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ABSTRACT: 

The study tackles the critical need for efficient optimization techniques in unconstrained optimization problems, where conventional 

techniques often suffer from slow and inefficient convergence. There is still a need for algorithms that strike a balance between 

computational efficiency and robustness, despite advancements in gradient-based techniques. This work introduces a novel conjugate 

gradient algorithm based on the logistic mapping formula. As part of the methodology, descent conditions are established, and the 

suggested algorithm's global convergence properties are thoroughly examined. Comprehensive numerical experiments are used for 

empirical validation, and the new algorithm is compared to the Polak-Ribière-Polyak (PRP) algorithm. The suggested approach 

performs better than the PR algorithm, according to the results, and is more efficient since it needs fewer function evaluations and 

iterations to reach convergence. Furthermore, the usefulness of the suggested approach is demonstrated by its actual use in regression 

analysis, notably in the modelling of population estimates for the Kurdistan Region of Iraq. In contrast to conventional least squares 

techniques, the method maintains low relative error rates while producing accurate predictions. All things considered, this study 

presents the novel conjugate gradient algorithm as an effective tool for handling challenging optimisation problems in both theoretical 

and real-world contexts. 

KEYWORDS: optimization; conjugate gradient; step size; regression analysis.

1. INTRODUCTION 

        Unconstrained optimization issues entail minimizing an 

objective function that relies exclusively on the real variables, 

devoid of any restrictions on the variables' values. This can be 

expressed mathematically as: 

𝑚𝑖𝑛𝑓(𝑥)            ∀ 𝑥 ∈ 𝑅𝑛,                                                         (1.1) 

where 𝑓 ∶  𝑅𝑛  →  𝑅 , 𝑓 ∈ 𝐶1, and 𝑔𝑘 = ∇𝑓(𝑥𝑘)  is a gradient at 

point 𝑥𝑘. The conjugate gradient method (CG) is an optimization 

algorithm that lies between the steepest descent method and the 

Newton method in terms of computational complexity and 

convergence behaviour. Unlike the steepest descent method, 

which updates the solution solely in the direction of the negative 

gradient, the (CG) method modifies this direction by 

incorporating a positive linear combination of the previous search 

direction. This adjustment helps to overcome the steepest descent 

method's limitation of slow convergence. The (CG) method only 

requires the computation of first-order derivatives, specifically 

the gradient of the objective function, which significantly reduces 

computational cost compared to methods that require second-

order derivatives, such as the Newton method. The Newton 

method involves calculating and inverting the Hessian matrix, a 

process that is computationally expensive and often impractical 

for large-scale problems. In contrast, a key advantage of the (CG) 

method is that it does not require the Hessian matrix or its 

approximation, making it particularly well-suited for large-scale 

optimization challenges. 

The (CG) algorithm typically generates a sequence 𝑥𝑘 as: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , 𝑘 = 0,1,2, … ,                                         (1.2)  

where 𝛼𝑘 > 0  is  the step length. 𝑑𝑘 is a search direction given 

by: 

𝑑0 = −𝑔0 ,  and 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑑𝑘   𝑓𝑜𝑟 𝑘 ≥ 1,                                                (1.3)   

the parameter 𝛽𝑘 is crucial, with different choices leading to 

various CG methods. Over the years, numerous variants of this 

scheme have been proposed and widely applied in practice, such 

as the Fletcher-Reeves (FR), (Fletcher & Reeves, 1964), Polak-

Ribière-Polyak (PRP), (Polak & Ribiere, 1969; Polyak B. T., 

1969), Hestenes-Stiefel (HS), (Hestenes & Stiefel, 1952), Liu-

Storey (LS), (Liu & Storey, 1991), Dai-Yuan (DY), (Dai & Yuan, 

1999), and Conjugate-Descent (CD),  (Fletcher, 1987)methods.  

𝜷𝒌
𝑭𝑹 =

𝒈𝒌+𝟏
𝑻 𝒈𝒌+𝟏

𝒈𝒌
𝑻𝒈𝒌

, Fletcher-Reeves (1964). 

