 

computational efficiency. 

        Hameed et al. (2020) introduced an ensemble deep learning 

approach for the accurate classification of non-carcinoma and 

carcinoma breast cancer histopathology images, leveraging a 

newly collected dataset. Four distinct models were trained based 

on pre-trained VGG16 and VGG19 architectures. The initial 

phase involved 5-fold cross-validation for each model, 

encompassing fully-trained VGG16, fine-tuned VGG16, fully-

trained VGG19, and fine-tuned VGG19 models. Subsequently, 

an ensemble strategy was employed, averaging the predicted 

probabilities. The ensemble of fine-tuned VGG16 and fine-tuned 

VGG19 exhibited competitive classification performance, 

particularly in the carcinoma class, achieving a sensitivity of 

97.73% and an overall accuracy of 95.29%. Additionally, it 

yielded an F1 score of 95.29%. 

       In the majority of literature reviews considered, the emphasis 

lies in crafting a model for classifying both benign and malignant 

breast cancer histopathological images. However, the main aim 

of this research paper is to narrow the focus solely on benign 

breast cancer histopathological images. The objective is to 

conduct a performance evaluation on the proposed images using 

EfficientNetV2 models. 

3. MATERIAL AND METHOD 

        The aim of this study is to perform the evaluation of 

EfficeintNetV2 models on histopathological breast cancer benign 

images. This section encompasses aspects such as data collection, 

dataset description, and data pre-processing which includes data 

augmentation operations, evaluation metrics, as well as the 

study's procedure and methodology. Fig. (2) shows the 

architecture of the proposed models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The architecture of the proposed models 
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3.1 Dataset Description 

         The BreakHis dataset for breast cancer histopathological 

image classification comprises 9,190 microscopic images of 

breast tumor tissue obtained from 82 patients, utilizing various 

magnification levels (40X, 100X, 200X, and 400X). It 

encompasses 2,480 benign and 5,429 malignant samples, each 

with dimensions of 700X460 pixels, presented in a 3-channel 

RGB format with b-bit depth in each channel, and saved in PNG 

format. This collaborative effort involved the P&D Laboratory – 

Pathological Anatomy and Cytopathology in Parana, Brazil. In 

this study, we utilized benign breast cancer images at a 

magnification level of 40X. To optimize the effectiveness of our 

proposed models, augmenting the limited set of benign images 

was considered. The BreakHis dataset provides only a limited 

number of benign images, necessitating data augmentation to 

prevent over fitting. Table 1 presents the number of both the 

original benign images and the augmented images for 

magnification level 40X used in the study. 

 

 Table 1: Shows the number of both original and augmented 

benign images for magnification level 40X 

 

No Benign Types Total Benign 

Original 

Images 

Total Benign 

Augmented  

Images 

1. Adenosis 114 1,026 

2. Fibroadenoma 253 1,076 

3. Phylodes Tumor 109 1,100 

4. Tubular Adenoma 149 1,057 

 

3.2 Data Augmentation Operations 

        During the process of augmenting the original benign 

images with magnification level of 40X collected from the 

BreakHis dataset. The parameters used for the generating of the 

augmented images are contained in the table below. Table 2 

shows the parameter settings for each operation used in the data 

augmentation. 

 Table 2: The parameter settings for each operation used in data 

augmentation 

 

No Operations Parameters Setting 

Values 

1. Rotate Probability 

Max_left_rotation 

Max_right_rotation 

0.7 

25 

25 

2. Zoom_Random Probability 

Percentage_area 

0.5 

0.8 

3. Flip_Left_Right Probability 0.5 

4. Random_Contrast Probability 

Min_factor 

Max_factor 

0.5 

0.8 

1.2 

 

5. Random_Brightness Probability 

Min_factor 

Max_factor 

0.5 

0.7 

1.3 

 

