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ABSTRACT:   

With the rapid development of internet technology, text classification has become a vital part of obtaining quick and accurate 

data. Traditional machine learning methods often suffer from poor performance and high-dimensional feature spaces, which 

reduce their accuracy. In this paper, the FastText model is proposed as the first-ever classifier on Kurdish text and the results 

are compared with traditional machine learning methods to show the effects on Kurdish Text.  For evaluating the model four 

datasets Kurdish News Dataset Headlines (KNDH), Medical Kurdish Dataset (MKD), Kurdish-Emotional-Dataset (KMD-

77000), and KurdiSent are utilized and compared the results with the traditional machine learning algorithms such as: 

Random Forest (RF), k-nearest Neighbor (k-NN), Logistic Regression (LR), Multinomial Naïve Bayes (MNB), Support 

Vector Machine (SVM), Decision Tree (DT), Stochastic Gradient Descent (SGD), as well as the deep learning model 

Bidirectional Encoder Representations from Transformers (BERT). The outcomes indicate that the FastText model achieved 

the highest performance with 89% for each precision, recall, F1-score, and 89.10% accuracy for the KNDH dataset. 

Moreover, when the KMD dataset is utilized the FatText model obtained outperforms all others by approximately 2%. In 

addition, the comparative analysis showed that FastText is superior when Kurdisent is considered with precision, recall, F1-

score, and accuracy by 81.32, 81.83, 81.57, and 81.4 respectively. In addition, when MKD is implemented, the FastText 

model obtained the highest performance with a precision of 93.32%, recall of 93.36, F1-score of 93.34, and accuracy of 

93.1%.  
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1. INTRODUCTION 

        With the rapid development of technology, the internet has 

become a necessary part of human life. Various data types are 

used on the internet, with text being one of the most common 

forms. Text Classification (TC) is a crucial task in the fields of 

Natural Language Processing (NLP), Machine Learning (ML), 

and data mining. Moreover, TC has emerged as a method for 

analyzing, extracting, detecting, and retrieving user knowledge 

from large volumes of text. The TC can be categorized into two 

groups: multi-label and multiclass classification.  

       In multi-label classification, a text is assigned multiple target 

labels (such as sports or social), whereas in multiclass 

classification, a text is assigned only one target label. Some 

applications of TC include sentiment analysis, news filtering, 

email sorting, product review categorization, and text message 

analysis (Umer et al., 2023). Various text classification 

algorithms, including Support Vector Machine (SVM), Naive 

Bayes (NB), K-nearest neighbor (KNN), Decision Tree, Neural 

Network, and FastText, are utilized to classify text. In machine 

learning algorithms, the Vector Space Model (VSM) is employed 

to convert text inputs (sentences) into multiple vectors (features) 

for classification purposes. In contrast to deep learning models, 

layers are used to prioritize these features (Zulqarnain et al., 

2020). The Bag-of-Words (BoW) model and Term Frequency-

Inverse Document Frequency (TF-IDF) are implemented to 

depict the occurrence of words across documents in the corpus. 

The BoW model transforms documents into vectors, while TF-

IDF assigns weights to terms based on their frequency in each 

document. TF calculates the score for each feature depending on 

its frequency within each document, whereas IDF determines the 

count of unique features present in the dataset. In addition, 

GloVe, BERT, and FastText are word embedding methods 

utilized to diminish high-dimensional features by considering the 

similarity between words (Naeem et al., 2022; Singh et al., 2022). 

GloVe is a pre-trained word embedding model trained on 

Wikipedia 2014 and Gigaword 5 corpus, and it utilizes a 

technique that assesses the similarity between word vectors. 

Meanwhile, Bert, introduced in 2018, a bidirectional pre-trained 

model designed for various languages. Unlike other models that 

rely on unidirectional context capture, Bert leverages 

bidirectional processing (Alammary, 2022).  

