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ABSTRACT

In this paper, we study and discuss the concept of Smarandache anti zero divisor (SAZD) element of the ring Z,, and the

group ring Z, G, where G is a cyclic group of order m generated by g. Moreover, we introduce and discuss the concept of

SAZD ideal of the ring Z,,. Some results related to the given concepts are proved in detail. Accordingly, a Computer Algebra

System (GAP) is used to verify the results of this study.
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1. INTRODUCTION

Smarandache concepts were first introduced by
Smarandache (2000). These concepts have been widely studied
by many authors (Padilla, 1998; Srinivas & Rao, 2009;
Yongxing, 2005; Kandasamy, 2002a). Kandasamy has published
many books and papers about Smarandache concepts by creating
the Smarandache analogue for the wvarious mathematical
theoretical concepts. In 2001, Kandasamy and 2002, Kandasamy
and Chetry introduced Smarandache zero divisor elements in
semigroups, rings, and group rings. A nonzero element x in a ring
R is called a Smarandache zero divisor if xy = 0, for some 0 #
Yy € R, and there exist a, b € R \{0, x, y} such that
1. ax= 0orxa= 0,
2. by= 0oryb= 0and
3.ab # 0orba=+ 0.

In 2002, Kandasamy published a book entitled "Smarandache
Semirings, Semifields, and Semivector Spaces" (Kandasamy,
2002b). She introduced many Smarandache elements in this
book, such as Smarandache idempotents, Smarandache units, and
SAZD elements. An element x in the semiring S (or any ring R)
is said to be SAZD (Kandasamy, 2002b) if there exists an element

y such that xy # 0,and a, b € S\{0, x, y} such that
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1. ax#0orxa=+0,
2. by#0or.b+0,and

3. ab=0orba=0.
A semiring is a non-empty set S with two binary operations
addition +' and multiplication '-' satisfying the following
conditions:
1. (S, +) is a commutative monoid.
2. (S, -) is a semigroup.
3.(a+b)-c=a-c+b-canda -
b+a-

b+c)y=a-
¢,V ab,c€S.
In this study, the SAZD elements of the ring Z,, and of the group
ring Z, G are considered, where G is a cyclic group of order m.
In addition, we introduce and discuss the concept of SAZD ideals
of the ring Z,,. A necessary and sufficient conditions are given
that which element is a SAZD element, and which ideal is a
SAZD ideal.

The structure of this study is as follows. In Section 2, the
concept of SAZD elements is explained with its results. The idea
of SAZD ideals with its results is shown in Section 3. Finally, the

computational code is given in the Appendix.
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SAZD Elements:

In this section, we find the SAZD elements of the ring Z,,
and in the group ring Z,,G, where G is a cyclic group of order m
generated by an element g. Throughout this paper all rings are
finite commutative rings with identity 1. Also, all groups are
commutative cyclic groups with identity 1. So the three
conditions of SAZD elements are considered as ax # 0, by # 0

and ab = 0.

Remark 2.1. The ring Z,, p is prime, which has no SAZD, since

it has no zero divisor.

Proposition 2.2. InZ,, with the prime factorization ofn =
p19p, %2 . p, %, for a; > 1 for some i, where i = 1, ..., 7, every

unit is a SAZD.

Proof: Suppose x is a unit, then there exist a unity € Z,, such

that xy = 1(mod n).

Now, suppose a = py, and b = p;“ p,% ...
a,b € Z,\{0, x, y}, then

xa # 0(mod n),

yb # 0(mod n) and

ab = 0(mod n).
Hence a unit x is a SAZD of Z,,.

%, we see

Proposition 2.3. If x is a zero divisor of the ring Z,z, p is prime,
then x is not a SAZD element.

Proof: Suppose x is a zero divisor. Then x = kp for1 <k <
p — 1, for each zero divisor a € Z,2\{0,x,y}, we have ax =

0(mod p?). Hence x is not a SAZD of Z.

Proposition 2.4. In Z,«, p is prime and k > 2, a zero divisor x is

a SAZD if and only if p*=1 4 x.

