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ABSTRACT: 

In this paper, we study and discuss the concept of Smarandache anti zero divisor (SAZD) element of the ring ℤ𝑛 and the 

group ring ℤ𝑛𝐺, where 𝐺 is a cyclic group of order 𝑚 generated by 𝑔. Moreover, we introduce and discuss the concept of 

SAZD ideal of the ring ℤ𝑛. Some results related to the given concepts are proved in detail. Accordingly, a Computer Algebra 

System (GAP) is used to verify the results of this study. 
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1. INTRODUCTION 

          Smarandache concepts were first introduced by 

Smarandache (2000). These concepts have been widely studied 

by many authors (Padilla, 1998; Srinivas & Rao, 2009; 

Yongxing, 2005; Kandasamy, 2002a). Kandasamy has published 

many books and papers about Smarandache concepts by creating 

the Smarandache analogue for the various mathematical 

theoretical concepts. In 2001, Kandasamy and 2002, Kandasamy 

and Chetry introduced Smarandache zero divisor elements in 

semigroups, rings, and group rings. A nonzero element 𝑥 in a ring 

𝑅  is called a Smarandache zero divisor if 𝑥𝑦 = 0, for some 0 ≠

𝑦 ∈ 𝑅, and there exist 𝑎, 𝑏 ∈ 𝑅 \{0, 𝑥, 𝑦} such that 

1. 𝑎𝑥 =  0 𝑜𝑟 𝑥𝑎 =  0, 

2. 𝑏𝑦 =  0 𝑜𝑟 𝑦𝑏 =  0 and 

3.  𝑎𝑏 ≠  0 𝑜𝑟 𝑏𝑎 ≠  0. 

In 2002, Kandasamy published a book entitled "Smarandache 

Semirings, Semifields, and Semivector Spaces" (Kandasamy, 

2002b). She introduced many Smarandache elements in this 

book, such as Smarandache idempotents,  Smarandache units, and 

SAZD elements. An element 𝑥 in the semiring S (or any ring 𝑅) 

is said to be SAZD (Kandasamy, 2002b) if there exists an element 

y such that 𝑥𝑦 ≠ 0, and 𝑎, 𝑏 ∈  𝑆\{0, 𝑥, 𝑦} such that  

1. 𝑎𝑥 ≠ 0 𝑜𝑟 𝑥𝑎 ≠ 0, 

2. 𝑏𝑦 ≠ 0 𝑜𝑟 . 𝑏 ≠ 0, and 

3. 𝑎𝑏 = 0 𝑜𝑟 𝑏𝑎 = 0. 

A semiring is a non-empty set S with two binary operations 

addition '+' and multiplication '·' satisfying the following 

conditions: 

1. (S, +) is a commutative monoid. 

2. (S, ·) is a semigroup. 

3. (𝑎 +  𝑏)  ·  𝑐 =  𝑎 ·  𝑐 +  𝑏 ·  𝑐 and 𝑎 ·  (𝑏 +  𝑐)  =  𝑎 ·

 𝑏 +  𝑎 ·  𝑐, ∀  𝑎, 𝑏, 𝑐 ∈ S. 

 In this study, the SAZD elements of the ring ℤ𝑛 and of the group 

ring ℤ𝑛𝐺 are considered, where 𝐺 is a cyclic group of order 𝑚. 

In addition, we introduce and discuss the concept of SAZD ideals 

of the ring ℤ𝑛. A necessary and sufficient conditions are given 

that which element is a SAZD element, and which ideal is a 

SAZD ideal.  

          The structure of this study is as follows. In Section 2, the 

concept of SAZD elements is explained with its results. The idea 

of SAZD ideals with its results is shown in Section 3. Finally, the 

computational code is given in the Appendix.  

Sazd Elements 

           In this section, we find the SAZD elements of the ring ℤ𝑛 

and in the group ring ℤ𝑛𝐺, where 𝐺 is a cyclic group of order 𝑚 

generated by an element 𝑔. Throughout this paper all rings are 

finite commutative rings with identity 1. Also, all groups are 

commutative cyclic groups with identity 1. So the three 

conditions of SAZD elements are considered as 𝑎𝑥 ≠ 0, 𝑏𝑦 ≠ 0  

and 𝑎𝑏 = 0. 
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Remark. The ring ℤ𝑝, 𝑝 is prime, which has no SAZD, since it 

has no zero divisor. 