3.3 EfficientNetV2 Model  

        EfficientNetV2 is a novel convolutional network family 

designed for faster training and enhanced parameter efficiency 

compared to its previous models. It is an improved version of 

EfficientNet. The primary objective is to further optimize both 

training speed and parameter efficiency. In the initial layers of 

the network architecture, the speed of depthwise convolutional 

layers (MBConv) were slow. The depthwise convolutional layers 

typically have fewer parameters than regular convolutional  

layers, but its performance on modern accelerators was below 

standard. To address this issue, EfficientNetV2 uses a 

combination of MBConv and Fused MBConv, for faster training 

without increasing the number of parameters (Tan & Le, (2021). 

3.4 Method 

        The initial steps involve setting up the model by loading the 

EfficientNetV2 architecture for each model. Subsequently, a new 

input layer is created, preprocessing is applied to input images, 

and features are extracted using the base model. The model is 

then designed with a GlobalAveragePooling2D layer for feature 

aggregation and a fully connected layer for classification, 

considering the specific number of classes in the 

histopathological dataset. The dataset is prepared by loading and 

preprocessing both training and testing images and labels. The 

images are loaded from Google Drive, resized to the specified 

dimensions, and converted to the required color format. Labels 

are encoded from text to integers. The model is then trained using 

the training dataset with defined epochs, batch size, and 

validation data. During training, key metrics such as loss, 

accuracy, and validation metrics are monitored and plotted to 

assess the model's convergence. After training, the model is 

evaluated on the test set, and various performance metrics are 

calculated, including accuracy, precision, recall, F1-score, and 

ROC-AUC. The confusion matrix and a detailed classification 

report provide insights into the model's performance for each 

class. The entire process is documented to share the 

methodology, code, and results, fostering community 

collaboration and contribution. This comprehensive approach 

ensures a systematic and transparent workflow for breast cancer 

histopathology image classification using EfficientNetV2.  

4. RESULT AND DISCUSSION 

        The research work measured the performance of 

EfficeintNetV2 models on histopathological benign breast 

cancer images using the following metrics; accuracy, precision, 

recall, f1-score, kappa_score, sensitivity and false negative 

ratio. Table 3: shows the classification report of EfficientNetV2 

models on histopathological benign breast cancer images. 

 

 Table 3: The classification report of EfficientNetV2 models on 

histopathological benign breast cancer images. 

Model Acc Prec Recall F1-Score 

EfficientNetV2B0 0.95 0.95 0.95 0.95 

EfficientNetV2B1 0.96 0.96 0.96 0.96 

EfficientNetV2B2 0.96 0.96 0.96 0.96 

EfficientNetV2B3 0.96 0.96 0.96 0.96 

EfficientNetV2L 0.97* 0.97* 0.97* 0.96* 

EfficientNetV2M 0.94 0.94 0.94 0.94 

EfficientNetV2S 0.96 0.96 0.96 0.96 

 

 

        The classification report provides a detailed breakdown of 

the performance metrics for various models under the 

EfficientNetV2 architecture, each denoted by a specific identifier 

(e.g., EfficientNetV2B0, EfficientNetV2B1, etc.). The metrics 

evaluated include Accuracy (Acc), Precision (Prec), Recall, and 

F1-Score. The models EfficientNetV2B0 through 

EfficientNetV2B3 exhibit consistent and high performance 

across all metrics. They achieve an Accuracy of 0.95 to 0.96, 

indicating their overall correctness in making predictions. 

Precision, Recall, and F1-Score are also consistently at 0.96, 

reflecting the models' ability to make accurate positive 

predictions, correctly identify relevant instances, and strike a 

balance between precision and recall. EfficientNetV2L stands 

out in the classification report with slightly higher values across 

all metrics compared to its counterparts. The model achieves an 
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Accuracy of 0.97*, denoting potential superiority in overall 

correctness. Precision, Recall, and F1-Score are reported as 

0.97*, 0.97*, and 0.96*, respectively. The asterisks imply 

additional information or conditions associated with these values, 

suggesting a nuanced aspect to the model's performance. 