Proof: Suppose that x is a zero divisor such that p*=1 4 x.
Thenx = pSI, for p4 ! and 1 < s < k— 2. Then there exist a
unity € Z,k, such that xy # 0(mod p*).

For each zero divisors a,b € Z,x\{0,x,y}, such thata = tp,
such that t # land p t t and b = p*~1, then @ # x and b # x,
we have

ax % 0(mod p"),

by % 0(mod p*) and

ab = 0(mod p*).
Hence x is a SAZD of Z,j«.
Now suppose that x is a SAZD. If p¥~1 | x, then for every zero
divisor a € Zyx, we haveax = 0(mod p*), which is a
contradiction with assumption.

Hence a zero divisor x is a SAZD of Lk if and only if p*~1 } x.
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Theorem 2.5 In Z,, with the prime factorization of n =

p191p, %2 ... p,. % where p; are distinct odd

primes fori = 1, ..., r, every zero divisor is a SAZD element.

Proof: Suppose x is a zero divisor of the formx =
p19102% .. p %k, withp; t [ for k + 1 < j < 7. Then there exist
aunity € Z,, such that xy £ 0(mod n)
Consider two zero divisors a = p;t and b = p; %" 1p,% ..p, %
forps 1 ¢,
For2 < s <randt # [, then

xa £ 0(mod n),

by # 0(mod n) an

ab = 0(mod n).

Hence every zero divisor of Z,, is a SAZD.

Corollary 2.6 In Z,,,, p and q are distinct odd primes, every zero

pq>
divisor is a SAZD.

Proof: Let x be a zero divisor of Z,,. We take x = kp, for 1 <
k<q-1 and we take a unity € Z,;, we havexy #
0(mod pq).
Consider two zero divisors a,b € Zpq\{0,x,y} such thata =
tp,and b = sq,
fort #k,and1<t<qg—1land1 <s <p—1then

ax % 0(mod pq),

by # 0(mod pq), and

ab = 0(mod pq)
The proof'is similar forx = lq, for1 <k <p—1.
Hence every zero divisor of Zpg4is a SAZD.

Corollary 2.7 In Z,,,,-, where p < q < r are distinct odd primes,

pqr-»

every zero divisor is a SAZD.

Proof: Let x be a zero divisor, then we take x = kp, for1 < k <

qr — 1. Foraunit y € Zpg,, we have xy # 0(mod pqr).

Consider two zero divisors a,b € Zyq-\{0,x,y} such thata =
tp,and b = qr, wheret # k,and 1 <t < qr — 1, we have

ax % 0(mod pqr),

by % 0(mod pqr), and

ab = 0(mod pqr),
The proof is similar for x = lq, where 1 <[ < pr—1,andx =
mr,wherel <m < pq — 1.

Hence every zero divisor of Zpg, is a SAZD.

Proposition 2.8 Every zero divisor x of the ring Z,,, p is an

odd prime, is a SAZD if and only if p } x.

Proof: Suppose p t x, then x =2[, for1 <l <p—1. Then

there exist a unit y € Z,, such that xy Z 0(mod n)
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Consider two zero divisors a, b € Z5,\{0, x}, such that a = 2t
andb=p,for t #land 1<t <p—1.Now
xa % 0(mod 2p),
by # 0(mod 2p) and
ab = 0(mod 2p).
Hence x is a SAZD of Z5),.
Conversely: Suppose x is a SAZD

If p|x, then x =p and for every zero divisor a € Z,,, we

have ax = 0(mod 2p), which is a contradiction with
assumption, therefore p ¢ x.

Hence x is a SAZD of Z,,, if and only if p 4 x.

In what follows, we study SAZD elements in some type of group
rings. Note that in the following results we mean by G a cyclic

group of order n generated by g, where n is any positive integer.

Proposition 2.9 Consider the group ring Z,,G, where G is a cyclic
group of order m except the case m = n = 2, The element x =

sgk is SAZD, where 0 # s € Z, and 1 < k < m.