Proposition. In ℤ𝑛, with the prime factorization of 𝑛 =

𝑝1
𝛼1𝑝2

𝛼2 … 𝑝𝑟
𝛼𝑟, for 𝛼𝑖 > 1 for some 𝑖, where 𝑖 = 1, … , 𝑟, every 

unit is a SAZD. 

Proof: Suppose 𝑥 is a unit, then there exist a unit 𝑦 ∈ ℤ𝑛, such 

that 𝑥𝑦 ≡ 1(𝑚𝑜𝑑 𝑛). 

Now, suppose 𝑎 = 𝑝1, and 𝑏 = 𝑝1
𝛼1−1𝑝2

𝛼2 … 𝑝𝑟
𝛼𝑟 , we see 

𝑎, 𝑏 ∈ 𝑍𝑛\{0, 𝑥, 𝑦}, then  

𝑥𝑎 ≢ 0(𝑚𝑜𝑑 𝑛), 

    𝑦𝑏 ≢ 0(𝑚𝑜𝑑 𝑛) and 

𝑎𝑏 ≡ 0(𝑚𝑜𝑑 𝑛). 

Hence a unit 𝑥 is a SAZD of ℤ𝑛. 

Proposition.   If 𝑥 is a zero divisor of the ring ℤ𝑝2, 𝑝 is prime, 

then 𝑥 is not a SAZD element. 

Proof: Suppose 𝑥 is a zero divisor. Then 𝑥 = 𝑘𝑝 for 1 ≤ 𝑘 ≤

𝑝 − 1, for each zero divisor 𝑎 ∈ ℤ𝑝2\{0, 𝑥, 𝑦}, we have 𝑎𝑥 ≡

0(𝑚𝑜𝑑 𝑝2). Hence 𝑥 is not a SAZD of ℤ𝑝2 .  

Proposition. In ℤ𝑝𝑘, 𝑝 is prime and 𝑘 > 2, a zero divisor 𝑥 is a 

SAZD if and only if  𝑝𝑘−1 ∤ 𝑥. 

Proof: Suppose that 𝑥 is a zero divisor such that 𝑝𝑘−1 ∤ 𝑥. 

Then 𝑥 = 𝑝𝑠𝑙, for 𝑝 ∤ 𝑙 and 1 ≤ 𝑠 ≤ k − 2. Then there exist a 

unit 𝑦 ∈ ℤ𝑝𝑘, such that 𝑥𝑦 ≢ 0(𝑚𝑜𝑑 𝑝𝑘). 

For each zero divisors 𝑎, 𝑏 ∈ ℤ𝑝𝑘\{0, 𝑥, 𝑦}, such that 𝑎 = 𝑡𝑝, 

such that 𝑡 ≠ 𝑙 and 𝑝 ∤ 𝑡 and 𝑏 = 𝑝𝑘−1, then 𝑎 ≠ 𝑥 and  𝑏 ≠ 𝑥, 

we have  

𝑎𝑥 ≢ 0(𝑚𝑜𝑑 𝑝𝑘), 

     𝑏𝑦 ≢ 0(𝑚𝑜𝑑 𝑝𝑘) and 

𝑎𝑏 ≡ 0(𝑚𝑜𝑑 𝑝𝑘). 

Hence 𝑥 is a SAZD of ℤ𝑝𝑘. 

Now suppose that 𝑥 is a SAZD. If 𝑝𝑘−1│𝑥, then for every zero 

divisor 𝑎 ∈ ℤ𝑝𝑘, we have 𝑎𝑥 ≡ 0(𝑚𝑜𝑑 𝑝𝑘), which is a 

contradiction with assumption. 

Hence a zero divisor 𝑥 is a SAZD of ℤ𝑝𝑘 if and only if 𝑝𝑘−1 ∤ 𝑥. 

Theorem. In ℤ𝑛 , with the prime factorization of 𝑛 =

𝑝1
𝛼1𝑝2

𝛼2 … 𝑝𝑟
𝛼𝑟  where 𝑝𝑖  are distinct odd 

 primes for 𝑖 = 1, … , 𝑟, every zero divisor is a SAZD element. 

