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Abstract

In this study the energy spectrum and Eigenvectors with a special type of central potential will be obtained by
using Nikiforov-Uvarov method. The method covers a new algebraic technique to make an exact diagonalization to
find the eigenvalues and eigenvectors of the Hamiltonian of the harmonic oscillator (HO).
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Introduction

ecently, the study of the Schrddinger in

the field of high energy, condensed
matter, nuclear physics and related technology is
therefore an important branch of physics. The
guantum mechanical phenomena are also quite
important in nanotechnology nowadays. There
are many formalism have been used to solve the
Schrddinger equation with having several type
of potential, the exact solution of the
Schrodinger equation with position-dependent
mass using SUSY techniques is investigated
(Tanaka, 2006), the Eckart Potential and its
Parity-Time is solved analytically (Ping et.al,
2009), Approximate Analytical Solutions of the
Klein-Gordon Equation with the Poschl-Teller
Potential (Xu, et al., 2010). Among such
methods, the variational methods (Flugge, et al.,
1994), the algebraic method (Setare, et al, 2007),
the shape invariant method (Niazian, 2010), the
asymptotic iteration method(AIM) (Ozer, 2008)
and the Nikiforove-Uvarove method (Nikiforov,
1988 and Sever,et al., 2008) have been
introducing of the exact solution of the
Schrodinger equation with several approaches.

The last method is more suitable for solving
second order differential equations analytically,
because Schrodinger equation is a second order
differential equation, NU method today widely
uses for this issue.

The bound state Solution of radial part of
Schrddinger equation gives us eigenfunctions
and eigenvalues contain all necessary
information to explain a quantum mechanically
system. Harmonic oscillator potential solutions
of the Schrodinger equation will significantly
enriched our information of atomic and sub-
atomic system (Ikhdair, et al., 2007) this
potential plays a basic role in many branches of
physics such as atomic, molecular and chemical
physics. We will try to solve the Schrodinger
equation with this potential using (NU) method.
The paper is organized as follows. In section 1,
the radial part Schrodinger equation was used to
construct the Hamiltonian, in section 2, we have
a review of the NU method. Finally, in Section
3, we will obtain the exact solutions of the radial
part of the Schrodinger equation in spherical
polar coordinate.

1. Radial Schrodinger equation for HO potential in single particle nuclear states

Our problem that has been investigated contains a Harmonic Oscillator (HO) potential that its
corresponding Hamiltonian is given by (Suhonen, 2007):
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where m is the mass of the nucleon (proton or neutron), and w is the angular frequency of the
harmonic oscillator. Thus, from the time-independent Schrodinger equation the corresponding radial

part takes the form:
I(l+1)
-1
, with,
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a=mw/h=1/b?
(2a)
f = 2mE/h?
Where b is the length parameter of the harmonic oscillator that differs for different nuclei, such
that (Suhonen, 2007)

. h | ¢ZhR2  hc 19733 643619 @b)
mw mc?(hw)  [mc?(hw) /940 (hw) VR
6.43619

= (3)
V414-1/3 — 254-2/3 MeV

Knowing that Aw is the energy quantized of the harmonic oscillator (Suhonen, 2007), or

hw = 414713 — 2547%/3 MeV (4)

By considering that s = r? with its first derivative ds/dr = 2r = 2+/s, we can simplify eq.(2)
and re-writing it in a new form such that:
d’R 3dR 1 -
F+2—Sa+m[sf—l(l+1)—a5]}?—0 (5)

The above equation is a new form of the radial part Schrodinger equation which was prepared to be
solved analytically by using UV-method and hence to find its eigenvalues and eigenvectors.

2. Theory of the UV-method

In the Nikiforove-Uvarove (UN) method, the Schrddinger equation which is a second order linear
differential equation, can be reduced to a generalized equation of hypergeometric type:

" (s) ., a(s) _
¥ (s)+ @‘I’ (s) + o2(s) Y(s)=0 (6)

where both o(s) and &(s) can be described as polynomial of second degree, and (s) is a first
degree polynomial. In such a way that W(s) is a separable function given by (lkhdair, 2010):

Y(s) = ¢(s) y(s) ()

, knowing that ¢ (s) is obtained from the solution of the differential equation:

1 do(s) _m(s)

P(s) ds  a(s)
with ©

' ~ ' ~\ 2
n(s) = 02—1 + \/(G 2_T> —6(s)+k(s)a(s)}

While the function y(s) satisfies the following hyper-geometric differential equation:

a(s)y"(s) + t(s)y'(s) + Ay(s) = 0 )
Here, the function k(s) can be found from the relation (Zhang, 2010):

0’—%2
< 5 >—5(S)+k(s)0(s)=A52+Bs+C=O (10)

Where A, B, and C are some coefficients independent on variable (s).

