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Abstract  

In this study the energy spectrum and Eigenvectors with a special type of central potential will be obtained by 

using Nikiforov-Uvarov method. The method covers a new algebraic technique to  make an exact diagonalization to 

find the eigenvalues and eigenvectors of the Hamiltonian of the harmonic oscillator (HO). 
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Introduction 

ecently, the study of the Schrödinger in 

the field of high energy, condensed 

matter, nuclear physics and related technology is 

therefore an important branch of physics. The 

quantum mechanical phenomena are also quite 

important in nanotechnology nowadays.   There 

are many formalism have been used to solve the 

Schrödinger equation with having several type 

of potential, the exact solution of the 

Schrödinger equation with position-dependent 

mass using SUSY techniques is investigated 

(Tanaka, 2006), the  Eckart Potential and its 

Parity-Time is solved analytically (Ping et.al, 

2009), Approximate Analytical Solutions of the 

Klein-Gordon Equation with the Poschl-Teller 

Potential (Xu, et al., 2010). Among such 

methods, the variational methods (Flugge, et al., 

1994), the algebraic method (Setare, et al, 2007), 

the shape invariant method (Niazian, 2010), the 

asymptotic iteration method(AIM) (Ozer, 2008) 

and the Nikiforove-Uvarove method (Nikiforov, 

1988 and Sever,et al., 2008) have been 

introducing of the exact solution of the 

Schrödinger equation with several approaches. 

The last method is more suitable for solving 

second order differential equations analytically, 

because Schrödinger equation is a second order 

differential equation, NU method today widely 

uses for this issue. 

 The bound state Solution of radial part of 

Schrödinger equation gives us eigenfunctions 

and eigenvalues contain all  necessary 

information to explain a quantum mechanically 

system.  Harmonic oscillator potential solutions 

of the Schrodinger equation will significantly 

enriched our information of atomic and sub-

atomic system (Ikhdair, et al., 2007) this 

potential plays a basic role in many branches of 

physics such as atomic, molecular and chemical 

physics.  We will try to solve the Schrodinger 

equation with this potential using (NU) method. 

The paper is organized as follows. In section 1, 

the radial part Schrodinger equation was used to 

construct the Hamiltonian, in section 2, we have 

a review of the NU method. Finally, in Section 

3, we will obtain the exact solutions of the radial 

part of the Schrodinger equation in spherical 

polar coordinate.  

 

1. Radial Schrödinger equation for HO potential in single particle nuclear states 

Our problem that has been investigated contains a Harmonic Oscillator (HO) potential that its 

corresponding Hamiltonian is given by (Suhonen, 2007):  

     
  

  
   

  
      

  
   

 

 
                                                               

where   is the mass of the nucleon (proton or neutron), and   is the angular frequency of the 

harmonic oscillator. Thus, from the time-independent Schrodinger equation the corresponding radial 

part takes the form:   

   
  

      

  
                                                                           

, with,  

R 
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Where b is the length parameter of the harmonic oscillator that differs for different nuclei,  such 

that (Suhonen, 2007)  

    
 

  
  

     

       
 

  

        
  

      

         
 
       

    
                     

      
       

                     
                                                                       

Knowing that    is the energy quantized of the harmonic oscillator (Suhonen, 2007), or   

                                                                                                  

By considering that        with its first derivative               , we can simplify eq.(2) 

and re-writing it in a new form such that:  

   

   
 

 

  

  

  
 

 

   
                                                           

The above equation is a new form of the radial part Schrodinger equation which was prepared to be 

solved analytically by using UV-method and hence   to find its eigenvalues and eigenvectors. 

 

2. Theory of the  UV-method 

In the Nikiforove-Uvarove (UN) method, the Schrödinger equation which is a second order linear 

differential equation, can be reduced to a generalized equation of hypergeometric type:                

       
     

    
       

     

     
                                                                     

where both        and         can be described as polynomial of second degree, and        is a first 

degree polynomial. In such a way that      is a separable function given by (Ikhdair, 2010):  

 

                                                                                                                    
, knowing that      is obtained from the solution of the differential equation: 

 

 

 

    
 
     

  
 
    

    
    

      
     

 
      

     

 
 

 

                
 
 
 

 
 

                               

 

While the function      satisfies the following  hyper-geometric  differential equation:  

                                                       
Here, the function      can be found from the relation (Zhang, 2010): 

 
     

 
 

 

                                                       

Where A , B, and C are some coefficients independent on variable (s). 