       FastText, developed by Facebook, serves as a library offering 

pre-trained models for 157 distinct languages, catering to 

supervised classification and unsupervised text representation 

tasks (Badri et al., 2022). FastText utilizes character n-grams 

instead of word n-grams, effectively addressing out-of-

vocabulary issues, particularly in languages with complex 

morphology (Yao et al., 2020). One of the richest languages in 

terms of morphology is the Kurdish language (Saeed et al., 2023). 

The significance of this study for the Kurdish language lies in its 

potential to enhance the accuracy of Kurdish text classification, 

given the language's intricate morphology. Furthermore, using 

character n-gram features can improve the efficiency of 

classifying Kurdish text by offering alternatives for matching 

out-of-vocabulary words, especially in the presence of 

typographical errors. 

2. RELATED WORK 

        The proliferation of internet applications has led to a 

massive surge in the volume of text available online. In recent 

years, automated text mining has become a significant challenge, 

to extract valuable information from large volumes of content. 

Automated text classification has driven the creation and 

enhancement of numerous algorithms for organizing large 

collections of documents. In a study by Hassan et al. (2022), five 
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machine learning algorithms were applied and compared using 

two different datasets. The performance of Random Forest (RF), 

k-nearest Neighbor (k-NN), Logistic Regression (LR), 

Multinomial Naïve Bayes (MNB), and Support Vector Machine 

(SVM) was evaluated based on metrics such as accuracy, 

precision, recall, and F1-score. The results indicated that SVM 

and LR outperformed the other algorithms on the IMDB English 

dataset, while k-NN exhibited the best performance on the SPAM 

dataset. Mokhtar used an Arabic corpus to categorize text into 

predefined categories such as news, economy, culture, diversity, 

and sports. In this experiment, five machine learning models, 

including Random Forest, Logistic Regression, Decision Tree 

(DT), Stochastic Gradient Descent (SGD), Naïve Bayes (NB), 

and Support Vector Machine (SVM), were employed. According 

to the results, Logistic Regression achieved the highest F1 score 

compared to the other models (Madhfar & Al-Hagery, 2019).  

        In a recent study, researchers applied machine learning and 

deep learning algorithms to a medical Kurdish dataset. Before 

analysis, the text underwent preprocessing steps, such as the 

removal of irrelevant words and stop words, using the Kurdish 

Language Processing Toolkit (KLPT) Python library. The study 

involved a comparison of Bert-multilingual with traditional 

machine learning algorithms including NB, SGD, DT, Random 

Forest, SVM, KNN, and LG. The findings indicated that Bert 

achieved an accuracy of 92%, surpassing the performance of 

traditional machine-learning algorithms by two percentage points 

(Badawi, 2023). In another study, researchers addressed the issue 

of high dimensionality in feature space and the limitations of 

conventional machine learning algorithms such as SVM, NB, and 

KNN by introducing FastText as a novel classification model. 

The study revealed that the FastText model attained an 

impressive F1-score of 0.9286, outperforming the other models 

(Yao et al., 2020). Birol Kuyucu used the FastText classifier to 

analyze the TTC-3600 Turkish dataset. Remarkably, no 

preprocessing steps such as tokenization, stemming, 

lemmatization, stop word removal, lowercase conversion, or 

dimensionality reduction were applied. Following this, the 

performance of FastText was compared with K-NN, decision tree 

J48, and Multinomial Naïve Bayes (NV). The results 

demonstrated that FastText surpassed the other models, achieving 

an impressive accuracy score of 93.52%, despite the absence of 

preprocessing steps (Kuyumcu et al., 2019). Additionally, Amalia 

conducted a comparison between the FastText model and TF-IDF 

as one of the BOW models for 500 new articles in a low-resource 

Bahasa Indonesia. The study revealed that TF-IDF requires more 

preprocessing steps and is time-consuming for model prediction. 