Proof: Suppose y = g. Then xy = sgk*! # 0. We take two
elements
a,b €Z,G\{0,x,y} such that a=1+(n—1)g and b =1+
g+ -+ g™, then
ax+0
b.y # 0 and
a.b=0
Hence x is a SAZD of Z,,G.
In the above proposition, if wetaken = 4,m =3,s = land k =
1, then
x=g%y=g,a=1+3gandb=1+g+ g2
Now x.y =g%.g=g°%#0,
a.x=(14+3g9).g%#0,
b.y=(Q1+g+g?.g#0,and
ab=0104+39).(1+g+g*>)=4+4g+4g%=0.

Hence x is a SAZD element.

Proposition 2.10 Consider the group ring Z,G, where G is a
cyclic group of order m > 3. If an element x has an odd number

of summands, then it is a SAZD element.

Proof: Suppose that x has an odd number of summands, then
either x = gl + g2 + - + gk, where k is odd, or x =1 +
g+ g2 + -+ g, where k is even and, in both cases 1 <
i <m-—1andiy # i forj, h,s € {1,2,..,k}.

For each caseof x wetake y =g, a=1+gandb=1+g +
«++ g™ 1 then a, b € Z,G\{0, x, y}

Casel. If x = git + g% + -+« + g, then
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x.y =1+ gitl 4 giatl 4o g gletl % 0,
a.x = ghtl 4 glatl oo g ghit1 4 gh 4 gl 4

ot gl £ 0,

b.y=b#0 and
a.b =0.

Case 2. Ifx =1+ gh + g% + -+ + g', then
x.y=g+ghtl + gt 4 4 giktl £ 0,
ax=1+gh+ge+-+gk+g+gh*tt+

gttt gitl 2 0,

b.y =b # 0 and
a.b =0.
Then x is a SAZD element of Z,G.

Proposition 2.11 Every non zero element of the group ring
Z,G, where p is an odd prime and G is a cyclic group of order 2

generated by g, is a SAZD element.

Proof: Let 0 # x = ag + bog € Z,G.

Case I if ag+b,#0. Let y=1,a=1+gandb=1+
(- 1Dg.
Where a,b € Z,G\{0,x,y}, then x.y = ag + bog # 0,
a.x = (ag+ by) + (a, + by)g # 0, because ag + by #
0,
by=1+(p-1g=+#0
ab=01+9)A+@®-1g) =0.
(Incaseifx =1+ g, takea =2 + 2g).
Casell: Ifag + by =0.Lety =1,a = by +apgand b =1+
g, Where a, b € Z,G\{0, x, y}, then
x.y =ag+byg #0,
a.x = 2agbg + (a2 + bd)g
since ag+by =0, So aj =b§ and sinceZ, has no zero
divisors, so 2agby # 0 and 2a3 # 0, then
a.x = 2aghy + 2a3g # 0,
b.y=1+g # 0and
a.b = (ag+ by) + (ag + by)g = 0.
Therefore, in both cases x is a SAZD element of ZG.
Remark 2.12 Consider the group ring Z, G, where G is a cyclic
group of order p generated by g, and consider the zero divisor
x=ay+ a9+ ag*+ -+ ap_19°~". Then
x.(1+g+g?+-+gP 1) =0ifand onlyif ag+ a, +a, +
wray_g = 0.
Proof: Suppose that ay + a; + a; +--a,_4 = 0.
Now, x.(1+g+g*++g" D=(ap+ag++

@1 P )L+ g+ -+ gP ™).
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=ag+agg + agg®+ -+ a,g"t +ag + a?g?
+otagP T 4t ap 9P apayg
+ ot ap_lgz(p—l)
=(ag+ar+-+ap1)+(a+a+-+a,_1)g
+(ap+ag+ - +ayq1)g®+-
+(ap+ag+ - +ay_1)gP!
Sox.(1+g+g2++g?P D) =(ap+a++a,1) 1+
g+ --gP™1). Since
ap+a;+-+a,_;=0thenx.(1+g+g*+-+g°P )=
0.
Conversely: Suppose that x. (1 + g + g2 + -+ gP~1) = 0. We
have to show that
ata,+-+a,_1=0.,
Now, x.(1+g+g*++gPHV=(ap+a, ++
ap-1)(1+ g+ g*+--gP~1) =0, then
ap+a;+-+ay_4=0. By: If k+kg+--kgP!=
0,then k = 0).
Proposition 2.13 Consider the group ring Z,G, where G is a