𝜷𝒌
𝑷𝑹𝑷 =

𝒈𝒌+𝟏
𝑻 𝒚𝒌

𝒈𝒌
𝑻𝒈𝒌

, Polak-Ribière-Polyak (1969). 

𝜷𝒌
𝑯𝑺 =

𝒈𝒌+𝟏
𝑻 𝒚𝒌

𝒅𝒌
𝑻𝒚𝒌

, Hestenes-Stiefel (1952). 

𝜷𝒌
𝑳𝑺 =

𝒈𝒌+𝟏
𝑻 𝒚𝒌

−𝒅𝒌
𝑻𝒈𝒌

 Lia-Storey (1991). 
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𝜷𝒌
𝑫𝒀 =

𝒈𝒌+𝟏
𝑻 𝒈𝒌+𝟏

𝒅𝒌
𝑻𝒚𝒌

, Dia-Yuan (1999). 

𝜷𝒌
𝑪𝑫 = −

𝒈𝒌+𝟏
𝑻 𝒈𝒌+𝟏

𝒅𝒌
𝑻𝒈𝒌

, Conjugate Descent (1987). 

        Numerous researchers have dedicated their efforts to 

refining (CG) methods, motivated by their widespread adoption 

in solving optimization problems, as well as their properties of 

global convergence and low memory utilization. Interestingly, 

most of these efforts are directed towards improving 

conventional CG methods, which are the first generation of CG 

algorithms. For more details, see (Ibrahim & Mohammed, 2022, 

2024; Ibrahim & Shareef, 2019; Jahwar et al., 2024; Shareef & 

Ibrahim, 2016). 

Since classical CG methods have well-established convergence 

properties and fundamental principles, they serve as the basis for 

all subsequent variants. In spite of their success, these methods 

have stimulated a wealth of research studies focused on particular 

issues, like enhancing robustness, scalability, and convergence 

rates for high-dimensional problems. Since the gradients in these 

approaches are mutually orthogonal and the parameters 𝛽𝑘 are 

similar, they are equivalent when 𝑓 is a highly convex quadratic 

function and the line search is exact. However, their behaviour 

differs significantly when applied to broad nonlinear functions 

with imprecise line searches. Although the strong convergent 

features of FR, DY, and CD algorithms are well known, jamming 

may cause them to perform poorly in real-world scenarios. 

Furthermore, PRP, HS, and LS approaches often outperform one 

another even if they might not converge in general. 

        Naturally, researchers strive to develop new techniques that 

combine the best features of these two categories. Numerous 

hybrid approaches have been proposed thus far. For instance, 

Touati-Ahmed and Storey (Touati-Ahmed & Storey, 1990) 

originally introduced a hybrid conjugate gradient algorithm that 

combines the FR and PRP techniques in 1990. Subsequently, Hu 

and Storey (Hu & Storey, 1991), along with Gilbert and Nocedal 

(Gilbert & Nocedal, 1992), explored other hybrid systems related 

to the PRP and FR techniques. Dai and Yuan (Dai & Yuan, 2001) 

combined the DY technique with the HS method to create two 

hybrid CG algorithm aimed at enhancing the practical application 

of the DY method. For large-scale problems in unconstrained 

optimization, Andrei (Andrei, 2008) presented a novel hybrid CG 

approach, referred to as the HYBRID algorithm, which is based 

on the HS and DY methods. A primary characteristic of this 

hybrid method is that the search direction is the Newton 

direction. Remarkably, this hybrid technique often out performs 

certain complex conjugate gradient methods in various 

applications. 

        This research focuses on how new improvements in 

conjugate gradient methods can contribute to enhanced 

performance of optimization algorithms. Specifically, how can 

techniques such as logistic mapping enhance these methods. 

The objective of this study is to develop a new conjugate gradient 

method incorporating logistic mapping and to analyze its 

performance compared to traditional methods. The focus is on 

improving convergence rates and robustness, particularly in 

applications related to regression analysis. 