Proof: Suppose 𝑥 is a zero divisor of the form 𝑥 =

𝑝1
𝛼1𝑝2

𝛼2 … 𝑝𝑘
𝛼𝑘𝑙, with 𝑝𝑗 ∤ 𝑙 for 𝑘 + 1 ≤ 𝑗 ≤ 𝑟. Then there exist 

a unit 𝑦 ∈ 𝑍𝑛, such that 𝑥𝑦 ≢ 0(𝑚𝑜𝑑 𝑛) 

Consider two zero divisors 𝑎 = 𝑝1𝑡 and 𝑏 = 𝑝1
𝛼1−1𝑝2

𝛼2 … 𝑝𝑟
𝛼𝑟 

for 𝑝𝑠 ∤ 𝑡, 

For 2 ≤ 𝑠 ≤ 𝑟 and 𝑡 ≠ 𝑙, then  

𝑥𝑎 ≢ 0(𝑚𝑜𝑑 𝑛), 

   𝑏𝑦 ≢ 0(𝑚𝑜𝑑 𝑛) an 

𝑎𝑏 ≡ 0(𝑚𝑜𝑑 𝑛). 

Hence every zero divisor of  ℤ𝑛 is a SAZD. 

Corollary. In ℤ𝑝𝑞, 𝑝 and 𝑞  are distinct odd primes, every zero 

divisor is a SAZD. 

Proof: Let 𝑥 be a zero divisor of ℤ𝑝𝑞. We take 𝑥 = 𝑘𝑝, for 1 ≤

𝑘 ≤ 𝑞 − 1 and we take a unit 𝑦 ∈ ℤ𝑝𝑞, we have 𝑥𝑦 ≢

0(𝑚𝑜𝑑 𝑝𝑞). 

Consider two zero divisors 𝑎, 𝑏 ∈  ℤ𝑝𝑞\{0, 𝑥, 𝑦} such that 𝑎 =

𝑡𝑝, and  𝑏 = 𝑠𝑞,  

for 𝑡 ≠ 𝑘 , and 1 ≤ 𝑡 ≤ 𝑞 − 1 and 1 ≤ 𝑠 ≤ 𝑝 − 1 then  

𝑎𝑥 ≢ 0(𝑚𝑜𝑑 𝑝𝑞), 

       𝑏𝑦 ≢ 0(𝑚𝑜𝑑 𝑝𝑞), and 

𝑎𝑏 ≡ 0(𝑚𝑜𝑑 𝑝𝑞) 

The proof is similar for 𝑥 = 𝑙𝑞, for 1 ≤ 𝑘 ≤ 𝑝 − 1. 

Hence every zero divisor of  ℤ𝑝𝑞is a SAZD.  

Corollary. In ℤ𝑝𝑞𝑟, where 𝑝 < 𝑞 < 𝑟  are distinct odd primes, 

every zero divisor is a SAZD. 

Proof: Let 𝑥 be a zero divisor, then we take 𝑥 = 𝑘𝑝, for 1 ≤ 𝑘 ≤

𝑞𝑟 − 1. For a unit 𝑦 ∈ ℤ𝑝𝑞𝑟 , we have 𝑥𝑦 ≢ 0(𝑚𝑜𝑑 𝑝𝑞𝑟). 

Consider two zero divisors 𝑎, 𝑏 ∈  ℤ𝑝𝑞𝑟\{0, 𝑥, 𝑦} such that 𝑎 =

𝑡𝑝, and 𝑏 = 𝑞𝑟, where 𝑡 ≠ 𝑘, and 1 ≤ 𝑡 ≤ 𝑞𝑟 − 1,  we have  

𝑎𝑥 ≢ 0(𝑚𝑜𝑑 𝑝𝑞𝑟), 

      𝑏𝑦 ≢ 0(𝑚𝑜𝑑 𝑝𝑞𝑟), and 

𝑎𝑏 ≡ 0(𝑚𝑜𝑑 𝑝𝑞𝑟), 

The proof is similar for 𝑥 = 𝑙𝑞, where 1 ≤ 𝑙 ≤ 𝑝𝑟 − 1, and 𝑥 =

𝑚𝑟, where 1 ≤ 𝑚 ≤ 𝑝𝑞 − 1. 

Hence every zero divisor of  ℤ𝑝𝑞𝑟 is a SAZD. 