Now by defining a new function 7(s) and m(s) to be a polynomial of degree at most one such
that
7(s) = T(s) + 2m(s) an

under the condition 7'(s) <0, the eigenvalues of the Hamiltonian can be obtained from the
equation

, , nn-—1)

A=k(s)+n(s)= —nt(s) —————

> o'(s) , (n=0123,..) (12)
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Now to find the eigenvectors Y(s) that consists of ¢(s) and y(s), we must solve the first
part of eq.(8) to find ¢(s), and then y(s) ,that satisfies eq.(9), can be determined from the
polynomials which are given by the Rodrigues relation (Berkdemir, 2006):

n

() = -2 on(s) p(s)] 13
InlS _p(S)dSno- S) p(s ( )
, with the weight function p(s) to be found from the solution of
d
as (cp)=1p (14)
In eq.(13) B,, represents the normalization constant which can be whose determined from:
| e ds=1 (15)

3. Eigenvalues and eigenvectors of the Hamiltonian

Now we wish to emphasis a comparison between egs.(5 & 6) , we will clearly get
#(s)=3, o(s)=2s, o(s)=2
(16)
G(s) = sf—1(l+1) —a®s?
Then by using the functions o(s), o '(s),and #(s) in eq.(16) to substitute in the second part of
eq.(8), the function z(s) can be obtained to be:

!{as+Al , k+=12—r+aAl

14+4I1(1+1)
A} = B (17)
t as—4; , k_=12—r—aAl
And hence, by putting both the functions 7(s) and 7 (s) in eq.(11) and by taking into consideration
the condition 7'(s) , we get:
t(s) =2+ 24, —2as

n(s)= —=F

N =

f ,T(s)=—-a <0 (18)
k=k_= E - aAl
, and clearly the second part of eq.(18) makes the function 7(s) to be rewrites as:

1
n(s)= —s+4, —as

2
and (19)

T'(s)= —a
To find the eigenvalues we must use the functions k(s), 7'(s), and ¢"(s) in eq.(12) and the
definitions of (a) and (f) in eq.(2a),i.e.,

2
or 1 4
Enl = (277. + Al + 1)h0)
The second part of eq.(20) represents the exact analytical eigenvalues of the Hamiltonian of the
harmonic oscillator.
Now, determination of the eigenfuctions W(s) requires to solve the differential equations in the
first part of eq.(8) and eq.(14) which give :
2

f
2n+ A, +Da==
2n+A4; + Da 5 _ 144+ 20)

24;-1
p(s)=s 4 e a5/2 (21)
, and
p(s) = s4ie™as (22)
Return to the Rodrigues relation in eq.(13), and using o(s) in eq.(11) and p(s) in €q.(22) , the
function y,, (s) becomes:
B dn B,2™ d™
yo(s) = v e”_asﬁ[(zs)nsme-aﬂ = SAl”e_aSm[s"”le‘“S] (23)
, Which can be expressed in terms of the Laguerre functions [15] ,or
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Ya(s) = By2"n! Ly!(as)

(24)

, with the normalization constant B,, that is determined in eq.(15) and takes the from:

zaAl+1
Bn= It a4, 1)

(25)

Finally, by putting B,, in eq.(24) and then using eq.(24) and eq.(21) in eq.(7), the exact eigenvectors

will be determined to be:
2A;-1

W(s) =R(s) =5 + e @5/2y(s) =

Al +1 2Al_1

« e"S/2[% (g s) (26)

2nla

I'(n+4; +1)
, equivalently, the relations s = r2 and a = 1/b? makes eq.(26) to give
1
2n! A3 r2 2
= _ -1r4/(2b%) A 2 /12

3- Results and discussion

The full diagonalization methods play
important roles for dealing with the quantum
systems such as atomic and nuclear physics. One
of the most famous potentials that can be used
widely in the Hamiltonian of such systems is the
harmonic oscillator potential.