The motivation behind this study is to address the need for more 

efficient optimization techniques capable of handling large-scale 

problems and real-world scenarios effectively. 

The challenges include ensuring the robustness of the new 

method, addressing convergence issues, and validating its 

effectiveness in practical applications. 

This study highlights how logistic mapping can improve 

conjugate gradient methods, offering new insights into 

optimization by enhancing convergence rates and expanding 

practical applications. 

        The structure of the paper is as follows: In next section, we 

present our particular technique and several methods we used to 

determine the parameter 𝛽𝑘. Under appropriate conditions, the 

descent and adequate descent properties of the suggested 

approach are also covered with the global convergence. In 

Section 3, preliminary numerical data are shown. We create a 

summary of our article in the end. 

2.  NEW CONJUGATE GRADIENT METHODS 

        This section presents a new (CG) method for solving (1.1). 

The CG parameter of the algorithm is based on the logistic 

mapping formula (Lu et al., 2006), which is widely used in 

optimization. By utilizing the logistic mapping along with the CG 

parameter from Polak-Ribière-Polyak (PRP), the algorithm's 

performance can be enhanced., From logistic mapping formula 

we have 

𝛽𝑘
𝑁𝑒𝑤 = 𝛽𝑘

𝑃𝑅𝑃(1 − 𝛽𝑘
𝑃𝑅𝑃),                                                          (2.1) 

to achieve balance, multiplying the second term of the equation 

(2.1), by scalar we get: 

𝛽𝑘
𝑁𝑒𝑤 = (

𝑔𝑘+1
𝑇 𝑦𝑘

𝑔𝑘
𝑇𝑔𝑘

− 𝜌 (
𝑔𝑘+1

𝑇 𝑦𝑘

𝑔𝑘
𝑇𝑔𝑘

)2),                                              (2.2) 

where 𝜌 = 𝜇
𝑔𝑘

𝑇𝑔𝑘

𝑑𝑘
𝑇𝑦𝑘

 and  0 < 𝜇 ≤ 1. 

After some algebraic operations, we get: 

𝛽𝑘
𝑁𝑒𝑤 =

𝑔𝑘+1
𝑇 𝑦𝑘

𝑔𝑘
𝑇𝑔𝑘

− 𝜇(
(𝑔𝑘+1

𝑇 𝑦𝑘)2

𝑔𝑘
𝑇𝑔𝑘𝑑𝑘

𝑇𝑦𝑘
).                                                 (2.3) 

1.1 Algorithm of the New (CG) Method: 

Step (1): Initialization  

               Begin with an initial point 𝑥0 ∈ 𝑅𝑛. 

Step (2): Initialization and Gradient Computation  

               Set 𝑘 = 0 and compute the gradient 𝑔0 = ∇𝑓(𝑥0).        

                Define the search direction 𝑑0 = −𝑔0 . 

                If  𝑔0 = 0, terminate the algorithm.  

Step (3): Line Search  

                Determine the step length 𝛼𝑘 , to minimize the    

                objective function 𝑓(𝑥𝑘+1) by using cubic line  

                 search 

Step (5): Update  

                Update the iterate: 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘                                     

Step (6): Gradient Update and Termination Check  

                Compute  𝑔𝑘+1 = ∇𝑓(𝑥𝑘+1) , If:‖𝑔𝑘+1‖ ≤ 10−5 ,  

                then stop 

Step (7): Conjugacy Update  

                Calculate  𝛽𝑘 based on a specific rule (2.3) 

Step (8): Conjugate Direction Update  

                Update the search direction: 

                       𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘
𝑁𝑒𝑤𝑑𝑘, 

Step (9): Convergence Check  

               If 𝑘 = 𝑛 or if |𝑔𝑘
𝑇𝑔𝑘+1| ≥ 0.2‖𝑔𝑘+1‖2 return to  
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               Step 2; otherwise, increment k and return to Step 3 

 

Theorem 1. Let {𝑥𝑘} and {𝑑𝑘} , be two sequences generated by 

new method. Then the 𝑑𝑘+1 satisfies the: 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ 0. 

