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ABSTRACT: 

This study investigates the VAR time series data of the overall expenditures and income in the Kurdistan Region of Iraq. It 

applies multivariate wavelet shrinkage within the VAR model, comparing it to traditional methods to identify the most 

appropriate model. The chosen model will then be used to predict general expenditures and revenues for the years 2022-

2026. The analysis involved assessing the stationarity of the expenditure and revenue time series, which are interrelated 

variables during the interval 1997-2021, and identifying the overall trend through differencing to achieve stationarity. The 

proposed method incorporated multivariate wavelet shrinkage in the VAR model to address data contamination in 

expenditures and revenue using various wavelets like Coiflets, Daubechies, Symlets, and Fejér–Korovkin at different orders. 

Threshold levels were estimated using the SURE method and soft thresholding rules to denoise the data for the following 

analysis within the VAR model. Model selection was based on Akaike and Bayes information criteria. The analysis, 

conducted using MATLAB, indicated the superiority of the proposed method over traditional methods, forecasting a 

continued rise in expenditures and revenues for the Iraqi Kurdistan region from 2022 to 2026. The findings suggest that 

advanced techniques can offer more accurate economic forecasts, benefiting regional planning and policy-making. 

KEYWORDS: Time Series, VAR, Wavelet, Threshold, Soft Rule. 

1. INTRODUCTION 

A wide range of disciplines, including statistics, inventory 

management, and economics, regularly use time series 

forecasting. There are several forecasting models, ranging from 

simple moving averages and linear regression through 

autoregressive integrated moving averages (ARIMA) and more 

sophisticated neural networks. These models examine the past to 

offer projections about the future. Time series are typically 

thought of as stationary random series because they are not 

always predictable (Zivot & Wang, 2003). Three factors must be 

taken into account when modeling time series: a deterministic 

function, white noise, and colored noise. A better model can be 

obtained for a time series by reducing its noise. Mathematical 

transformations are used like the Fourier and wavelet transforms 

to do this. A vector autoregression (VAR) approach is among the 

most efficient, versatile, and straightforward techniques for the 

analysis of multivariate time series. It makes it reasonable to 

expand the univariate autoregressive model into a dynamical 

multivariate time series. It has been demonstrated how effective 

the VAR model is in predicting and describing the dynamic 

behavior of financial and economic time series. It often provides 

predictions that outperform those derived from univariate time 

series models and intricate simultaneous equations models.  

Many studies have been done using the VAR model. The 

researcher (C.A.D. Garcia, 2021) in his paper evaluated the 

impact of profit and accumulation on Colombia's growth rate 

from 1967-2019 using a VAR model. Findings showed that both 

variables are statistically significant and positively affect growth, 

with direct impacts on profit and accumulation rates and an 

inverse relationship between these variables. Other researchers 

used a VAR model to examine the impact of oil price shocks on 

stock returns in Latin American markets. The research reveals 

that structural demand shocks during the COVID-19 era have 

high standard deviations, and the pass-through effects on stock 

returns vary over different time frames. The study suggested that 

oil price impacts stock market returns based on time-frequency, 

aiding policymakers in restoring investor confidence and 

implementing risk mitigation strategies (J.C.T. Gaytan et al, 

2023). Furthermore, some researchers compared VAR and 

ARIMAX models for time series analysis and forecasting using 

data from the Iraqi general budget (2004-2020), concluding that 

the VAR model was more efficient. Forecasts for 2021-2024 

indicated a continued increase in foreign reserves and 

government spending (E.A. Haydier et al., 2023). 

Because forecasts from VAR models may be formed conditional 

on the likely future courses of certain model variables, they are 

extremely flexible. The VAR model is utilized not only for data 

description and forecasting but also for structural inference and 

policy research. The causal consequences of unexpected shocks 

or innovations to defined variables on the variables in the model 

are summarized as a result of particular assumptions about the 

causal structure of the data under consideration. Typically, 

forecast error variance decompositions and impulse response 

functions are used to summarize these causal effects. 

Reducing noise in data from time series is one of the primary 

issues. A novel and effective method for financial time series 

analysis is wavelet analysis, which lowers data noise (de-noise). 

Wavelets allow for the multi-level breakdown of a signal or time 

series. As a result, this breakdown makes the underlying signal's 

structure and any previously hidden patterns, periodicities, leaps, 

or singularities visible. In this work, we suggest techniques for 

reducing the influence of noise or impurity on multivariate time 

series data. We did this by using multivariate wavelets like 

Daubechies and Coiflets in conjunction with thresholding 

techniques such as Sure-Threshold and the use of a soft rule.     
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http://sjuoz.uoz.edu.krd/
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1.1 Theoretical Aspect 

The theoretical aspect presented some basic concepts on the 

subject of research from the statistical side, as shown in the 

following paragraphs. 