Moreover, it was observed that FastText classification exhibited 

superior performance with a 0.97 F1-score compared to TF-IDF 

(Amalia et al., 2020). 

3. FASTTEXT ARCHITECTURE 

        In natural language processing, reduced performance in text 

classification challenges the accuracy of neural networks. To 

address this issue, the Facebook research team developed 

FastText. FastText is a library designed for both supervised and 

unsupervised learning. Supervised learning can be applied to 

tasks such as text classification, while unsupervised learning is 

utilized for learning word embedding from the training dataset. 

Two primary data sources, Wikipedia and Common Crawl 

corpus, contribute to collecting the training data for FastText. It 

is worth noting that FastText offers pre-trained word vectors for 

157 different languages, comprising a vast number of vocabulary 

(600 billion words) from 2 million combined texts, each 

represented in 300 dimensions (Umer et al., 2023). The structure 

of FastText closely resembles that of Continuous Bag of Words 

(CBOW). However, the primary distinction lies in FastText's 

architecture compared to CBOW, as CBOW utilizes intermediate 

words rather than labels as shown in Figure. 1 

 

 
Figure 1: The Basic Framework of the FastText Model 

        As shown in Figure. 1, the FastText architecture consists of 

three layers: the input layer, the hidden layer, and the output layer 

(Dharma et al., 2022).  

The input layer of the model processes documents one by one, 

converting each document into FastText format for utilization 

within the layer, as illustrated in Table 1: 

 

Tabel 1: Preparing the Documents for Classification with the FastText 

Documents Labels Specific Format for FastText Documents 

 چاو باشەرە گویز هندی بۆ دە مو ۆدکت

 

medical __label__medical  دکتۆرە گویز هندی بۆ دە مو چاو باشە 

 

 ئەم پیاوە دائیم سەرشۆڕە

 

notmedical __label__notmedical    ئەم پیاوە دائیم سەرشۆڕە 

 

 

        As shown in Table 1, the document is ready for the input 

layer. After converting the document format, another step is done 

which is representing words in the documents. The word 

representation of FastText is different from other models such as 

word2vec. In word2vec each word is represented as a bag of 

words while in FastText each word is represented as a bag of 

character n-gram which is generated vector for unknown words 

to improve generalization. For example, in character n-gram 

architecture the word (دکتۆر) is: 

 when (n-gram=3) <دک, دکت, کتۆ, تۆر, ۆر> 

The increase in character n-grams represents a significant 

improvement over word n-grams and helps address "out of 
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vocabulary" errors, especially in high-dimensional feature spaces 

(Khomsah et al., 2022). 

       The hidden layer, which averages several feature vectors, 

constructs the Huffman tree. This tree is utilized to determine the 

most probable function based on the weight and parameters of 

the class, and it serves output purposes since calculating the tag 

based on the Huffman coding path can significantly reduce 

computational load. The SoftMax function is employed in 

FastText to estimate the likelihood distribution of classes. To 

define the objective of the model for a dataset containing multiple 

documents, the following formula (1) is used: 

−
1

𝑁
∑ 𝑦𝑛 log (𝑓(𝐵𝐴𝑋𝑛))

𝑁

𝑛=1
                 (1) 

       Based on Equation (1), 𝑁 represents the number of 

documents in the dataset, 𝑦𝑛 denotes the class label for a specific 

document (the nth document), 𝑓 signifies the loss function, and 

𝐵 is the weight matrix from the hidden layer to the output layer. 

Additionally, 𝐴 represents the weight matrix for word embedding 

(the embedding layer), and 𝑋𝑛 represents the normalized features 

of the specific document (the nth document). The model employs 

a linear decay learning rate and stochastic gradient descent for 

training. 

       Two important factors have made FastText a robust model: 

the first is the utilization of the Huffman coding tree-based 

hierarchical Softmax method, and the second is the utilization of 

the sub-word n-gram method (Amalia et al., 2020). 