 

Proof: Using (1.3) and (2.3), we've obtained 

𝑑𝑘+1 = −𝑔𝑘+1 + (
𝑔𝑘+1

𝑇 𝑦𝑘

𝑔𝑘
𝑇𝑔𝑘

− 𝜇
(𝑔𝑘+1

𝑇 𝑦𝑘)2

𝑔𝑘
𝑇𝑔𝑘𝑑𝑘

𝑇𝑦𝑘
)𝑑𝑘,                             (2.4) 

by multiplying the aforementioned equation by  𝑔𝑘+1
𝑇 , on both 

sides, we obtain: 

 𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖2 +

𝑔𝑘+1
𝑇 𝑦𝑘

𝑔𝑘
𝑇𝑔𝑘

𝑔𝑘+1
𝑇 𝑑𝑘 − 𝜇

(𝑔𝑘+1
𝑇 𝑦𝑘)2

𝑔𝑘
𝑇𝑔𝑘𝑑𝑘

𝑇𝑦𝑘
𝑔𝑘+1

𝑇 𝑑𝑘 

,                                                                                                                    (2.5) 

when the 𝛼𝑘 is determined through an exact line search, yielding 

𝑑𝑘
𝑇𝑔𝑘+1 = 0, the resultant equation 

 𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖2 ≤ 0. 

the descent condition validated. 

 In the case of an inexact line search, where 𝑑𝑘
𝑇𝑔𝑘+1 ≠ 0. Since 

we have 𝑔𝑘+1
𝑇 𝑑𝑘 < 𝑑𝑘

𝑇𝑦𝑘. So, we get  

 𝑔𝑘+1
𝑇 𝑑𝑘+1 < −‖𝑔𝑘+1‖2 + 𝛽𝑘

𝑃𝑅𝑃𝑔𝑘+1
𝑇 𝑑𝑘 − 𝜇

(𝑔𝑘+1
𝑇 𝑦𝑘)2

𝑔𝑘
𝑇𝑔𝑘

,          (2.6) 

        The affirmation that the initial two terms of equation (2.6) 

adhere to non-positivity stems from the fulfilment of the descent 

condition by the Polak-Ribière-Polyak (PRP) algorithm. This 

condition is a fundamental criterion in optimization theory, 

ensuring that iterative algorithms make progress towards 

minimizing the objective function. 

Since the search direction of (PRP) method represented the 

descent condition as   

.−‖𝑔𝑘+1‖2 + 
(𝑔𝑘+1

𝑇 𝑦𝑘)(𝑔𝑘+1
𝑇 𝑑𝑘)

𝑔𝑘
𝑇𝑔𝑘

≤ 0, 

        It signifies that the chosen descent directions align with the 

objective of function minimization, thereby facilitating 

convergence. This condition serves as a crucial safeguard against 

divergent behaviour and ensures the convergence trajectory of 

the algorithm. 

The adherence of the PRP algorithm to the descent condition 

engenders confidence in subsequent analytical derivations, 

particularly in equation (2.6). By establishing the negativity of 

the initial terms, the proof establishes a robust foundation for 

affirming the convergence of the CG method, even in scenarios 

involving inexact line search methodologies. 

And it is obviously that  𝜇,  𝑔𝑘
𝑇𝑔𝑘 and (𝑔𝑘+1

𝑇 𝑦𝑘)2 are positive, so, 

we get to the third term of equation (2.6), which is less than or 

equal to zero. Hence, we get  

 𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖2 + 𝛽𝑘

𝑃𝑅𝑔𝑘+1
𝑇 𝑑𝑘 − 𝜇

(𝑔𝑘+1
𝑇 𝑦𝑘)2

𝑔𝑘
𝑇𝑔𝑘𝑑𝑘

𝑇𝑦𝑘
𝑔𝑘+1

𝑇 𝑑𝑘 ≤ 0. 

The descent condition is proved. 