1.2 Time Series 

Time series is a set of observations grouped by time. Every 

observation takes place at some time T, where T is related to the 

range of permitted times. It is important to note that T might be 

either a continuous time series or a discrete time series, 

depending on the type of data. Time series can be useful for 

predictions. It acknowledges the range and uses it to project what 

is ahead. Time series analysis has also been used to examine the 

link between the selected data point and changes in other 

variables over the same period. The foundation of time series is 

comprised of two primary elements: the autoregressive (AR) 

model which generates forecasts by combining the historical 

values of the objective linearly, and the moving-average (MA) 

model modeling univariate time series. The moving-average 

model determines the output variable based on the present value 

of a stochastic term and its historical values (Raza et al. 2018). 

There are four ways to go about time-series forecasting: 

1- The (ARIMA) process combines the AR and MA models with 

differences. ARIMA models arrange stages according to a linear 

function. The observations and residuals are from prior phases. 

This method works effectively for univariate time series with 

trends and no seasonal components. 

2- The seasonal ARIMA or SARIMA model relies on previous 

observations, seasonal variations, and errors to guide subsequent 

steps. The SARIMA algorithm is used to fit a univariate time 

series with seasonal or trend components. 

3- Vector Autoregression (VAR) models future steps in a time 

series using AR methods. It applies AR generalizations to 

multivariate forms. 

4- Simple Exponential Smoothing (SES) is a technique that 

leverages prior data to create an exponentially weighted linear 

function for the next time step. This approach works well on 

univariate time series without trends or seasonal components. 

1.3 Time Series Data 

        There are two types of time series data deterministic and 

nondeterministic: 

1- Deterministic time series use analytical expressions. It lacks 

random or probabilistic components. In deterministic time series, 

derivative values at each point indicate the past and future. 

2- Non-deterministic time series have a random component, 

making analytical expressions inaccurate. If one of the two 

requirements is satisfied, the facts might be considered non-

deterministic. These instances may include missing data or a 

random function that created the data. 

1.4 Time Series Analysis Techniques Using VAR Model 

        A multivariate time series model called the vector 

autoregressive (VAR) model connects the current observations 

of a variable to its historical observations as well as historical 

data of other variables in the system.  Because they permit 

feedback between the model's variables, VAR models differ from 

univariate autoregressive models. A VAR model, for instance, 

might be used to demonstrate how the real gross domestic 

product (GDP) and policy rate are both functions of real GDP 

(Ali et al. 2022).  

        A methodical but adaptable technique for modeling 

complex behavior in the real world improved forecasting 

efficiency. the capacity to capture the entangled dynamics of time 

series data. VAR modeling takes several steps, and a full VAR 

analysis includes Specifying and estimating a VAR model, using 

inferences to check and revise the model (as needed), forecasting, 

and structural analysis. 

        The reduced form, the recursive form, and the structural 

VAR model are the three main categories of VAR models. The 

reduced form of each variable in VAR models is viewed as a 

function of its past values and the past values of other variables 

in the model (Omer et al. 2020). 

       Despite being the most straightforward VAR model, 

reduced-form models have the following disadvantages: 

Different contemporaneous variables have no common 

relationships. The error terms in different equations will be 

interrelated. As a result, we are unable to predict the effects of 

individual shocks on the system. All the elements of the reduced 

form model are present in recursive VAR models, but they 

additionally permit some variables to be functions of concurrent 

variables. We can model structural shocks using the recursive 

model by enforcing these short-run relationships. Restrictions in 

structural VAR models enable us to find causal links beyond 

those revealed by reduced-form or recursive models. It is possible 

to simulate and predict the effects of certain shocks, such as 

policy decisions, using these causal links. 

A VAR model is composed of an equation framework that 

depicts the connections between several variables. We frequently 

employ specialized terminology when discussing VAR models to 

indicate: 

- The number of endogenous variables used. 

- The number of included autoregressive terms. 

       Lag selection is a crucial component of the VAR model 

formulation. In practical applications, we often select a maximum 

number of delays, Pmax, and assess the performance of the model 

by taking p=0,1, ..., pmax into account. The model VAR(p) that 

minimizes a certain lag selection criterion is then the best one to 

use. VAR models are characterized by their order, which refers 

to the number of earlier periods the model will use. A lag is the 

value of a variable in a previous period. So, in general, a pth-

order VAR refers to a VAR model that includes lags for the last 

p periods. A pth-order VAR is denoted "VAR(p)" and sometimes 

called "a VAR with p lags". A pth-order VAR model is written as. 

 

𝑌𝑡 = 𝛿𝑡 + ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2+ . . . +∅𝑝𝑌𝑡−𝑝 + 𝜖𝑡            (1) 

Where: ∅1, ∅2, … , ∅𝑝 represents the autoregressive parameters, 

𝛿𝑡 is trend. For example, the VAR(2) model can be express as: 

 

𝑌𝑡 = 𝛿𝑡 + ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 + 𝜖𝑡                                     (2) 
 

[
𝑦𝑡
𝑦𝑡−1

] = [
𝛿𝑡
0
] + [

∅1 ∅2

𝐼 0
] [
𝑌𝑡−1
𝑌𝑡−2

] + [
𝜀𝑡
0
]                       (3) 

 

 The following are the most typical lag selection criteria: 

-Akaike (AIC) 

-Schwarz-Bayesian (BIC) 

-Hannan-Quinn (HQ). 