cyclic group of order p generated by g. Then a non-zero element

ap+ a;g + -+ ap_1g° " is a zero divisor of Z,G if and only

ifag+a; +--+a,_4 =0. Where a; €Z,, for i€
{Ollﬁzl O 2 1}
Proof: Let x=ag+a;g+--+ ap_lg”‘1 and  suppose

thatag +a; + - +ap1=0. Let y=1+g+g*+-+
gr
Now x.y = (ag+ a1g + -+ ap_1g°P )1+ g + -+ gP™)
=ag+agg + agg®+ - +a,g”t + a9 + a?g?
+otagP a1 9P +apayg
4ot ap_lgz(p—l)
=(ag+ar+-+ap_1)+(a+a++a,1)g
+(ap+ay+ - +ap-1)g*+ -
+(ap+ag+ - +ay1)gP!
Sox.y=(ag+ay+-+ap-1)(1+g+-gP1),since ao +
ap+ - +ap, =0.
So x.y = 0, therefor x is a zero divisor of Z,G.
Conversely: Suppose that x = ay + a;g + -+ + ap_lg”_1 isa
zero divisor of Z,G. We have to show that ag +a; + -+
ap_1 =0
Since x is a zero divisor of Z,G, So by Remark. x.(1+ g +
vt gp—l) =0

(ao +arg + -+ ap_lgp‘l)(1 +g+-+gPH=0
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So (a0+a1+"'+ap_1)(1+g+...+gp—1) =0

Sincel+g+-+gP t#0.Soap+a; ++ay,_,=0

Proposition 2.14 consider the group ring Z,, G, where p is a prime
and G is a cyclic group of order p generated by g. Then an

element x = a + ag + - + agP~! is not a SAZD element.

Proof: From definition x is a SAZD element, if 3 a,b €

Z,G\{0,x,y} such that a.x # 0,b.y # O and a.b = 0.

Since a and b are zero divisors, so by Proposition . a and b must
be of the form a=ag+a;g9+-+ap_19°"Lb=hby+
byg+..+b,_1g7~* such that
ag+ay+-+a,_y=0andby+by +--+b,_1 =0.
But ax=(a+ag+-+a,19°)a+ag+--+
ag?™h)

=(ap+a,++ay,1)(a+ag+-+agP™?),
Sinceap +a; +--+a,_1=0,Soa.x=0

Therefore x is not a SAZD element.

Remark 2.15 If x is a zero divisor of the group ring Z,»G, where
Gis a cyclic group of order 2™ generated by g, then

x 2" 1+ g+-+g¥ =0

Lemma 2.16 Consider the group ring Z,»G, where G is a cyclic
group of order 2™. Then an element x =ay +a;g + -+
a,m-1g%""" is a zero divisor of Z,»G, if and only if ag + a; +
o+ aym-1=2%, where k=1 and a; EZ,n for i€
{1,2,...,2m"1},

1

Proof: Let x = ag + a;g + - + azm-1g?" .

Suppose that ay + a; + - + a;m-1 = 2% where k > 1. We have
to show that x is a zero divisor. Lety = 2" 1(1+ g + g% + - +

Zm—l)

Now x.y=(ag+ag++amig® )" (1+g..+

m—1
9")
=2""1(ag + apg + -+ agg?" +arg+ag*+
vt ag + ot agmoig? T+ agme + Gymerg + oo+
Z(Zm_l))

apm-1g
=20 (ap(1+ g+ +g%" ") +a(1+g+-+
")+t e (14 g 4+ g2 7))
=2""Yag+ay + - +am)(1+g+-+g7" )
Since ag + a; + -+ + aym-1 = 2%, where k > 1
Sox.y=2""12K(1+g+-+g"" " )=0
Therefore x is a zero divisor of Z,nG.

Conversely: Suppose that x is a zero divisor of ZynG.
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Then by Remark. 2.15, x. 2" (1 + g+ g + -+ g*" ) =0
(ao + arg + a g% + -+ + agm-1g?" )2 (1 + g+ g> +

~+ g7 ) =0.