Proposition.  Every zero divisor 𝑥 of the ring  ℤ2𝑝, 𝑝 is an odd 

prime, is a SAZD if and only if 𝑝 ∤ 𝑥.  

Proof: Suppose 𝑝 ∤ 𝑥, then  𝑥 = 2𝑙, for 1 ≤ 𝑙 ≤ 𝑝 − 1. Then 

there exist a unit  𝑦 ∈ ℤ𝑛, such that 𝑥𝑦 ≢ 0(𝑚𝑜𝑑 𝑛) 

Consider two zero divisors 𝑎, 𝑏 ∈ 𝑍2𝑝\{0, 𝑥}, such that  𝑎 = 2𝑡 

and 𝑏 = 𝑝, for  𝑡 ≠ 𝑙 and  1 ≤ 𝑡 ≤ 𝑝 − 1. Now  

𝑥𝑎 ≢ 0(𝑚𝑜𝑑 2𝑝), 

    𝑏𝑦 ≢ 0(𝑚𝑜𝑑 2𝑝) and 

𝑎𝑏 ≡ 0(𝑚𝑜𝑑 2𝑝). 

Hence 𝑥 is a SAZD of ℤ2𝑝. 
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Conversely: Suppose 𝑥 is a SAZD  

If 𝑝│𝑥, then 𝑥 = 𝑝 and for every zero divisor 𝑎 ∈ ℤ2𝑝, we 

have 𝑎𝑥 ≡ 0(𝑚𝑜𝑑 2𝑝), which is a contradiction with 

assumption, therefore 𝑝 ∤ 𝑥. 

Hence 𝑥  is a SAZD of ℤ2𝑝 if and only if 𝑝 ∤ 𝑥. 

In what follows, we study SAZD elements in some type of group 

rings. Note that in the following results we mean by 𝐺 a cyclic 

group of order 𝑛 generated by 𝑔, where 𝑛 is any positive integer.  

Proposition. Consider the group ring ℤ𝑛𝐺, where 𝐺 is a cyclic 

group of order 𝑚 except the case 𝑚 = 𝑛 = 2, The element 𝑥 =

𝑠𝑔𝑘   is SAZD, where  0 ≠ 𝑠 ∈ ℤ𝑛 and 1 ≤ 𝑘 ≤ 𝑚. 

Proof: Suppose 𝑦 = 𝑔. Then 𝑥𝑦 = 𝑠𝑔𝑘+1 ≠ 0. We take two 

elements  

𝑎, 𝑏 ∈ ℤ𝑛𝐺\{0, 𝑥, 𝑦} such that 𝑎 = 1 + (𝑛 − 1)𝑔 and 𝑏 = 1 +

𝑔 + ⋯ + 𝑔𝑚−1, then  

𝑎. 𝑥 ≠ 0 

      𝑏. 𝑦 ≠ 0 and 

𝑎. 𝑏 = 0 

Hence 𝑥 is a SAZD of ℤ𝑛𝐺. 

In the above proposition, if we take 𝑛 = 4, 𝑚 = 3, 𝑠 = 1 and 𝑘 =

1, then 

𝑥 = 𝑔2, 𝑦 = 𝑔, 𝑎 = 1 + 3𝑔 and 𝑏 = 1 + 𝑔 + 𝑔2. 

Now  𝑥. 𝑦 = 𝑔2. 𝑔 = 𝑔3 ≠ 0, 

         𝑎. 𝑥 = (1 + 3𝑔). 𝑔2 ≠ 0, 

         𝑏. 𝑦 = (1 + 𝑔 + 𝑔2). 𝑔 ≠ 0, and 

         𝑎. 𝑏 = (1 + 3𝑔). (1 + 𝑔 + 𝑔2) = 4 + 4𝑔 + 4𝑔2 = 0. 

Hence 𝑥 is a SAZD element. 

Proposition .Consider the group ring ℤ2𝐺, where 𝐺 is a cyclic 

group of order 𝑚 > 3. If an element 𝑥 has an odd number of 

summands, then it is a SAZD element. 