       Lag selection is now almost entirely automated, and these 

techniques are typically included in software. When estimating 

with a VAR model, it's important to carefully assess the number 

of variables included. Including more variables: 

-Increases the number of coefficients to be estimated for each 

equation and each number of lags. 

-Introduce additional estimation error. 

       VAR models are relatively simple to estimate, despite their 

seeming complexity. Given a few assumptions, the equation can 

be approximated using ordinary least squares, they are the 

conditional mean of the error term is zero, the model's variables 

are stationary, large outliers are improbable and no 

multicollinearity is ideal. 

2. WAVELETS 

       Indeed, a wavelet is a small wave. A small wave grows and 

disintegrates in a brief amount of time. In contrast, a "big wave" 

unequivocally contradicts this idea. An example of a massive 

wave, the sine function fluctuates both upwards as well as 
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downwards when plotted against u∈(-∞,+∞) (Percival 

&Waldden, 2000). The mathematician Alfred Haar adopted and 

proposed the wavelet analysis concept in 1909. For processing 

and analysis, the wavelet transform WT represents a 

mathematical function that transforms the original data into a 

different domain (particularly with the time domain). The 

function as a model is appropriate for stationary as well as non-

stationary time series data (Al Wadi et al. 2010); and (Brifcani & 

Al-Bamerni 2010). We begin with the Fourier transform (FT), 

which divides signals into many sets of basic functions and may 

shift and reverse the domain of a given signal from the time to 

the frequency. This is a formal mathematical statement of the 

transformation of the function x(t) into X(f): 

X(f) = ∫ x(t)e−iw(t)dt                                  (4)

+∞

−∞

 

 

       In this case,  𝑖 = √−1 and 𝑒𝑖𝜃 = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃 . When a 

signal is changing over time, the FT loses effectiveness because 

it just provides information on frequency content and does not 

keep track of time. Because of this, the extended form of the 

transformation has been identified and is known as Gabor's 

adaption. It is said as follows: 

𝑆𝑇𝐹𝑇𝑋
(𝑊)

(𝑡′, 𝑓) = ∫ [𝑋(𝑡),𝑊∗(𝑡 − 𝑡′)]. 𝑒−2𝜋𝑓𝑡𝑑𝑡    (5)
∞

𝑡

 

       Here, STFT stands for the Short-Time Fourier Transform, 

X(t) stands for the signal to be transformed, t' stands for the shift 

factor, w(t) stands for the window function, and * is the complex 

conjugate. The size and shape of the window limit the accuracy 

of STFT, even though it can adapt to frequency and time 

information. For instance, using time intervals repeatedly might 

result in very small windows and good time resolution. 

Employing signals for low frequency will result in poor 

frequency resolution due to the very short period of each window 

(Fugal, 2009). The WT thus appears to be a viable solution to the 

STFT problem. When evaluating the signal, we can obtain a 

different scale using this method, which represents scaled-

version and it can be expressed as: 

𝛹∗
𝜓(𝑥, 𝑠) = ∫𝑥(𝑡). 𝜓𝜏,𝑠

∗ (𝑡)𝑑(𝑡)                 (6) 

Where: 

𝜓𝜏,𝑠
∗ =

1

√𝑠
𝜓 (

𝑡 − 𝛾

𝑠
)                                                     (7) 

       The scale and translation variables are represented by s and 

y, respectively. By putting the equation (7) in equation (6), we 

can obtain the continuous wavelet transform CWT, which can be 

described as the following formula: 

𝐶𝑊𝑇𝑥
𝜓(𝛾, 𝑠) =

1

√𝑠
∫𝑥(𝑡). 𝜓 (

𝑡 − 𝛾

𝑠
) 𝑑(𝑡)     (8) 

       It is obvious from equation (5) that the function of the 

analysis stands in for the wavelet. The CWT compares the 

determined signal to the stretched and shifted wavelet versions 

(Shahla et al. 2023). Dilation, often known as scaling, is a 

compression function.  In mathematics, the term "CWT" refers to 

a non-numerical apparatus or instrument that produces an 

overcomplete representation of a signal by continuously 

adjusting the translation and scale parameters of wavelets. It is 

crucial to note that the data must be discretized to compute the 

WT numerically. When discretizing the CTW into Discrete 

Wavelet Transform DWT, one can obtain sufficient data for 

decomposition and synthesis. It significantly reduces computing 

time, is simpler to use, and can analyze signals at multiple 

frequencies and resolutions. It can also split the signal into rough 

approximations and detailed information. When employing 

discrete values, a wavelet is translated and dilated in DWT. Most 

of the time, the dilation is represented by a factor of two 

(Hubbard, 1996). Many types of wavelets can be used in data 

analysis, but after applying many attempts at different wavelets 

on the study data, it became clear that the most appropriate and 

best wavelets are the ones that will be discussed and employed in 

the application part of this paper and these wavelets are: 