Theorem 2. Let {𝑥𝑘} and {𝑑𝑘}  be two sequences generated by 

new method. Then the 𝑑𝑘+1 satisfies the sufficient descent 

condition: 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −𝑐‖𝑔𝑘+1‖2 , for any 𝑘 ≥ 0. 

Proof: The two initial terms of equation (2.6) are demonstrably 

less than or equal to zero due to the properties of the Polak-

Ribière-Polyak (PRP) algorithm, which achieve the descent 

condition. Therefore, we obtain: 

𝑔𝑘+1
𝑇 𝑑𝑘+1 < −(𝜇

(𝑔𝑘+1
𝑇 𝑦𝑘)2

𝑔𝑘
𝑇𝑔𝑘‖𝑔𝑘+1‖2)‖𝑔𝑘+1‖2, 

let  𝑐 = 𝜇
(𝑔𝑘+1

𝑇 𝑦𝑘)2

𝑔𝑘
𝑇𝑔𝑘‖𝑔𝑘+1‖2  .  

Then, 𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −𝑐‖𝑔𝑘+1‖2 .∎ 

In this section, we establish the global convergence of the new 

method by relying on the following basic assumptions regarding 

the objective function. 

Assumption (*): (Zoutendijk, 1970), 

1. Lower Bound: The objective function 𝑓(𝑥)  is bounded below 

on   𝑅𝑛 . The level set 𝛿 =  {𝑥 |𝑓(𝑥)  ≤  𝑓(𝑥0)}  is bounded. 

2. Continuity and Differentiability: The objective function 𝑓 ∶

 𝑅𝑛  →  𝑅 is continuously differentiable on 𝑅𝑛. 

3. Gradient Bound: In some neighbourhood 𝑁 of 𝛿, 𝑓 is 

continuously differentiable, and its gradient is Lipschitz 

continuous with Lipschitz constant 𝛿 >  0, i.e. 

‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤ 𝛿‖𝑥 − 𝑦‖  ∀ 𝑥, 𝑦 ∈ 𝛿. 

From the above assumptions, that there exists a positive constant 

𝑏 such that 
‖𝑔(𝑥)‖ ≤ 𝑏   ∀𝑥 ∈ 𝛿.                                                                               (2.7) 

If 𝑓 is a uniformly convex,  ∃ 𝜗 > 0 such that: 

(𝑔(𝑥) − 𝑔(𝑦))
𝑇

(𝑥 − 𝑦) ≥ 𝜗‖𝑥 − 𝑦‖2 ∈ Ω,                            (2.8) 

we can rewrite the above equation in the following manner: 

𝑦𝑘
𝑇𝑣𝑘 ≥ 𝜗‖𝑣𝑘‖2,                                                                                        (2.9) 

        These assumptions are standard in optimization theory and 

provide a foundation for demonstrating the convergence 

properties of the proposed method. Specifically, the continuity 

and differentiability assumption ensure the smoothness of the 

objective function, while the Lipschitz condition on the gradient 

guarantees that changes in the gradient are controlled. Finally, the 

lower bound condition ensures that the optimization process does 

not diverge to −∞, thus supporting the argument for global 

convergence. 

Lemma 1. (Zhang et al., 2006). Assuming the aforementioned 

conditions hold. Consider the methods (1.2) and (1.3), where 

𝑑𝑘+1 is a descent direction and 𝛼𝑘 satisfies the standard Wolfe 

line search. If 

∑
1

‖𝑑𝑘+1‖2
 
𝑘≥1 = ∞ ,  

then, 𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓 ‖𝑔𝑘+1‖ = 0 .                                                                                                                      

Theorem 3. If the sequences {𝑥𝑘}, {𝑑𝑘}, {𝑔𝑘}, {𝛼𝑘} , are created 

by our algorithm, the assumptions (*) hold, the following 

properties can be established: 

𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓 ‖𝑔𝑘+1‖ = 0 . 