Proof: Suppose that 𝑥 has an odd number of summands, then 

either 𝑥 = 𝑔𝑖1 + 𝑔𝑖2 + ⋯ + 𝑔𝑖𝑘, where 𝑘 is odd, or 𝑥 = 1 +

𝑔𝑖1 + 𝑔𝑖2 + ⋯ + 𝑔𝑖𝑘, where 𝑘 is even and,  in both cases 1 ≤

𝑖𝑗 ≤ 𝑚 − 1 and 𝑖ℎ ≠ 𝑖𝑠 for 𝑗, ℎ, 𝑠 ∈ {1,2, … , 𝑘}.  

For each case of 𝑥 we take  𝑦 = 𝑔, 𝑎 = 1 + 𝑔 and 𝑏 = 1 + 𝑔 +

⋯ + 𝑔𝑚−1, then 𝑎, 𝑏 ∈ ℤ2𝐺\{0, 𝑥, 𝑦} 

Case1. If 𝑥 = 𝑔𝑖1 + 𝑔𝑖2 + ⋯ + 𝑔𝑖𝑘, then 

                       𝑥. 𝑦 = 1 + 𝑔𝑖1+1 + 𝑔𝑖2+1 + ⋯ + 𝑔𝑖𝑘+1 ≠ 0, 

                       𝑎. 𝑥 = 𝑔𝑖1+1 + 𝑔𝑖2+1 + ⋯ + 𝑔𝑖𝑘+1 + 𝑔𝑖1 + 𝑔𝑖2 +

⋯ + 𝑔𝑖𝑘 ≠ 0, 

                       𝑏. 𝑦 = 𝑏 ≠ 0  and 

                       𝑎. 𝑏 = 0. 

Case 2. If 𝑥 = 1 + 𝑔𝑖1 + 𝑔𝑖2 + ⋯ + 𝑔𝑖𝑘, then 

                     𝑥. 𝑦 = 𝑔 + 𝑔𝑖1+1 + 𝑔𝑖2+1 + ⋯ + 𝑔𝑖𝑘+1 ≠ 0, 

                    𝑎. 𝑥 = 1 + 𝑔𝑖1 + 𝑔𝑖2 + ⋯ + 𝑔𝑖𝑘 + 𝑔 + 𝑔𝑖1+1 +

𝑔𝑖2+1 + ⋯ + 𝑔𝑖𝑘+1 ≠ 0, 

                    𝑏. 𝑦 = 𝑏 ≠ 0 and 

                    𝑎. 𝑏 = 0. 

 Then 𝑥 is a SAZD element of ℤ2𝐺. 

Proposition.  Every non zero element of the group ring 

ℤ𝑝𝐺, where 𝑝 is an odd prime and 𝐺 is a cyclic group of order 2 

generated by 𝑔, is a SAZD element. 

Proof: Let 0 ≠ 𝑥 = 𝑎0 + 𝑏0𝑔 ∈ ℤ𝑝𝐺. 

Case I: if 𝑎0 + 𝑏𝑜 ≠ 0. Let 𝑦 = 1, 𝑎 = 1 + 𝑔 and 𝑏 = 1 +

(𝑝 − 1)𝑔.  

Where 𝑎, 𝑏 ∈ ℤ𝑝𝐺\{0, 𝑥, 𝑦}, then  𝑥. 𝑦 = 𝑎0 + 𝑏0𝑔 ≠ 0, 

         𝑎. 𝑥 = (𝑎0 + 𝑏0) + (𝑎𝑜 + 𝑏0)𝑔 ≠ 0, because 𝑎0 + 𝑏0 ≠

0, 

          𝑏. 𝑦 = 1 + (𝑝 − 1)𝑔 ≠ 0 

          𝑎. 𝑏 = (1 + 𝑔)(1 + (𝑝 − 1)𝑔) = 0. 

 (In case if 𝑥 = 1 + 𝑔, take 𝑎 = 2 + 2𝑔). 