2.1 Daubechies Wavelets 

       Ingrid Daubechies, a scientist considered the founding father 

of wavelet study, is the name given to these wavelets. She created 

the so-called natural orthonormal wavelets with the characteristic 

of compact support in 1988, opening the way for the application 

of DWT (Kareem et al. 2020). The filters in this family are 

referred to by the initials DN or dbL1, where D and db refer to 

the researcher's last name Daubechies. For example, the second-

order candidates in this family, represented by D4 and db2, are 

identical (Misiti et al. 1996). A Daubechies wavelet L1 contains 

N/2 vanishing moments, which is equivalent to half the number 

of filter points. Because db1 and the Haar wavelet are 

comparable, dbN is commonly used to represent the N family of 

wavelets, which includes the Haar wavelet. 

       It is commonly recognized that the wavelet functional—also 

referred to as the mother wavelet functional—and the scaling 

function is crucial to wavelet analysis. Equations (9) and (10) 

show that a set of N integer coefficients regulate each member 

wavelet, and for k = (0,1,..., N-1), the filter coefficients 𝑎𝑘 , and   

𝑎1𝑘 coefficients are expressed as follows:  

 

𝛹(𝑢) = ∑ (−1)𝑘
1

𝑘=2−𝑁

𝑎1−𝑘∅(2𝑢 − 𝑘)        ; (1 −
𝑁

2
,
𝑁

2
)         (9) 

 

𝜙(𝑢) = ∑(−1)𝑘
𝑁−1

𝑘=0

𝑎𝑘∅(2𝑢 − 𝑘)       ; (0, 𝑁 − 1)                    (10) 

 

       Equations (6) and (7) provide the wavelet function and 

scaling function of the Dubechies wavelet, with u representing 

the continuous time variable (Mustafa & Ali, 2013). Wavelets 

exhibit orthogonality, biorthogonality, compact support, non-

symmetrical behavior, and other properties (Daubechies, 1992). 

2.2 Coiflets Wavelets 

       In response to Coifman's 1989 suggestion to combine the 

vanishing moments of low-passing and high-passing filters (ϕ 

and Ψ) rather than concentrating just on Ψ, Daubechies created 

these wavelets. These wavelets are called Coif N, where N is the 

candidate order and Coif is the acronym for Coifman. The order 

of the candidates and the filter length are related. Additionally, 

the scaling functional ϕ has (L1 = 2 N-1) moments of vanishing, 

whereas the wavelet function Ψ has (L = 2N) moments of 

vanishing. Coiflet wavelets exhibit traits such as orthogonality, 

biorthogonality, compact support, and near-symmetry. For 

further information, please see (Daubechies, 1994). 

2.3 Symlet Wavelets 

       As the name suggests, Symlet Wavelets are more 

symmetrical than Daubechies wavelets. The half-band filters can 

be factored in a variety of ways to create a decomposition filter 

and reconstruction filter that, when convolved, produce the same 

half-band filter. We can develop more symmetrical alternatives 

to the Daubechies filters for the longer half-band filters. Symlets 

wavelets have some properties such as orthogonality, 

biorthogonality, compact support, near from symmetry, …, etc. 

We refer the reader to (Daubechies, 1994) for more details. 

2.4 Fejér–Korovkin Wavelet 

       Filter creation is critical to the success of any wavelet. The 

issue with traditional filters is that wavelets lose high-frequency 

resolution. To address this issue, "fkN" is an orthogonal wavelet 

transform based on Fejér-Korovkin filters. It achieves optimum 
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frequency resolution using convolution kernels. Filters with N 

coefficients (e.g. 4, 6, 8, 14, 18, 22) are particularly helpful in 

discrete wavelet packet transformations. These filters aim to 

minimize the difference between a valid scaling filter and the 

ideal sine lowpass filter. In this work, the researcher will use the 

fk8 wavelet. 

3. WAVELET SHRINKAGE 

       Wavelet shrinking, often known as "wave shrink," is a 

crucial step following WT assessment to remove noise from 

observations. The researchers discovered that the frequency of 

noisy coefficients created after transformation is lower than that 

of the initial observation coefficients.  By applying a frequency 

threshold that cancels out noise features while keeping the 

original observation coefficients, shrinkage is a regularly used 

technique to reduce risk or noise. As a test, it produces a list of 

significant transformation coefficients that satisfy the threshold 

cut-off. This is the simpler basic nonlinear improvement of 

wavelet coefficients according to Donoho and Johnston. If a 

coefficient's absolute value is less than the chosen threshold's cut-

off level, the coefficient is regarded as zero. To show the 

observation Xt with noise, use the following formula: 

 

𝑋𝑡 = 𝑆𝑡 + 𝑛𝑡 ,             𝑡 = 0,1,2,… , 𝑁 − 1                       (11)     
       Where: 𝑆𝑡 is a noise-free real signal, 𝑛𝑡 are noise or 

independent normal random variables that must be inferred from 

the noisy observation Xt ( Leavline et al., 2011). The following 

stages provide an overview of the wavelet reduction technique. 