Proof: From equations (1.3) and (2.3), we have 

‖𝑑𝑘+1‖ ≤ ‖𝑔𝑘+1‖ + |
𝑔𝑘+1

𝑇 𝑦𝑘

𝑔𝑘
𝑇𝑔𝑘

− 𝜇(
(𝑔𝑘+1

𝑇 𝑦𝑘)2

𝑔𝑘
𝑇𝑔𝑘𝑑𝑘

𝑇𝑦𝑘
)| ‖ 𝑑𝑘‖ ,             (2.10) 

‖𝑑𝑘+1‖ ≤ ‖𝑔𝑘+1‖ + (|
𝑔𝑘+1

𝑇 𝑦𝑘

𝑔𝑘
𝑇𝑔𝑘

 | + 𝜇 |
(𝑔𝑘+1

𝑇 𝑦𝑘)2

𝑔𝑘
𝑇𝑔𝑘𝑑𝑘

𝑇𝑦𝑘
|) ‖ 𝑑𝑘‖ ,                                                                                                  

since, 

𝑔𝑘+1
𝑇 𝑦𝑘 ≤ ‖ 𝑔𝑘+1‖‖ 𝑦𝑘‖ ,                                                                  (2.11)  

from Lipschitz Condition ‖𝑦𝑘‖ ≤ 𝐿‖𝑣𝑘‖, and by using (2.9), we 

get 

‖𝑑𝑘+1‖ ≤ ‖𝑔𝑘+1‖ + (
‖𝑔𝑘+1‖‖ 𝑦𝑘‖

‖𝑔𝑘‖2  +
(‖ 𝑔𝑘+1‖‖ 𝑦𝑘‖)2

‖𝑔𝑘‖2𝜗‖𝑣𝑘‖2  ) ‖ 𝑑𝑘‖,             

‖𝑑𝑘+1‖ ≤ ‖𝑔𝑘+1‖ + (
𝐿𝑏‖𝑣𝑘‖

‖𝑔𝑘‖2  +
𝐿2𝑏2

‖𝑔𝑘‖2𝜗
 ) ‖ 𝑑𝑘‖,                                                                                                                                                            

Since, ‖𝑣𝑘‖ = ‖𝑥 − 𝑥𝑘‖,   𝐷 = 𝑚𝑎𝑥{‖𝑥 − 𝑥𝑘‖} , ∀ 𝑥, 𝑥𝑘 ∈ 𝑅} . 

 Hence, 

‖𝑑𝑘+1‖ ≤ 𝑏 + (
𝐿𝑏𝐷

‖𝑔𝑘‖2  +
𝐿2𝑏2

‖𝑔𝑘‖2𝜗
 )

𝐷

𝛼
= 𝛽 , 

⇒ ∑
1

‖𝑑𝑘+1‖2
 
𝑘≥1 ≥ ∑

1

𝛽2
 
𝑘≥1 = ∞, 

⇒ ∑
1

‖𝑑𝑘+1‖2
 
𝑘≥1 = ∞ , 
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By using lemma 1, we get 𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0 .The proof 

complete. 

3. NUMERICAL RESULTS 

        This section presents the numerical results of the new 

method for unconstrained optimization and its application to 

regression analysis. 

 

3.1 The Unconstrained Optimization 

        The objective of this subsection is to assess the efficacy of 

our novel method in addressing optimization challenges, 

juxtaposed against the Polak-Ribière-Polyak (PRP), method. We 

employ a comparative analysis, utilizing well-established 

nonlinear problems characterized by varying dimensionalities 

(where (10 ≤ 𝑛 ≤ 5000)). Each computational implementation 

is meticulously crafted in FORTRAN 95 to ensure precision and 

reliability. Central to our evaluation is the utilization of the cubic 

interpolation method within the line search procedure. This 

method leverages both function and gradient variables to 

navigate the optimization landscape effectively. Key 

performance metrics, namely the (NOI) and the (NOF), are 

meticulously documented and explicitly presented in the results 

table (Table 1). The experimental results, as delineated in Table 

2, underscore the superiority of our proposed technique over the 

PRP method. This superiority is evident in terms of both NOF 

and NOI, reaffirming the efficacy and efficiency of our novel 

approach in comparison to the established PRP method. This 

comprehensive evaluation framework not only provides 

empirical validation of our method's effectiveness but also 

underscores its potential to advance the state-of-the-art in 

optimization methodologies. 