 

 

4. DATASET COLLECTION AND DESCRIPTION 

        The Kurdish language is a member of the Indo-European 

language family and is spoken by 40 million people. Kurdish 

dialects can be broadly categorized into two groups: Sorani and 

Kurmanji. The Kurdish homeland, known as Kurdistan, spans 

across four countries: Iraq, Turkey, Iran, and Syria. Both Sorani 

and Kurmanji are spoken in Iran and Iraq, whereas only Kurmanji 

is used in Turkey and Syria. Furthermore, Kurds in Iraq and Iran 

use the Arabic alphabet, while those in Turkey and Syria use the 

Latin alphabet (Saeed et al., 2018). In this study, four distinct 

Kurdish datasets were analyzed. These datasets were gathered 

from various online sources within the Kurdistan region of Iraq 

(Ahmadi, 2020; Saeed, Ismael, et al., 2022). 

       The first dataset is the Kurdish News Dataset Headlines 

(KNDH), compiled from 34 distinct Kurdish channels such as 

Kurdsat, PayamTV, Rudaw, K24, and others. The proportion of 

headlines collected from each channel varies. KNDH contains 

50,000 headlines categorized into five distinct classes: Health, 

Science, Economy, Sport, and Social, with each class containing 

10,000 headlines. The headlines were gathered using 

BeautifulSoup and ParsHup software and the texts are labeled 

automatically (S. Badawi et al., 2023). 

        The second dataset is the Medical Kurdish Dataset (MKD), 

which includes 6,756 comments from Facebook. These 

comments were gathered from various posts related to Education, 

Sport, Medicine, News, and Economy. After collection, three 

annotators manually labeled the comments as either medical or 

non-medical based on their understanding. The dataset was 

compiled using the Facepager tool (Saeed, Hussein, et al., 2022) 

The third dataset is the Kurdish-Emotional Dataset (KMD-

77000), comprising 77,000 texts collected via the Twitter API. 

Three annotators proficient in the Kurdish language labeled the 

texts based on their understanding. The texts were categorized 

into four classes: joy, sadness, fear, and surprise (S. Badawi, 

2023). 

       The fourth dataset is KurdiSent, comprising 12,000 instances 

collected from Twitter. After gathering the tweets, three 

annotators manually labeled them positive, negative, or neutral. 

To facilitate the annotation process, the open-source text 

annotation tool Doccano was used for automatic annotation (S. 

Badawi et al., 2024). 

 

1. Implementation and Experiments 

       The fastText classification model focuses on categorizing 

Kurdish text documents based on their content. To classify these 

documents with FastText, several essential steps need to be 

performed for analyzing and predicting labels, as illustrated in 

Figure 2: 

 
Figure 2: Text Classification Experiment 

 

        As demonstrated in Figure 2, when initiating the 

classification process using FastText, the initial step involves 

converting a raw dataset into a suitable format for training input. 

To achieve this, the text documents need to be prepared in a 

FastText format. This entails prefixing the text with the keyword 

"__label__", followed by the corresponding class name, such as 

"medical", and then appending the text document. For instance: 

"__label__medical this is a good doctor." 

        The next stage involves preprocessing the text document, a 

vital step focused on cleaning and readying unstructured textual 

data for analysis. In this experiment, the Kurdish Language 

Processing Toolkit (KLPT) is utilized as an open-source Python 

toolkit for preprocessing, tokenization, stemming, and 

transliteration (Ahmadi, 2020). 

        Preprocessing involves a set of techniques applied to tokens 

to ensure they are clean and consistent. Kurdish has numerous 

customized keyboard layouts, each assigning different character 

encodings to visually similar graphemes. Furthermore, 

keyboards vary in their use for typing Kurdish alongside 

languages like Persian, Arabic, and Turkish. The Sorani dialect 

employs various non-uniform graphemes. For example, the 

grapheme " ی" is represented with five different Unicode 

characters within the same script: "  ي", "ى", "ي", "ي", and "   ,"ي

 with Unicode U+064A, U+0649, U+FEF2, U+FEF1, and) ""ى

U+06CC respectively), with the last one intended for Sorani. To 

tackle these challenges, two functions, Normalization () and 

Standardization (), are utilized. 