DWT transforms the observed time series into wavelet space. The 

specified shrinkage function and a defined threshold value are 

used to decrease and modify wavelet coefficients. The inverse 

DWT is applied to wavelet coefficients, resulting in a smoothed 

signal with reduced noise (Kozłowski, 2005). 

3.1. Selection of Threshold 

        Choosing the correct threshold is an important step in the 

denoising process. Excessively high thresholds may prevent the 

removal of noisy components. Setting the threshold too low 

might result in a smoothed signal that loses its features 

(Raimondo, 2002). The threshold value should be both high 

enough to remove noise and low enough to preserve the signal's 

important properties. Therefore, the threshold must be properly 

determined. Wavelet coefficient thresholds may be determined 

using many bases, including Universal, Minimax, Rigorous 

SURE, and Heuristic SURE. The paper will focus on the SURE 

threshold because to its importance in the practical portion. 

(Nason, 1996). 

3.2. Rules for Thresholding 

       WT coefficients allow for various thresholding processes, 

such as soft, hard, firm, mid, and non-negative garrote thresholds. 

The applied side will focus on soft rule-based thresholding. 

Donoho and Johnstone introduced the Soft Threshold approach 

for wavelet coefficients (Wn), an extension of the popular Hard 

Threshold method for reducing noise. It may be described as 

follows: 

 

𝑊𝑛
(𝑆𝑇)

= 𝑆𝑖𝑔𝑛(𝑊𝑛)(|𝑊𝑛| −  𝛿)+                             (12) 
here, 

𝑆𝑖𝑔𝑛 (𝑊𝑛) =  [

+1 𝑖𝑓 𝑊𝑛  > 0
0 𝑖𝑓 𝑊𝑛 = 0
−1 𝑖𝑓 𝑊𝑛  < 0

]                                   (13)     

Also, we have: 

(|𝑊𝑛| −  𝛿)+ = [
(|𝑊𝑛| −  𝛿) 𝑖𝑓  (|𝑊𝑛| −  𝛿)  ≥ 0
0               𝑖𝑓  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

]   (14) 

The soft threshold rule applies the "terminate or delete" or "shrink 

or kill" rule, resulting in zero termination of values below the 

threshold and preservation of values above the threshold. As a 

result, it performs a continuous function (Gençay and Whitcher, 

2001).  

3. APPLICATION ASPECT 

        The general budget can be clarified through the time series 

(1997-2021) of general expenditures (x1) as the first variable, and 

general revenues (x2) as the second variable in the general budget 

of the Kurdistan Region, which is summarized in the Appendix. 

There is a general trend in the time series of general revenues and 

expenditures, as shown in the following Figure 1. 

 

Figure 1: Time series for the general expenditures and revenues 

 

        The linear correlation coefficient between general 

expenditures and revenues amounted to 97%, which is positive 

and significant because the p-value is equal to zero, which is less 

than the level of significance (0.05). Figure 2 explains the cross-

correlation between general expenditures (X1) and revenues 

(X2).  

 

 
 

Figure 2:Cross-Correlation between (x1) and (x2) 

 

       To confirm whether the data followed a normal distribution 

or not, the Kolmogorov-Smirnov test was used on the two 

variables of the study. The result of the analysis showed that the 

p-value for the first variable was )0.66( and for the second 

variable was )0.52(, and both values are less than the significance 

level value of 0.05, which indicates that the data follows a normal 

distribution. 

       The purpose of the Augmented Dickey-Fuller Test (ADF) is 

to ascertain if a time series is stable because of the unit root or 

not close to a mean or linear trend. It tests the following 

hypothesis:  

Null Hypothesis: The data contains a unit root 

Alternative Hypothesis: The data does not contain a unit root 
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Table 1 displays the ADF stationarity test findings for the original 

time series, as well as the first and second (Diff(.)) differences. 

The ADF test results in Table 1 showing that the time series of 

general expenditures is stationary at a second difference. The 

absolute test statistic (3.7161) is larger than the critical value 

(1.9507) and the p-value (0.001) is less than the significance level 

(0.05). The time series of general revenues is stationary at the 

first difference, as the absolute test statistic (2.3411) exceeds the 

critical value (1.9513) and the p-value (0.0215) is smaller than 

the significance threshold (0.05). 