EfficientNetV2M and EfficientNetV2S, while still performing 

well, demonstrate slightly lower values compared to 

EfficientNetV2L. EfficientNetV2M achieves an Accuracy of 

0.94, with Precision, Recall, and F1-Score at 0.94. 

EfficientNetV2S, similar to the other models, reports an 

Accuracy of 0.96 and consistent scores of 0.96 across Precision, 

Recall, and F1-Score. In conclusion, the classification report 

offers a comprehensive evaluation of the EfficientNetV2 models, 

highlighting their performance across key metrics. 

EfficientNetV2L emerges as a potentially superior choice, 

marked by slightly higher scores in overall correctness, precision, 

recall, and the harmonic balance of precision and recall. These 

insights aid in selecting the most suitable model based on specific 

classification requirements. 

4.1 Visual Evaluation Metrics for EfficientNetV2L Model 

on Histopathological Benign Breast Cancer Images  

        In the research work, EfficientNetV2L presents the best 

performing result in its evaluation on histopathology benign 

breast cancer images with magnification level 40X. This section 

shows the various visual evaluation metrics for EfficientNetV2L 

on breast cancer images; accompanied with explanations. Figure 

3 shows the Confusion Matrix of EfficientNetV2L on 

Histopathological breast cancer images. 

 

Figure 3: The confusion matrix of EfficientNetV2L on 

histopathological benign breast cancer images 

 

        The provided confusion matrix in Figure 3 represents the 

result of a classification model using EfficientNetV2L across 

four different classes: Adenosis, Fibroadenoma, 

Phyllodes_tumor, and Tubular_adenoma. Each cell in the matrix 

indicates the count of instances based on the true class (rows) and 

the predicted class (columns). In the first row corresponding to 

the true class "Adenosis," the model correctly classified 202 

instances as Adenosis (True Positives). However, there were 2 

instances misclassified as Fibroadenoma and 2 instances 

misclassified as Tubular_adenoma, resulting in False Negatives. 

Moving to the second row, representing the true class 

"Fibroadenoma," the model correctly predicted 201 instances as 

Fibroadenoma (True Positives). However, there were 2 instances 

misclassified as Adenosis (False Positives), 6 instances 

misclassified as Phyllodes_tumor, and 7 instances misclassified 

as Tubular_adenoma (all False Negatives). For the true class 

"Phyllodes_tumor" in the third row, the model performed well by 

correctly classifying 216 instances (True Positives). However, 

there was 1 instance misclassified as Adenosis and 3 instances 

misclassified as Fibroadenoma, resulting in False Positives. 

Finally, the last row corresponds to the true class 

"Tubular_adenoma," with the model correctly predicting 209 

instances (True Positives). Nevertheless, there were 2 instances 

misclassified as Adenosis and 1 instance misclassified as 

Fibroadenoma, resulting in False Positives. This confusion 

matrix provides a detailed breakdown of the model's performance 

for each class, highlighting where misclassifications occur and 

offering valuable insights into the strengths and weaknesses of 

the classification model. 

Figure 4: The reciever operating characteristics Curve of 

EfficientNetV2L on histopathological benign breast cancer 

images 

 

Figure 5: The training and validation loss of EfficientNetV2L 

on histopathological benign breast cancer images 
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Figure 6: The training and validation loss of EfficientNetV2L 

on histopathological benign breast cancer 

 

CONCLUSION 

        The research work provides a comprehensive assessment of 

EfficientNetV2 models, with EfficientNetV2L emerging as a 

potentially superior choice, marked by slightly higher scores in 

overall correctness, precision, recall, and the harmonic balance 

of precision and recall. These insights offer valuable guidance for 

selecting the most suitable model based on specific classification 

requirements, emphasizing the significance of nuanced 

considerations in model evaluation. 
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