        In the Normalization () function, abnormal forms in the text 

are replaced with standardized forms of the letter (grapheme). 

The Standardization () function addresses orthographic aspects 

of the text. Additionally, the unify-numeral () function converts 

numbers from Persian (۰, ۱, ۲, ۳, ۴, ۵, ۶, ۷, ۸, ۹) and Latin (0, 1, 

2, 3, 4, 5, 6, 7, 8, 9) forms to Arabic forms (۰, ۱, ۲, ۳, ٦ ,٥ ,٤, ۷, 

۸, ۹). 

Tokenization involves separating each word in a sentence. While 

spaces are used to separate words in Arabic script, the process is 

different in the Kurdish Sorani dialect due to its complex 

morphology. Not all words correspond directly to tokens. For 

example, the word "لەخوێندنگاکانماندا" consists of six tokens: "  ,"لە

 KLPT addresses this complexity .""خوێندن", "گا", "کان", "مان", "دا
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by using an annotated lexicon and a morphological analyzer to 

tokenize Sorani words. To handle various compound forms, 

KLPT provides two functions for word tokenization 

(mwe_tokenize() and word_tokenize()) and uses sent_tokenize() 

to tokenize sentences based on punctuation.  

       Transliteration involves converting text from one alphabet to 

another while retaining the original pronunciation. In the KLPT 

system, the issue of transliterating characters with dual uses (such 

as "ى" and "و") in the Sorani dialect has been addressed.  

Stemming involves reducing a word to its base form by removing 

prefixes, affixes, and postfixes. This process is implemented in 

two classes: Stem and Spellcheck. 

The stem class has four functions: 

a) Stem (): Retrieves the root of a word, e.g., "بردن" becomes "بر". 

b) Lemmatize (): Performs lemmatization, e.g., "بردوویانە" becomes 

 ."بردن"

c)        Analyze (): Analyzes the morphology of words, returning a 

dictionary with parts of speech. 

d) suffix_suggest (): Returns all possible suffixes that can appear 

with a given lexeme. 

       The Spellcheck class includes two functions: 

a) check_spelling(): Returns True or False based on the correctness 

of the spelling. 

b) Correct_spelling(): Corrects misspelled words and provides 

suggestions, e.g., suggesting "بردن" for the misspelled word 

 ."بردب"

        Following preprocessing, the text document is partitioned 

for training and testing, employing the holdout method due to the 

relatively small datasets utilized in this study. The training ratio 

is set at 80 percent, leaving the remaining 20 percent for testing. 

Subsequently, the FastText classifier is implemented to train the 

model, which is then saved as a data model for subsequent steps. 

Next, the classifier is trained using the testing data alongside the 

saved data model. The ultimate goal step involves assessing the 

classification performance. 

2. Experimental Result 

        This study evaluates the effectiveness of FastText 

algorithms on Kurdish text through the utilization of four 

different Kurdish datasets. The performance of FastText is 

compared against eight other machine learning and deep learning 

algorithms. The procedure is structured into several key steps. 

Initially, the raw datasets are converted into a format compatible 

with FastText. Subsequently, the data undergoes preprocessing, 

which includes tokenization, stemming, and the removal of stop 

words. Afterward, the datasets are split into training and testing 

sets, with 80% designated for training and 20% for testing 

purposes. The next phase involves training the model using one 

of the selected machine learning or deep learning algorithms on 

the training dataset. Finally, the trained model is evaluated by 

applying it to the testing dataset to generate predictions. 