 

Table 1: Augmented Dickey-Fuller Test 

Null 

Rejected 

Critical 

Value 
p-value 

Test 

Statistics 
Data 

false -1.9507 0.8439 0.6273 X1 

false -1.9513 0.0944 -1.6336 Diff (X1) 

true -1.9518 0.0010 -3.7161 DiffDiff (X1) 

false -1.9507 0.9120 1.0109 X2 

true -1.9513 0.0215 -2.3411 Diff (X2) 

true -1.9518 0.0010 -5.0212 DiffDiff (X2) 

 

Figures 3 and 4 show the sample Autocorrelation and Partial 

Autocorrelation Function for variables (X1) and (X2), 

respectively. 

 

 
Figure 3:ACF, and PACF for the series X1 

 

 

 
Figure 4:  ACF, and PACF for the series X2 

 

3.1. Classical VAR Models for original time series data 

       VAR models are an extension of the AR model involving 

two variables to capitalize on cross-correlation. Now we will look 

for a model that can predict both X1 and X2. The AR-stationary 

2-2-dimensional VAR model with a linear temporal trend (VAR) 

was chosen based on the lowest AIC and BIC values among 12 

feasible models. The vector autoregressive model has the 

following equation: 

(1 − 𝜙1𝐿 − 𝜙2𝐿
2)𝑦𝑡 = 𝛿𝑡 + 𝜀𝑡             (15) 

The estimation results for the classical VAR (2) model can be 

shown in Table 2. 

 

Table 2: Classical Estimation Results 

 

Table 2 clearly shows the statistical significance of some 

estimated parameters, the trend 1 and 2 parameters, which 

supports the strength of this model. Figure 5 shows the model fit 

for both variables. 

 

 

Parameter Value Standard 
Error 

t 
Statistic 

p-
Value 

AR {1} (1,1) -0.40179 0.325 -1.236 0.217 

AR {1} (2,1) -0.44588 0.220 -2.023 0.043 

AR {1} (1,2) 2.1347 0.293 7.293 3.025

3e-13 

AR {1} (2,2) 1.4092 0.198 7.101 1.242

8e-12 

AR {2} (1,1) -0.046762 0.294 -0.159 0.873 

AR {2} (2,1) -0.27641 0.199 -1.388 0.165 

AR {2} (1,2) -0.57395 0.670 -0.860 0.390 

AR {2} (2,2) 0.136 0.452 0.301 0.764 

Trend (1) 211558.559 96609.818 2.190 0.029 

Trend (2) 255336.879 65506.809 3.898 9.704

3e-05 
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Figure 5:Model fit for the classical model VAR (2)  

 

 
 

Figure 6: Residual Sample Autocorrelation Function for 

classical model VAR (2)  

 

        Figure 6 illustrates how the residuals change around the zero 

line. Additionally, both variables' autocorrelation coefficients are 

entirely within the confidence range. Furthermore, most residual 

values are inside the standard curve. The VAR (2) model has 

passed all relevant tests and can anticipate future values.  

3.2. Proposed VAR Models for time series data:  

        The suggested technique involves employing wavelets in 

MATLAB to decrease noise and contamination in time series 

data, followed by forecasting after reconstructing the VAR (2) 

model. Wavelets such as Coiflets, Daubechies, Symlets, and 

Fejér-Korovkin were utilized alongside thresholding methods 

like Sure-Threshold and a soft rule. Figure 7 depicts the wavelet 

Coif2 using  the Sure-Threshold approach and soft rules. 

       The time series data (1 and 2 represent X1 and X2, 

respectively) was transformed using wavelet filters, de-noised, 

and then reconstructed using the VAR (2) model.  

 

 
 

Figure 7: Coif2 bivariate wavelet 

 

Table 3 displays estimate results for the proposed Coif2 VAR (2) 

model. 

Table 3: Proposed Estimation Results (Coif2) 

Paramete

r 

Value Standard 

Error 

t 

Statistic 

p-

value 

AR {1} 

(1,1) 

0.26953 0.343 0.785 0.433 

AR {1} 

(2,1) 

-0.20465 0.251 -0.816 0.414 

AR {1} 

(1,2) 

2.1552 0.261 8.243 1.682

1e-16 

AR {1} 

(2,2) 

1.5109 0.191 7.916 2.445

7e-15 

AR {2} 

(1,1) 

0.49388 0.282 1.753 0.080 

AR {2} 

(2,1) 

-0.12855 0.206 -0.625 0.532 

AR {2} 

(1,2) 

-1.9746 0.643 -3.069 0.002 

AR {2} 

(2,2) 

-0.41361 0.470 -0.881 0.379 

Trend (1) 105333.348

5 

83215.54

5 

1.266 0.206 

Trend (2) 218722.619

5 

60746.18

9 

3.6006 0.000

3 

 

Table 3 demonstrates the statistical significance of calculated 

parameters (trend 1 and 2), highlighting the model's strength. 