Case II: If 𝑎0 + 𝑏0 = 0. Let 𝑦 = 1, 𝑎 = 𝑏0 + 𝑎0𝑔 and 𝑏 = 1 +

𝑔, Where 𝑎, 𝑏 ∈ ℤ𝑝𝐺\{0, 𝑥, 𝑦}, then 

             𝑥. 𝑦 = 𝑎0 + 𝑏0𝑔 ≠ 0, 

             𝑎. 𝑥 = 2𝑎0𝑏0 + (𝑎0
2 + 𝑏0

2)𝑔 

 since 𝑎0 + 𝑏0 = 0, So 𝑎0
2 = 𝑏0

2 and since ℤ𝑝 has no zero 

divisors, so 2𝑎0𝑏0 ≠ 0 and 2𝑎0
2 ≠ 0, then  

              𝑎. 𝑥 = 2𝑎0𝑏0 + 2𝑎0
2𝑔 ≠ 0,  

              𝑏. 𝑦 = 1 + 𝑔 ≠ 0 and 

              𝑎. 𝑏 = (𝑎0 + 𝑏0) + (𝑎0 + 𝑏0)𝑔 = 0. 

Therefore in both cases 𝑥 is a SAZD element of ℤ𝑝𝐺. 

Remark. Consider the group ring ℤ𝒑𝑮, where 𝐺 is a cyclic group 

of order 𝑝 generated by 𝑔, and consider the zero divisor 𝑥 = 𝑎0 +

𝑎1𝑔 + 𝑎2𝑔2 + ⋯ + 𝑎𝑝−1𝑔𝑝−1. Then  

𝑥. (1 + 𝑔 + 𝑔2 + ⋯ + 𝑔𝑝−1) = 0 if and only if  𝑎0 + 𝑎1 + 𝑎2 +

⋯ 𝑎𝑝−1 = 0. 

Proof: Suppose that 𝑎0 + 𝑎1 + 𝑎2 + ⋯ 𝑎𝑝−1 = 0.  

Now, 𝑥. (1 + 𝑔 + 𝑔2 + ⋯ + 𝑔𝑝−1) = (𝑎0 + 𝑎1𝑔 + ⋯ +

𝑎𝑝−1𝑔𝑝−1)(1 + 𝑔 + ⋯ + 𝑔𝑝−1). 

                  = 𝑎0 + 𝑎0𝑔 + 𝑎0𝑔2 + ⋯ + 𝑎𝑜𝑔𝑝−1 + 𝑎1𝑔 + 𝑎1
2𝑔2

+ ⋯ + 𝑎1𝑔𝑝−1 + ⋯ + 𝑎𝑝−1𝑔𝑝−1 + 𝑎𝑝−1𝑔

+ ⋯ + 𝑎𝑝−1𝑔2(𝑝−1) 
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                  = (𝑎0 + 𝑎1 + ⋯ + 𝑎𝑝−1) + (𝑎0 + 𝑎1 + ⋯ + 𝑎𝑝−1)𝑔

+ (𝑎0 + 𝑎1 + ⋯ + 𝑎𝑝−1)𝑔2 + ⋯

+ (𝑎0 + 𝑎1 + ⋯ + 𝑎𝑝−1)𝑔𝑝−1 

So 𝑥. (1 + 𝑔 + 𝑔2 + ⋯ + 𝑔𝑝−1) = (𝑎0 + 𝑎1 + ⋯ + 𝑎𝑝−1)(1 +

𝑔 + ⋯ 𝑔𝑝−1). Since 

 𝑎0 + 𝑎1 + ⋯ + 𝑎𝑝−1 = 0, then 𝑥. (1 + 𝑔 + 𝑔2 + ⋯ + 𝑔𝑝−1) =

0. 

Conversely: Suppose that 𝑥. (1 + 𝑔 + 𝑔2 + ⋯ + 𝑔𝑝−1) = 0. We 

have to show that  

 𝑎0 + 𝑎1 + ⋯ + 𝑎𝑝−1 = 0. ,  

Now,  𝑥. (1 + 𝑔 + 𝑔2 + ⋯ + 𝑔𝑝−1) = (𝑎0 + 𝑎1 + ⋯ +

𝑎𝑝−1)(1 + 𝑔 + 𝑔2 + ⋯ 𝑔𝑝−1) = 0, then  

𝑎0 + 𝑎1 + ⋯ + 𝑎𝑝−1 = 0.      (By: If  𝑘 + 𝑘𝑔 + ⋯ 𝑘𝑔𝑝−1 =

0, 𝑡ℎ𝑒𝑛 𝑘 = 0). 