For evaluating the performance of each classifier, a confusion 

matrix is used as shown in Table 2: 

Tabel 2: Confusion Matrix/ Contingency Table 

 Positive Negative 

Positive TP FN 

Negative FP TN 

 

       As illustrated in Table 2, the columns represent the predicted 

labels, categorized as positive and negative, while the rows 

denote the actual labels, also categorized as positive and 

negative. This results in four possible outcomes: True Positive 

(TP), False Negative (FN), False Positive (FP), and True 

Negative (TN). 

From Table 2, the following performance metrics are employed 

to evaluate the results: 

Precision: it is used to identify only the relevant data (accurate 

data) among retrieved data. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     

     (2) 

Recall: it is used to identify all relevant data among retrieved 

data. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     

     (3) 

F-measure: it is the harmonic mean of precision and recall. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
   

     (4) 

Accuracy:  indicates the ratio of correctly predicted labels to the 

total number of predictions 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃+ TN + FP + 𝐹𝑁
    

     (5) 

Table 3 evaluates the Precision, Recall, F1-score, and Accuracy 

for nine algorithms which are implemented on the KNDH dataset 

as shown below: 

 

Tabel 3: Evaluates the Precision, Recall, F1-score, and Accuracy of Classifiers for the KNDH Dataset 

 Precision Recall F1 Accuracy 

FastText 89.00 89.00 89.00 89.10 

NB 87.30 87.40 87.35 87.25 

SVM 88.01 88.91 88.46 88.53 

DT 80.23 79.90 80.06 80.91 

KNN 62.80 62.30 62.55 62.36 

LR 88.00 88.00 88.00 88.00 

RF 85.63 85.34 85.48 85.24 

SGD 76.43 76.54 76.48 76.49 

Bert 88.26 88.29 88.27 88.12 

 

       As shown in Table 3, the performance of various classifiers 

was compared by using precision, recall, F1 score, and accuracy 

metrics. FastText exhibited the highest values across all metrics, 

with precision, recall, and F1 scores each at 89.00 and accuracy 

slightly higher at 89.10. While the SVM, LR, and Bert are all 

values closest to each other is 88. Moreover, Naive Bayes (NB) 

achieved a precision of 87.30, recall of 87.40, F1 score of 87.35, 

and accuracy of 87.25, indicating slightly lower performance 

compared to SV, LR, and Bert. Random Forest (RF) displayed 

moderate performance with precision of 85.63, recall of 85.34, 

F1 score of 85.48, and accuracy of 85.24. DT had lower values, 

with precision of 80.23, recall of 79.90, F1 score of 80.06, and 

accuracy of 80.91. SGD and KNN were the least effective, with 

SGD recording precision of 76.43, recall of 76.54, F1 score of 

76.48, and accuracy of 76.49, and KNN showing the lowest 

performance with precision of 62.80, recall of 62.30, F1 score of 

62.55, and accuracy of 62.36. This comparison highlights 

FastText as the most effective algorithm among those evaluated, 
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with SVM, LR, and Bert also demonstrating strong performance. 

indicating its robustness and reliability in text classification tasks. 

Table 4 evaluates the Precision, Recall, F1-score, and Accuracy 

for nine algorithms which are implemented on the KMD dataset 

as shown below: 

 

Tabel 4: Evaluates the Precision, Recall, F1-score, and Accuracy of Classifiers  for the KMD Dataset 

 Precision Recall F1 Accuracy 

FastText 70.31 70.39 70.35 70.5 

NB 63.23 63 63.11 63.32 

SVM 65.08 65.01 65.04 65.03 

DT 63.54 63.5 63.52 63.32 

KNN 54.79 54.7 54.74 54.61 

LR 65.7 65.8 65.75 65.73 

RF 68.44 68.48 68.46 68.47 

SGD 44.32 44.5 44.41 44.03 

Bert 66.64 66.61 66.62 66.32 

 