Table 1: The results of the new method compared with the 

Polak-Ribière-Polyak (PRP) method. 

Test Function 𝐧 
𝐏𝐑P 𝐍𝐄𝐖  

NOI NOF NOI NOF 

Wolfe 

5 

10 

100 

500 

1000 

5000 

14 

32 

49 

58 

64 

99 

29 

65 

99 

117 

129 

214 

12 

25 

42 

48 

48 

83 

20 

50 

80 

90 

90 

161 

Mile 

5 

10 

100 

500 

1000 

5000 

37 

37 

44 

44 

50 

50 

116 

116 

148 

148 

180 

180 

29 

29 

29 

29 

50 

50 

89 

89 

89 

89 

180 

180 

Central 

5 

10 

100 

500 

1000 

5000 

22 

22 

22 

23 

23 

30 

159 

159 

159 

171 

171 

270 

22 

22 

22 

23 

23 

22 

159 

159 

159 

170 

170 

159 

Powell 

5 

10 

100 

500 

1000 

40 

40 

43 

46 

46 

120 

120 

135 

150 

150 

30 

32 

32 

32 

38 

80 

90 

90 

90 

97 

5000 50 180 38 97 

Sum 

5 

10 

100 

500 

1000 

5000 

6 

6 

14 

21 

23 

31 

39 

34 

80 

123 

127 

145 

6 

6 

11 

17 

17 

25 

39 

34 

59 

86 

86 

120 

Wood 

5 

10 

100 

500 

1000 

5000 

29 

29 

30 

30 

30 

30 

67 

67 

69 

69 

69 

69 

29 

29 

30 

30 

30 

30 

67 

67 

69 

69 

69 

69 

Cubic 

4 

10 

100 

500 

1000 

5000 

15 

16 

16 

16 

16 

16 

45 

47 

47 

47 

47 

47 

14 

14 

14 

14 

15 

15 

39 

39 

39 

39 

43 

43 

Rosen 

4 

10 

100 

500 

1000 

5000 

30 

30 

30 

30 

30 

30 

85 

85 

85 

85 

85 

85 

28 

28 

28 

28 

28 

28 

65 

65 

65 

65 

65 

65 

Total 1539 5233 1324 4193 

 

 

Table 2: The improvement percentage of the new method 

compared with the Polak-Ribière-Polyak (PRP)  

method. 

 

Tools PRP New 

NOI 100% 86.02989 % 

NOF 100% 80.12612268 % 

 

 

3.2 Application of the New Method to Regression Analysis 

        Regression analysis is a crucial statistical method frequently 

utilized in areas such as accounting, economics, management, 

physics, finance, and beyond (Christensen, 1996; Vandeginste, 

1989). It is employed to examine the relationship between 

independent and dependent variables within different datasets. 

The purpose of regression analysis can be outlined as follows: 

𝑦 = ℎ(𝑥1, 𝑥2, … , 𝑥𝑝 + 𝜀),  

where 𝑥𝑖 , 𝑖 = 1,2, … 𝑝, 𝑝 > 0 is the predictor, 𝑦 is the response 

variable, and 𝜀 is the error. The linear regression function is 

derived such that 

𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑝𝑥𝑝 + 𝜀.  

    This method is typically applied when the relationship between 

𝑥 and 𝑦 can be represented by a straight line, although such cases 

are rare. As a result, nonlinear regression models are often 

employed. This paper focuses on the nonlinear regression 

approach. 
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This subsection provides a detailed overview of population 

estimates for the Kurdistan Region of Iraq (KRI) from 1965 to 

2020. The statistics in Table 3 are sourced from the data collected 

by the Kurdistan Region Statistics Office, Ministry of Planning, 

Kurdistan Regional Government (Kurdistan Region Statistics 

Office, Ministry of Planning, 2021). In this analysis, the years of 

data collection are represented by the 𝑥-variable, while the 

population figures for KRI serve as the 𝑦-variable. Data from 

1965 to 2014 will be used for fitting the model, while the data 

from 2020 will be reserved for error analysis. 