So 2" Y(ag+ay +ay + -+ agm1+(ag+a; +a; ++

aym-1)g + -+ (@ +ag +ag + -+ aym-1)g? ) = 0.

Then 2" ag+a; +az+ o+ ama)(1+ g+ +
9" =0

Therefore 2" ayt+a; +a; +-+ami1)=0=
2™"(mod 2™).

Thus ay + a; + a, + -+ + aym-1 = 2%, where k > 1.

Proposition. Consider the group ring Z,»G, where G is a cyclic

group of order 2™. Then the element  x = 2""1 + 2" 1g +

2m-

2n1g2 4. 4277 162™ 7 s not a SAZD element.
Proof: Suppose that x is a SAZD element. Then there exist y €
Z,»G and a,b € ZynG\{0,x,y} such that xy #0, a.x #

Oanda.b = 0.
Since a is a zero divisor of Z,»G, then by Lemma 2.16,

a=ay+ayg+-+am1g®  suchthatay+a;, +a, +
<+ + aym-1 = 27, where h > 1. Now:
ax=(ay+a;g +a, g%+ +ammag? ) (2" +
2n—1g 4ot 2n—1gzm‘1)
=2""1g) 4+ 2" g, g + 4 2" tayma g2 4 2" tayg
+ 2" g, g% + 2" 1a,g% + -
+ 2" laym-1 +
2" 1a09% + 2" 1a g3 + 4+ 2" Lagmaag 4+ +

217!—1

2 1g0g?" ! 4 20 gy 4 e 4 27 L ayme 2@,

So  ax=2"Yay+a;+ -+ amm-1)+2"g(ag +a; +
o agme1) + 4 271927 @ Fag + o+

agm-1)).
Since ag + a; + -+ aym-1 =2 L > 1
So ax=2"12"1+g+g*+-+g?" ' )=0, which
contradicts with the assumption.

So x is not a SAZD element of the group ring Z,nG.
Smarandache Anti Zero Divisor (SAZD) Ideals :

In this section, we introduce the SAZD ideals. We
determine those conditions which make a given ideal to be a
SAZD ideal of the ring Z,,. The ideals are symbolled in capital

letters, and (0) represents the zero ideal.

Definition 3.1. Anideal I of the ring R is said to be a SAZD ideal,
if we can find an ideal J such IJ # (0) and there exist two proper
ideals K, L of R which are different from I and J such that:
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1. IK # (0)or KI #+ (0).
2. L] # (0)orJL = (0).
3. KL = (0)or LK = (0).

Note 3.2. Since the ring Z, is commutative for any positive
integer n, then the three conditions in Definition. are considered

as IK # (0), L] # (0) and KL = (0).

Remark 3.3. Trivially the ideal (p*~1) is not a SAZD ideal of
the ring Z,k .

Theorem 3.4. In Z«, p is prime and k > 6, every non zero ideal

is a SAZD ideal except (p*~1).

Proof: The proper ideals of Z« are of the form (pi), for i =
1,2,....k—1.

Casel: If I = (p), Then for ] = (p?),K = (p¥=3) and L = (p?)
we see that all of them are distinct.

Now I] # (0),IK # (0),JL # (0) and KL = (0).

Hence I = (p) is a SAZD ideal of Z,yx.

Case2: Let I = (p*=2). Then for ] = (p),K = (p*=3) and L =
(p®) we see that all of them are distinct.

Now IJ # (0),IK # (0),JL # (0) and KL = (0).

Hence I is a SAZD ideal of Z k.

Case3: Let] = (p°) for1 <s < k — 2. Then for ] = (p),K =
(p?) and
Now IJ # (0),IK # (0),JL # (0) and KL = (0).

L = (p*~2) we see that all of them are distinct.

Hence I is a Smarandache anti zero divisor ideal of Zpk.

By Remark 3.3, we have (p*~1) is not a SAZD ideal.
Therefore, every non zero ideal of Zx anti zero divisor ideal

except (p*—1).

Remark 3.5. If p < q are primes, then Z,, has no SAZD ideal.

Proposition 3.6. In Z,,,,-, where p < q < r are primes, every non

pqr»
zero ideal is a SAZD ideal.