Now by defining a new function        and        to be a polynomial of degree at most one such 

that 

                                                                                    
under the condition         , the eigenvalues of the Hamiltonian can be obtained from the 

equation  
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Now to find the eigenvectors       that consists of      and     , we must solve the first 

part of eq.(8) to find     , and  then      ,that satisfies eq.(9), can be determined from the 

polynomials which are given by the Rodrigues relation (Berkdemir, 2006): 

       
  
    

  

   
                                                                                      

, with the weight function       to be found  from the solution of 
 

  
                                                                                             

In eq.(13)    represents the normalization constant which can be whose determined from: 

   
 

 

  

                                                                                                        

 

3. Eigenvalues and eigenvectors of the Hamiltonian 

Now we wish to emphasis a comparison between eqs.(5 & 6) , we will clearly get  

 
                                        

                     
                                                             

Then by  using the functions     ,      ,and       in eq.(16) to substitute in the second part of 

eq.(8), the function      can be obtained to be:  

       
 

 
  

 
 
 

 
                     

 

 
     

              
 

 
     

       
  

         

 
             

And hence, by putting both the functions       and      in eq.(11) and by taking into consideration 

the condition       , we get: 

 

                  

     
 

 
     

                                                                  

, and clearly the second part of eq.(18) makes the function      to be rewrites as: 

 
       

 

 
        

   
         

                                                                                      

To find the eigenvalues we must use the functions     ,      , and        in eq.(12) and the 

definitions of (a)  and (f) in eq.(2a),i.e.,   

     
            

 

 
  

                

     
  

         

 
                                                 

The second part of eq.(20) represents the exact analytical eigenvalues of the Hamiltonian of the 

harmonic oscillator. 

Now, determination of the eigenfuctions       requires to solve the differential equations in the 

first part of eq.(8) and eq.(14) which give : 

      
     
                                                                       

, and  

                                                                                     
Return to the Rodrigues relation in eq.(13), and using      in eq.(11) and      in eq.(22) , the 

function       becomes: 

        
  

        
  

   
                 

   
 

        
  

   
                              

, which can be expressed in terms of the  Laguerre functions [15] ,or 
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, with the normalization constant    that is determined in eq.(15) and takes the from: 

    
        

                 
                                                                                

Finally, by putting    in eq.(24) and then using eq.(24) and eq.(21) in eq.(7), the exact eigenvectors 

will be determined to be: 

           
     

              
          

          
 
     

          
                            

, equivalently, the relations       and        makes eq.(26) to give  

        
     

             
 
 

 
 
   

 
 
   

         
                                     

 

3- Results and discussion 

The full diagonalization methods play 

important roles for dealing with the quantum 

systems such as atomic and nuclear physics. One 

of the most famous potentials that can be used 

widely in the Hamiltonian of such systems is the 

harmonic oscillator potential. 

In section (2), the Hamiltonian was 

constructed for the harmonic oscillator potential. 

Then  the Nikiforov-Uvarov  method was 

proposed to solve the Schrödinger equation with 

harmonic potential then we have obtained an 

analytical expression for the energy spectrum 

and the eigenfunctions; so it was found that the 

energy eigenvalues are degenerate and 

depending on the allowed quantum numbers.  

These results may have many interesting 

applications in the different quantum mechanical 

systems and nuclear physics. Therefore, in this 

study, after proposing the nucleus    
   to be 

used for testing the process of diagonalization, 

the harmonic oscillator energy (    and the 

quantity (    ) were calculated, and hence, the 

eigenvalues     were obtained for the orbital 

quantum numbers          and the main 

quantum numbers      . Table (3-1) shows 

the tabulated values for the calculated 

eigenvalues for the nucleus    
  . 

 
Table (3-1):The calculated eigenvalues for the harmonic oscillator Hamiltonian for the values 

       and      . 