In section (2), the Hamiltonian was
constructed for the harmonic oscillator potential.
Then  the Nikiforov-Uvarov  method was
proposed to solve the Schrodinger equation with
harmonic potential then we have obtained an
analytical expression for the energy spectrum
and the eigenfunctions; so it was found that the

energy eigenvalues are degenerate and
depending on the allowed quantum numbers.

These results may have many interesting
applications in the different quantum mechanical
systems and nuclear physics. Therefore, in this
study, after proposing the nucleus ;oK37 to be
used for testing the process of diagonalization,
the harmonic oscillator energy (hw) and the
quantity (A;) were calculated, and hence, the
eigenvalues E,; were obtained for the orbital
quantum numbers 6 >1>0 and the main
quantum numbers 5 > n > 0. Table (3-1) shows
the tabulated values for the calculated
eigenvalues for the nucleus ;oK 37.

Table (3-1):The calculated eigenvalues for the harmonic oscillator Hamiltonian for the values

6=>1>0and5>n=>0.

=

1 0O O 15 16.8795
2 0 1 2.5 28.1325
3 0 2 3.5 39.3855
4 0 3 4.5 50.6385
5 0 4 5.5 61.8915
6 0 5 6.5 73.1445
7 0O 6 7.5 84.3975
8 1 0 3.5 39.3855
9 1 1 4.5 50.6385
10 1 2 5.5 61.8915
11 1 3 6.5 73.1445
12 1 4 7.5 84.3975
13 1 5 8.5 95.6505
14 1 6 9.5 106.904
15 2 0 5.5 61.8915
16 2 1 6.5 73.1445
17 2 2 7.5 84.3975
18 2 3 8.5 95.6505
19 2 4 9.5 106.904
20 2 5 10.5 118.157

21 2 6 11.5 129.41
22 3 0 7.5 84.3975
23 3 1 8.5 95.6505
24 3 2 9.5 106.904
25 3 3 10.5 118.157
26 3 4 11.5 129.41
27 3 5 125 140.663
28 3 6 135 151.916
29 4 0 9.5 106.904
30 4 1 10.5 118.157
31 4 2 115 129.41
32 4 3 125 140.663
33 4 4 13.5 151.916
34 4 5 14.5 163.169
35 4 6 155 174.422
36 5 0 115 129.41
37 5 1 12.5 140.663
38 5 2 13.5 151.916
39 5 3 145 163.169
40 5 4 155 174.422
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In Table(3-1), the fourth column represents
the listed eigenvalues with the units of hAw;
while in the fifths column the eigenvalues were
listed in the units of MeV.

To study the nature of the eigenvectors, i.e.,
the harmonic oscillator wave functions R,,;(r) in
eq.(27), we must take into consideration its
quantum numbers (n & 1) and the mass number
of the nucleus A.

In Fig.(1) the eigenvectors were plotted in the
plot-range 0 <r <12 Fermi and for the
quantum numbers n=3 and 0<[<5 . As
shown in the figure, the number of the nodes can
be obtained by the quantum number (n) and thus
it shows that all curves have the same nodes
because the principal quantum number (n=3);
but increasing the orbital quantum number (1)

04—

leads to decrease the first amplitude and the
position of the peak shifts toward wright side, it
means that at 1=0 the amplitude is maximum
while for the case of I=5 the amplitude is
minimum.

Now by remaining the orbital quantum
number invariant and changing (n) we observe
that increasing (n) causes to appear new nodes in
the curve and also increases the peak-
amplitudes, see Fig(2).

The final figure, Fig.(3), shows the plot of the
eigenvectors for three different nuclei (A =
4,27,60) for the quantum numbers n =2 and
[l =3 . Fig(3) have the same characteristic of
Fig.(1) so as increasing in A means the
decreasing the amplitude and shifting the posit n
toward wright side.
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Conclusion

We have applied the NU method to solve the
Schrédinger equation for the most-known
harmonic oscillator Hamiltonian that has many
interesting  applications in the quantum
mechanical systems and nuclear physics. We
obtain analytical expression for the energy
spectrum and the eigenfunctions.

After diagonalizing the Hamiltonian for the
single-particle states in nuclei, we have found
the energy eigenvalues are their eigenfunctions.
It was found that the eigenvalues and
eigenfunctions were the same with those of the
other methods.
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