Figure 8 illustrates the model fit for both variables. 
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Figure 8:Model fit for the proposed Coif2 model VAR (2)  

 

       Figure 9 illustrates how the residuals change around the zero 

line. Additionally, both variables' autocorrelation coefficients are 

entirely within the confidence range. Furthermore, most residual 

values are inside the standard curve. The VAR (2) model has 

passed all relevant tests and can anticipate future values. 

 

 
 

Figure 9: Residual Sample Autocorrelation Function for 

proposed Coif2 model VAR (2) 

 

       Daubechies by order (4) at the same time some thresholding 

methods were used, with the use of a soft rule, and then 

reconstructing the VAR (2) model. Table 4 shows the estimation 

results for the second proposed (db4) VAR (2) model. 

 

 

 

 

 

Table 4: Proposed Estimation Results (db4) 

Parameter Value    Standard Error t Statistic p-value 

AR {1} (1,1) -0.195 0.248 -0.789 0.430 

AR {1} (2,1) 0.113 0.092 1.224 0.221 

AR {1} (1,2) 1.771 0.288 6.148 0.000 

AR {1} (2,2) 1.550 0.107 14.430 0.000 

AR {2} (1,1) -0.440 0.224 -1.959 0.050 

AR {2} (2,1) -0.047 0.084 -0.563 0.574 

AR {2} (1,2) -0.013 0.496 -0.027 0.979 

AR {2} (2,2) -0.902 0.185 -4.872 0.000 

Trend (1) 230944.965 88469.135 2.611 0.009 

Trend (2) 168810.336 32989.574 5.117 0.000 

Table 4 clearly shows the statistical significance of some 

estimated parameters, the trend 1 and 2 parameters, which 

supports the strength of this model. Figure 10 shows the model 

fit for both variables. 

 

       Figure 11 illustrates how the residuals change around the 

zero line. Additionally, both variables' autocorrelation 

coefficients are entirely within the confidence range. 

Furthermore, most residual values are inside the standard curve. 

The VAR (2) model has passed all relevant tests and can 

anticipate future values. 

 

 
 

Figure 10:Model fit for the proposed (db4) model VAR (2) 

 

 
 

Figure 11: Residual Sample Autocorrelation Function for 

proposed db4 model VAR (2) 
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Symlets by order (3) at the same time some thresholding methods 

were used, with the use of a soft rule, and then reconstructing the 

VAR (2) model. Table 5 shows the estimation results for the third 

proposed (Sym3) VAR (2) model. 

 

Table 5: Proposed Estimation Results (Sym3) 

Parameter Value 
Standard 

Error 

t 

Statistic 

p-

value 

AR {1} 

(1,1) 
-0.242 0.263 -0.919 0.358 

AR {1} 

(2,1) 
-0.154 0.110 -1.397 0.162 

AR {1} 

(1,2) 
1.580 0.334 4.724 0.000 

AR {1} 

(2,2) 
1.500 0.140 10.705 0.000 

AR {2} 

(1,1) 
-0.663 0.266 -2.488 0.013 

AR {2} 

(2,1) 
-0.249 0.112 -2.232 0.026 

AR {2} 

(1,2) 
0.460 0.546 0.842 0.400 

AR {2} 

(2,2) 
-0.311 0.229 -1.358 0.174 

Trend (1) 272528.730 89959.415 3.030 0.002 

Trend (2) 209441.534 37699.609 5.556 0.000 

 

       Table 5 demonstrates the statistical significance of 

calculated parameters (trend 1 and 2), highlighting the model's 

strength. Figure 12 displays the model fit for both variables. 

 

 
Figure 12: Model fit for the proposed (Sym3) model VAR (2) 

 

       Figure 13 illustrates how the residuals change around the 

zero line. Additionally, both variables' autocorrelation 

coefficients are entirely within the confidence range. 

Furthermore, most residual values are inside the standard curve. 

The VAR (2) model has passed all relevant tests and can 

anticipate future values. 

 

 
Figure 13: Residual Sample Autocorrelation Function for 

proposed Sym3 model VAR (2) 

       Fejér–Korovkin by order (8) at the same time some 

thresholding methods were used, with the use of a soft rule, and 

then reconstructing the VAR (2) model. Table 6 shows the 

estimation results for the fourth proposed (FK8) VAR (2) model. 

 

Table 6:Proposed Estimation Results (FK8) 

Parameter Value 
Standard 

Error 

t 

Statistic 

P-

Value 

AR {1} 

(1,1) 
-0.343 0.280 -1.227 0.220 

AR {1} 

(2,1) 
-0.176 0.082 -2.145 0.032 

AR {1} 

(1,2) 
1.579 0.391 4.043 0.000 

AR {1} 

(2,2) 
1.731 0.115 15.092 0.000 

AR {2} 

(1,1) 
-0.614 0.309 -1.989 0.047 

AR {2} 

(2,1) 
-0.031 0.091 -0.340 0.734 

AR {2} 

(1,2) 
0.543 0.628 0.864 0.387 

AR {2} 

(2,2) 
-0.743 0.185 -4.024 0.000 

Trend (1) 267447.707 98609.915 2.712 0.007 

Trend (2) 174915.839 28961.007 6.040 0.000 

 

       Table 6 clearly shows the statistical significance of some 

estimated parameters, the trend 1 and 2 parameters, which 

supports the strength of this model. Figure 14 shows the model 

fit for both variables. 
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Figure 15 illustrates how the residuals change around the zero 

line. Additionally, both variables' autocorrelation coefficients are 

entirely within the confidence range. Furthermore, most residual 

values are inside the standard curve. The VAR (2) model has 

passed all relevant tests and can anticipate future values.  