 

                    

 

                    

129.41 11.5 6 2 21 16.8795 1.5 0 0 1 

84.3975 7.5 0 3 22 28.1325 2.5 1 0 2 

95.6505 8.5 1 3 23 39.3855 3.5 2 0 3 

106.904 9.5 2 3 24 50.6385 4.5 3 0 4 

118.157 10.5 3 3 25 61.8915 5.5 4 0 5 

129.41 11.5 4 3 26 73.1445 6.5 5 0 6 

140.663 12.5 5 3 27 84.3975 7.5 6 0 7 

151.916 13.5 6 3 28 39.3855 3.5 0 1 8 

106.904 9.5 0 4 29 50.6385 4.5 1 1 9 

118.157 10.5 1 4 30 61.8915 5.5 2 1 10 

129.41 11.5 2 4 31 73.1445 6.5 3 1 11 

140.663 12.5 3 4 32 84.3975 7.5 4 1 12 

151.916 13.5 4 4 33 95.6505 8.5 5 1 13 

163.169 14.5 5 4 34 106.904 9.5 6 1 14 

174.422 15.5 6 4 35 61.8915 5.5 0 2 15 

129.41 11.5 0 5 36 73.1445 6.5 1 2 16 

140.663 12.5 1 5 37 84.3975 7.5 2 2 17 

151.916 13.5 2 5 38 95.6505 8.5 3 2 18 

163.169 14.5 3 5 39 106.904 9.5 4 2 19 

174.422 15.5 4 5 40 118.157 10.5 5 2 20 
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In Table(3-1), the fourth column represents 

the listed eigenvalues with the units of   ; 

while in the fifths column the eigenvalues were 

listed in the units of MeV. 

To study the nature of the eigenvectors, i.e., 

the harmonic oscillator wave functions        in 

eq.(27), we must take into consideration its 

quantum numbers (  &  ) and the mass number 

of the nucleus  .  

In Fig.(1) the eigenvectors were plotted in the 

plot-range        Fermi and for the 

quantum numbers     and       . As 

shown in the figure, the number of the nodes can 

be obtained by the quantum number (n) and thus 

it shows that all curves have the same nodes 

because the principal quantum number (n=3); 

but increasing the orbital quantum number (l) 

leads to decrease the first amplitude and the 

position of the peak shifts toward wright side, it 

means that at l=0 the amplitude is maximum 

while for the case of l=5 the amplitude is 

minimum.   

Now by remaining the orbital quantum 

number invariant and changing (n) we observe 

that increasing (n) causes to appear new nodes in 

the curve and also increases the peak-

amplitudes, see Fig(2). 

The final figure, Fig.(3), shows the plot of the 

eigenvectors for three different nuclei (  
       ) for the quantum numbers       and 

       . Fig(3) have the same characteristic of 

Fig.(1) so as increasing in A means the 

decreasing the amplitude and shifting the posit n 

toward wright side. 
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Conclusion 

We have applied the NU method to solve the 

Schrödinger equation for the most-known 

harmonic oscillator Hamiltonian that has many 

interesting applications in the quantum 

mechanical systems and nuclear physics. We 

obtain analytical expression for the energy 

spectrum and the eigenfunctions. 

After diagonalizing the Hamiltonian for the 

single-particle states in nuclei, we have found  

the energy eigenvalues are their eigenfunctions. 

It was found that the eigenvalues and 

eigenfunctions were the same with those of the 

other methods. 
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 ثوختة

لة م تويَذينةوةدا هةستاوين بة بة كارهيَنانى رِيَطةيةكى تازة كة بريتية لة ميتؤدى نيكيظؤرؤظ ياظةرؤظ بؤ 
بؤ ئةو مةبةستةش لةو ماتةووزةية , شيكاركردنى هاوكيَشةى شرؤدينطةر بؤ ماتة ووزةي لةرةلةرى هارمونى 

 .يَبةجىَ كراوة بةسةرئاستة ووزةى نيوكلَؤنةكانى ناو ناوكى ئةتؤمداهاميلتؤنى جوولَةكة دروست كراوةو ج

بة ثشتبةستن  بة رِيَطةى ناو براو بؤ دؤزينوةى برِة خؤييةكان بؤ ئاستة كانى نيوكلَؤنةكانى نا و ئةتؤم و 
َ ئةو  رِيَطانةى  كة ثيَشتر بةكارهيَنراوون  اييشدا لة دو. ئةنجامةكانيش بةتةواوةتى ضوونيةك بوون لةطةل

ئاراستة خوييةكان بةكارهيَنراوونة نةخشةيان كيَشراوة بؤ ضةند ناوكة ئةتؤميَكى جياواز و هةمان ذمارةى 
 .بؤ يةك ناوكة ئةتؤم  و طؤرِينى ذمارة كوانتةميةكان, كوانتةمى 

 

 

 

 

 