        As shown in Table 4, the KMD dataset was implemented by 

using various classifiers. It is clear that FastText obtained the 

highest values across all metrics, with precision, recall, and F1 

score each at 70.00 and accuracy slightly higher at 70.5. RF 

followed closely, achieving a precision of 68.44, recall of 68.48, 

F1 score of 68.46, and accuracy of 68.46. Bert also performed 

well, with consistent values of 66.64 across all metrics. Likewise, 

LR and SVM results are closest to each other with 65 for each 

precision, recall, F1, and accuracy. In addition, the value of NB 

is similar to DT for precision, recall, F1, and accuracy, indicating 

slightly lower performance compared to LR and SVM. 

Moreover, KNN had lower values, with a precision of 54.79, 

recall of 54.7, F1 score of 54.74, and accuracy of 54.61. 

Likewise, SGD was the least effective with a precision of 44.32, 

recall of 44.45, F1 score of 44.41, and accuracy of 44.03. 

Table 5 evaluates the Precision, Recall, F1-score, and Accuracy 

for nine algorithms which are implemented on the KurdiSent 

dataset as shown below: 

Tabel 5: Evaluates the Precision, Recall, F1-score, and Accuracy of Classifiers for the Kurdisent Dataset 

 Precision Recall F1 Accuracy 

FastText 81.32 81.83 81.57 81.4 

NB 75.92 75.78 75.85 75.9 

SVM 78.14 78.18 78.16 78.2 

DT 73.46 73.9 73.68 73.7 

KNN 57.49 57.43 57.46 57.6 

LR 79.3 79.23 79.26 79.3 

RF 78.09 78.12 78.10 78.12 

SGD 71.1 71.02 71.06 71.3 

Bert 80.5 80.45 80.47 80.67 

 

        As shown in Table 5, the results are different for each 

classification algorithm, it is clear that, when the FastText was 

implemented, it obtained the highest values across all metrics, 

81.32 with precision, 81.83 with recall, and 81.57 with F1 score 

and 81.4 with accuracy, indicating its robustness and reliability 

in text classification tasks. Bert followed closely, achieving a 

precision of 80.5, recall of 88.45, F1 score of 80.47, and accuracy 

of 80.67. Moreover, LR obtained a high performance of 79 with 

all metrics. SVM and RF also performed well, with consistent 

values of 78 across all metrics. In addition, NB showed 

comparable results with a precision of 75.92, recall of 75.78, F1 

score of 75.87, and accuracy of 75.9, making it another strong 

contender. DT achieved a precision of 73.46, recall of 73.9, F1 

score of 73.68, and accuracy of 73.7, indicating slightly lower 

performance compared to SVM, RF, and NB. SGD displayed 

moderate performance with precision of 71.1, recall of 71.02 F1 

score of 71.06, and accuracy of 71.3. KNN showed the lowest 

performance with precision of 57.49, recall of 57.43, F1 score of 

57.46, and accuracy of 57.6.  

        Table 6 evaluates the Precision, Recall, F1-score, and 

Accuracy for nine algorithms which are implemented on the 

MKD dataset as shown below: 

Tabel 6: Evaluates the Precision, Recall, F1-score, and Accuracy of Classifiers for the MKD Dataset 

 Precision Recall F1 Accuracy 

FastText 93.32 93.36 93.34 93.1 

NB 92.9 92.93 92.91 92.8 

SVM 93.1 93.3 93.20 93.3 

DT 87.68 87.64 87.66 87.66 

KNN 62.34 62.1 62.22 62.31 

LR 90.5 90.51 90.50 90.49 

RF 91.31 91.2 91.25 91.3 

SGD 63.31 63.33 63.32 63.45 

Bert 92.1 92 92.05 92.01 

 