Proof: Clearly proper ideals of Zpg are of the form

(). (@), (r), (pq), (pr) and (qr).

We proof for the case I = (P). Take ] = (¢q), k = (pq).and L =
(r). We see that ideals I,],K and L are distinct and IJ #
(0),IK # (0),JL # (0) and KL = (0).

The proofis similar for all other ideals.

Hence every non zero ideal of Zgq, is a SAZD ideal .

Proposition 3.7. InZ py» Wherepy <p, <-- <p, are

D1D2-

primes, every proper ideal is a SAZD ideal.
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Proof: Let ] = (plpz - Dj—3PjPj+3 ...pr) be a proper ideal
of Zp, p,..p,- Then we take ideals | =

(P1P2 - Dj-3Pj-2DjDj+2Pjs3 Py )s L =

(P1P2 - Pj-3Pj-2Dj+2Pj43 D) and K = (pj_1p;pj41). We
see that I,], K and L are distinct ideals. Now I] # (0),IK #
(0),JL # (0) and KL = (0).

Hence I is a SAZD ideal of Zy,p, .p,-

Therefore, every non zero ideal of Z », 18 @ SAZD ideal.

D1D2 -

Theorem 3.8. In Z,, with the prime factorization of n =
P17, % . p,. %, for @; = 1 where i = 1,2, ..., 1, every proper

ideal is a SAZD ideal.

Proof: Letl =

a,1—S a,—S- QAj_3—Sj_ a; aj. =S; Ay—S;
(Pr ™ 51pp %2752 L pj_gU=3Simap Hip g M TSI p, Br ST,

fors; > 1,andi = 1, ...,7. Then we take

J = (pj=3¥72), K = 01%p2" ... pj—3Dj 43" .. p " and
L= (pj_z"‘f-zpj“fp}-_zsf-z), we see that I, ], K and L are distinct
ideals. Now

1J # (0),IK # (0),/L # (0) and KL = (0).

Hence every non zero ideal I of Z,, is a SAZD ideal.

Appendix:

The well-known Computer Algebra System (GAP)-code
was studied in The GAP Group ( 2016), we use this code in this
study to check the results. If this code is applied, one can see that
which element of the ring Z,, or which element of the group ring
Z,G is a SAZD element, and which element is not a SAZD
element, for any positive integer n. For instance, if we put m =
2, and k = (1,2,3,4) in the first row of the code, it means that
which element of the group ring Z,G is a SAZD element, where
G is a cyclic group of order 4 generated by g. After running the
code, we get the following results:

7,6 ={0,1,9,9% 9% 1+ g, 1+ g% 1+ g% g+g%9g+

93,92 +g%51+g+g°> 1+g+931+g2+4g%9+g*+
g 1+g+9*+9°)

where

0 and 1+ g + g%+g> are not SAZD elements, and the other
elements are SAZD.

#SAZD
GR:=GroupRing(ZmodnZ(m),Group(k));
A=[;
B:=[];
F=(];
e:=Elements(GR);

foriin [1..Size(e)] do

for j in [1..Size(e)] do
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x:=e[i];
y=¢[jl;
if x*y<>Zero(GR)then
for k in [2..Size(e)] do
for h in [2..Size(e)] do
a:=e[k];
b:=e[h];
if a<>x and a<>y then
if b<>x and b<>y then
if (a*b=Zero(GR)and a*x<>Zero(GR)and
b*y<>Zero(GR)) then
#Print(a,"*",b,"
Add(B,x);
Add(A,["x="x,"
b=",b]);
Print(x," "y," ",a," ",b,"
fi;
fi;
fi;
if x in B then
break;
fi;
od;
if x in B then
break;
fi;
od;
if x in B then
break;
fi;
fi;
od;
if not x in B then
Add(F x);
fi;
od;
A:=AsSet(A);
B:=AsSet(B);
F:=AsSet(F);
Print(F,"are not SAZDs","\n");
Print(B,"are SAZD","\n");
Print(Size(F),"\n",Size(B),"\n",Size(GR));

")

N n "

9y3 a:"7a7

y

")
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