Table 3: Population estimates of KRI. 

Years KRI Population 

1965 902,000 

1987 2,015,466 

1997 2,861,701 

2014 5,332,600 

2020 6,171,083 

 

The approximate function for the nonlinear least squares method 

is derived using the data in above Table as follows: 

𝑓(𝑥) = 339358.2𝑥2 − 282987.7𝑥 + 940224.2.                  (3.1) 

The function (3.1) is use to approximate the value of 𝑦 based on 

value of 𝑥 from 2014 - 2017. Let 𝑥𝑗  denotes number of years and 

𝑦𝑗  be the recorded cases of drug addicts. Then, the above least 

squares method (3.1) is transformed into the following 

unconstrained minimization problems: 

min
𝑥∈𝑅𝑛

 𝑓(𝑥) = ∑  𝑛
𝑗=1 ((𝑢0 + 𝑢1𝑥𝑗 + 𝑢2𝑥𝑗

2) − 𝑦𝑗)
2
,                 (3.2) 

Data from 1965 to 2014 are used to develop the nonlinear 

quadratic model using the least squares method, along with the 

associated test function for the unconstrained optimization 

problem. It is evident from this analysis that the 𝑥𝑗  and the value 

of 𝑦𝑗   values exhibit a parabolic relationship, as described by the 

regression function defined in (3.2) with the regression 

parameters 𝑢0, 𝑢1 and 𝑢2. 

min
𝑥∈𝑅2

 ∑  

𝑛

𝑗=1

𝐸𝑗
2 = ∑  

𝑛

𝑗=1

((𝑢0 + 𝑢1𝑥 + 𝑢2𝑥2) − 𝑦𝑗)
2
 

However, the data for 2020 is excluded from the unconstrained 

optimization function to facilitate the calculation of relative 

errors for the predicted data. Consequently, the proposed method 

is used to solve the test function (3.2) utilizing the strong Wolfe 

line search technique, with the results presented in Table 4. 

Table 4: Test results for optimization of quadratic model using 

new method. 

Initial Points 
No. for 

Iteration 
CPU Time 

(1,1,1) 13 0.015291 

(2,2,2) 13 0.028205 

(10,10,10) 13 0.015354 

(15,15,15) 15 0.023973 

 

Table 5 displays the relative error of the new method compared 

to the least squares method. A smaller relative error value 

indicates greater accuracy and a better fit to the observed dataset. 

 

Table 5: Estimation point and relative errors for 2020 data. 

Models Point Relative Error 

New 6195047.5029 0.0039 

Least Square 6375777.5441 0.0332 

 

CONCLUSION     

        This work introduces a novel (CG) method that based on the 

logistic mapping formula to enhance optimization problem-

solving. The proposed method satisfies both descent and 

sufficient descent conditions, with the latter being a stronger 

criterion that significantly improves numerical performance. A 

comprehensive analysis of the global convergence properties 

confirms the method's effectiveness, establishing it as a robust 

approach in the optimization filed. Numerical experiments 

demonstrate that the new method outperforms the traditional 

Polak-Ribière-Polyak CG method, particularly in terms of 

Numbers of Iterations (NOI) and Numbers of Function 

evaluations (NOF). The results indicate that the proposed 

algorithm achieves superior convergence rates and requires fewer 

computational resources, making it especially valuable for large-

scale problems with dimensions ranging from 10 to 5000. 

Furthermore, the application of the new method to regression 

analysis, specifically in modelling population estimates for the 

Kurdistan Region of Iraq, reveals its practical utility. The model 

produced accurate predictions while maintaining low relative 

error rates compared to traditional least squares methods. Future 

research may explore additional refinements and broader 

applications to further enhance its effectiveness in complex 

optimization challenges. 
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