 

Figure 14:Model fit for the proposed (FK8) model VAR (2) 

 

 

 
 

Figure 15: Residual Sample Autocorrelation Function for 

 

3.3. Best Model Choosing 

       The best model is selected by comparing the three estimated 

models based on criteria AIC and BIC as shown in Table 7: 

 

Table 7:VAR (2) models’ efficiency criteria 

Method                                           AIC    BIC 

The classical                              1447.076 1458.431 

The first proposed (Coif2)            1431.330 1442.685 

The second proposed (db4)       1409.924 1421.278 

The third proposed (Sym3)       1421.738 1433.093 

The fourth proposed (FK8)       1412.818 1424.172 

 

       Table 7 shows that the suggested method of the second one 

(db4) was the optimal and the best because the values of criterion 

AIC and BIC are less than their value in the other methods, so the 

following second proposed model was relied upon: 

 

3.4. Forecasting the General Expenditures and Revenues 

 

The best model estimated above VAR (2) with db4 was used to 

forecast the general expenditures and revenues for the Kurdistan 

Region of Iraq for the five years (2022-2026), and are 

summarized in Table 8: 

 

Table 8. Forecasting the general expenditures and revenues 

VAR (2) with db4 

 

Year General Expenditures General Revenues 

2022        22327000                      18581000 

2023        22379000                      19485000 

2024        26081000                      19319000 

2025        25258000                      18830000 

2026        23159000                      18124000 

 

Table 8 shows that there is an expected increase in the coming 

years in general expenditures and revenues, with the balance of 

general expenditures remaining higher than general revenues, 

which constitutes the continuation of the general deficit in the 

budget of the Kurdistan Region of Iraq in the coming years, as 

shown in Figure 16. 

 

Figure 16: The time series data with forecasting 

CONCLUSION & RECOMMENDATIONS 

       Through the study of simulation and real data, the following 

main conclusions and recommendations were reached: 

Conclusions 

1. All the proposed methods are better than the classical method 

for this data depending on criteria AIC and BIC. 

2. The second presented method (db4) was the optimal one for 

the VAR (2) model of general expenditures and revenues.  

3. There is a simple linear correlation between general revenues 

and expenditures amounting to 97%, which is positive and 

significant. 

4. The forecast for the period (2022-2026) shows an increase in 

general expenditures and revenues. 

5. There is a general trend in the time series of general 

expenditures and revenues indicating a significant increase in the 

sustainable deficit of the general budget in the Kurdistan Region 

of Iraq. 

 

 

 1 − [
−0.19539 1.77110
0.11309 1.55010

] 𝐿 − [
−0.43953 −0.01334
−0.04707 −0.90171

] 𝐿2  
𝑦1𝑡

𝑦2𝑡
 =  

230944.9645
168810.3355
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Recommendations 

1. Approval of the proposed estimated model and forecasting 

values for the coming years to draw plans. 

2. Develop financial and economic stability in the Kurdistan 

Region-Iraq to achieve financial sustainability and reduce the 

general budget deficit. 

3. Conducting a prospective study based on another time series 

analysis using Wavelet Shrinkage for general revenues and 

expenditures data. 

4. Conducting a prospective study based on VAR time series 

analysis using another Wavelet type for general revenues and 

expenditures data. 
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APPENDIX  

General budget in the Kurdistan Region of Iraq 

General 

expenditures (x2) 

General 

revenues (x1) 
Year 

444761 347402 1997 

572680 463157 1998 

585192 480637 1999 

491947 408142 2000 

506545 391861 2001 

678204 548184 2002 

896089 789956 2003 

2914617 2878345 2004 

3651075 3222007 2005 

4418818 4315702 2006 

7847660 5982356 2007 

7628783 6580784 2008 

8857263 8283172 2009 

11432176 10597176 2010 

13950670 12386000 2011 

15245797 13200950 2012 

16942749 15257849 2013 

21636133 12417303 2014 

13203700 9576758 2015 

8467041 7462207 2016 



Ali / Science Journal of the University of Zakho, 12(3), 345–355 July-September, 2024 

 

355 

 

11965562 9057407 2017 

12602532 9810288 2018 

14294089 10563169 2019 

15368197 13911778 2020 

27066987 17260387 2021 

 

 

 

 

 