        As shown in Table 6, the performance of various text 

classification algorithms was compared using precision, recall, 

F1 score, and accuracy metrics. FastText exhibited the highest 

values across all metrics, with 93.32 precision, 93.36 recall, and 

93.34 F1 score and accuracy at 93.1, indicating its robustness and 

reliability in text classification tasks. Support Vector Machine 

(SVM) followed closely, achieving a precision of 93.1, recall of 

93.3, F1 score of 93.2, and accuracy of 93.3. NB also performed 

well, with consistent values of 92.9 across all metrics. Bert 

showed comparable results with a precision of 92.1, recall of 92, 

F1 score of 92.05, and accuracy of 92.01, making it another 

strong contender. In addition, RF achieved a precision of 91.31, 

recall of 91.2, F1 score of 91.25, and accuracy of 91.3, indicating 

slightly lower performance than Bert and SVM. LR displayed 
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moderate performance with precision of 90.5, recall of 90.51, F1 

score of 90.5, and accuracy of 90.49. DT had lower values, with 

precision of 87.68, recall of 87.64, F1 score of 87.66, and 

accuracy of 87.66. SGD and KNN were the least effective, with 

SGD recording precision of 63.31, recall of 63.33, F1 score of 

63,32, and accuracy of 63.45, and KNN showing the lowest 

performance with precision of 62.34, recall of 62.1, F1 score of 

62.22, and accuracy of 62.31. 

Another important metric for evaluating the FastText classifier is 

calculating space and time complexity for each dataset as shown 

below 7: 

Tabel 7: Space and Time Complexity of FastTexl Model 

 Training sample Vocabulary size Training time Inference time 

Medical 4729 20168 0.307 0.078 

Kurdisent 8614 22079 0.375 0.113 

KNDH 35000 43427 0.964 0.594 

KMD 54089 53400 1.646 0.900 

 

        As shown in Table 7, the FastText model is implemented on 

four distinct datasets, Medical, Kurdisent, KNDH, and KMD, 

and reveals noteworthy differences in their performance metrics.

The Medical dataset is the smallest with 4,729 samples and a 

vocabulary size of 20,168, and shows improved efficiency, with 

a training time of 0.307 seconds and an inference time of 0.078 

seconds. Kurdisent, with 8,614 training samples and a vocabulary 

size of 22,079, shows improved efficiency, with a training time 

of 0.375 seconds and an inference time of 0.113 seconds. KNDH, 

considerably larger with 35,000 samples and a vocabulary size of 

43,427, demonstrates increased computational demand, requiring 

0.964 seconds for training and 0.594 seconds for inference. The 

largest KMD dataset with 54,089 samples and a vocabulary size 

of 53,400, has the highest training and inference times of 1.646 

and 0.900 seconds, respectively. These results indicate a clear 

trend: as the dataset size and vocabulary increase, both training 

and inference times rise significantly, highlighting the scalability 

challenges of the FastText model. 

It can also be concluded that the FastText classifier outperforms 

all other classifiers in classifying Kurdish text. This effectiveness 

of FastText is due to two main factors. Firstly, it employs a high-

quality n-gram character approach to mitigate out-of-vocabulary 

errors. Secondly, it uses the hierarchical Softmax method based 

on the Huffman coding tree as the final layer in training neural 

networks. 

CONCLUSIONS 

        The primary objective of this study is to introduce a 

FastText-based classifier for classifying Kurdish language text. 

The proposed method was compared with eight traditional 

machine learning and deep learning algorithms. To assess the 

performance of each classifier, four Kurdish datasets were used. 

After preprocessing steps such as tokenization, stemming, 

lemmatization, and stop word removal, the datasets were divided 

into training and testing sets. The study demonstrated that 

FastText achieved the highest precision, recall, F1 score, and 

accuracy compared to all other algorithms across all datasets. 

Based on these findings, it can be concluded that FastText is the 

most effective classifier for Kurdish language text classification. 

Future research can expand on this method to develop a hybrid 

model based on the Fasttext model for more efficient text 

classification in the Kurdish language. 
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