Proposition. Consider the group ring ℤ𝑝𝐺, where 𝐺 is a cyclic 

group of order 𝑝 generated by 𝑔. Then a non-zero element 𝑎0 +

𝑎1𝑔 + ⋯ + 𝑎𝑝−1𝑔𝑝−1 is a zero divisor of ℤ𝑝𝐺 if and only if 𝑎0 +

𝑎1 + ⋯ + 𝑎𝑝−1 = 0. Where 𝑎𝑖 ∈ ℤ𝑝, for  𝑖 ∈ {0,1,2, … , 𝑝 − 1}. 

Proof: Let 𝑥 = 𝑎0 + 𝑎1𝑔 + ⋯ + 𝑎𝑝−1𝑔𝑝−1 and suppose 

that 𝑎0 + 𝑎1 + ⋯ + 𝑎𝑝−1 = 0. Let 𝑦 = 1 + 𝑔 + 𝑔2 + ⋯ +

𝑔𝑝−1. 

Now 𝑥. 𝑦 = (𝑎0 + 𝑎1𝑔 + ⋯ + 𝑎𝑝−1𝑔𝑝−1)(1 + 𝑔 + ⋯ + 𝑔𝑝−1) 

                  = 𝑎0 + 𝑎0𝑔 + 𝑎0𝑔2 + ⋯ + 𝑎𝑜𝑔𝑝−1 + 𝑎1𝑔 + 𝑎1
2𝑔2

+ ⋯ + 𝑎1𝑔𝑝−1 + ⋯ + 𝑎𝑝−1𝑔𝑝−1 + 𝑎𝑝−1𝑔

+ ⋯ + 𝑎𝑝−1𝑔2(𝑝−1) 

                  = (𝑎0 + 𝑎1 + ⋯ + 𝑎𝑝−1) + (𝑎0 + 𝑎1 + ⋯ + 𝑎𝑝−1)𝑔

+ (𝑎0 + 𝑎1 + ⋯ + 𝑎𝑝−1)𝑔2 + ⋯

+ (𝑎0 + 𝑎1 + ⋯ + 𝑎𝑝−1)𝑔𝑝−1 

So 𝑥. 𝑦 = (𝑎0 + 𝑎1 + ⋯ + 𝑎𝑝−1)(1 + 𝑔 + ⋯ 𝑔𝑝−1), since 𝑎0 +

𝑎1 + ⋯ + 𝑎𝑝−1 = 0. 

So 𝑥. 𝑦 = 0, therefor 𝑥 is a zero divisor of  ℤ𝑝𝐺. 

Conversely: Suppose that 𝑥 = 𝑎0 + 𝑎1𝑔 + ⋯ + 𝑎𝑝−1𝑔𝑝−1 is 𝑎 

zero divisor of ℤ𝑝𝐺. We have to show that 𝑎0 + 𝑎1 + ⋯ +

𝑎𝑝−1 = 0 

Since 𝑥 is a zero divisor of ℤ𝑝𝐺, So by Remark . 𝑥. (1 + 𝑔 +

⋯ + 𝑔𝑝−1) = 0 

           (𝑎0 + 𝑎1𝑔 + ⋯ + 𝑎𝑝−1𝑔𝑝−1)(1 + 𝑔 + ⋯ + 𝑔𝑝−1) = 0 

So        (𝑎0 + 𝑎1 + ⋯ + 𝑎𝑝−1)(1 + 𝑔 + ⋯ + 𝑔𝑝−1) = 0 

Since 1 + 𝑔 + ⋯ + 𝑔𝑝−1 ≠ 0. So 𝑎0 + 𝑎1 + ⋯ + 𝑎𝑝−1 = 0 

Proposition. onsider the group ring ℤ𝑝𝐺, where 𝑝 is a prime and 

𝐺 is a cyclic group of order 𝑝 generated by 𝑔. Then an element 

𝑥 = 𝑎 + 𝑎𝑔 + ⋯ + 𝑎𝑔𝑝−1 is not a SAZD element. 

Proof: From definition 𝑥 is a SAZD element, if ∃ 𝑎, 𝑏 ∈

ℤ𝑝𝐺\{0, 𝑥, 𝑦} such that 𝑎. 𝑥 ≠ 0, 𝑏. 𝑦 ≠ 0 and 𝑎. 𝑏 = 0.  

Since a and b are zero divisors, so by Proposition . 𝑎 and 𝑏 must 

be of the form  𝑎 = 𝑎0 + 𝑎1𝑔 + ⋯ + 𝑎𝑝−1𝑔𝑝−1, 𝑏 = 𝑏0 +

𝑏1𝑔+. . +𝑏𝑝−1𝑔𝑝−1 such that  

𝑎0 + 𝑎1 + ⋯ + 𝑎𝑝−1 = 0 and 𝑏0 + 𝑏1 + ⋯ + 𝑏𝑝−1 = 0. 

But  𝑎. 𝑥 = (𝑎0 + 𝑎1𝑔 + ⋯ + 𝑎𝑝−1𝑔𝑝−1 )(𝑎 + 𝑎𝑔 + ⋯ +

𝑎𝑔𝑝−1) 

                = (𝑎0 + 𝑎1 + ⋯ + 𝑎𝑝−1)(𝑎 + 𝑎𝑔 + ⋯ + 𝑎𝑔𝑝−1), 

Since 𝑎0 + 𝑎1 + ⋯ + 𝑎𝑝−1 = 0, So 𝑎. 𝑥 = 0 

Therefore 𝑥 is not a SAZD element. 

Remark. If 𝑥 is a zero divisor of the group ring ℤ2𝑛𝐺, where 𝐺 is 

a cyclic group of order 2𝑚 generated by 𝑔, then  𝑥. 2𝑛−1(1 + 𝑔 +

⋯ + 𝑔2𝑚−1) = 0. 

Lemma. Consider the group ring ℤ2𝑛𝐺, where 𝐺 is a cyclic group 

of order 2𝑚. Then an element 𝑥 = 𝑎0 + 𝑎1𝑔 + ⋯ + 𝑎2𝑚−1𝑔2𝑚−1
 

is a zero divisor of ℤ2𝑛𝐺, if and only if 𝑎0 + 𝑎1 + ⋯ + 𝑎2𝑚−1 =

2𝑘  , where 𝑘 ≥ 1 and 𝑎𝑖 ∈ ℤ2𝑛 for  𝑖 ∈ {1,2, … , 2𝑚−1}. 

Proof: Let 𝑥 = 𝑎0 + 𝑎1𝑔 + ⋯ + 𝑎2𝑚−1𝑔2𝑚−1
. 

Suppose that 𝑎0 + 𝑎1 + ⋯ + 𝑎2𝑚−1 = 2𝑘, where 𝑘 ≥ 1. We have 

to show that 𝑥 is a zero divisor. Let 𝑦 = 2𝑛−1(1 + 𝑔 + 𝑔2 + ⋯ +

𝑔2𝑚−1
) 

Now 𝑥. 𝑦 = (𝑎0 + 𝑎1𝑔 + ⋯ + 𝑎2𝑚−1𝑔2𝑚−1
)(2𝑛−1(1 + 𝑔 … +

𝑔2𝑚−1
) 

                = 2𝑛−1(𝑎0 + 𝑎0𝑔 + ⋯ + 𝑎0𝑔2𝑚−1
+ 𝑎1𝑔 + 𝑎1𝑔2 +

⋯ + 𝑎1 + ⋯ + 𝑎2𝑚−1𝑔2𝑚−1
+ 𝑎2𝑚−1 + 𝑎2𝑚−1𝑔 + ⋯ +

𝑎2𝑚−1𝑔2(2𝑚−1)) 

                = 2𝑛−1 (𝑎0(1 + 𝑔 + ⋯ + 𝑔2𝑚−1
) + 𝑎1(1 + 𝑔 + ⋯ +

𝑔2𝑚−1
) + ⋯ + 𝑎2𝑚−1(1 + 𝑔 + ⋯ + 𝑔2𝑚−1

)) 

               = 2𝑛−1(𝑎0 + 𝑎1 + ⋯ + 𝑎2𝑚−1)(1 + 𝑔 + ⋯ + 𝑔2𝑚−1
) 

Since 𝑎0 + 𝑎1 + ⋯ + 𝑎2𝑚−1 = 2𝑘, where 𝑘 ≥ 1 

So 𝑥. 𝑦 = 2𝑛−1. 2𝑘(1 + 𝑔 + ⋯ + 𝑔2𝑚−1
) = 0 

Therefore 𝑥 is a zero divisor of ℤ2𝑛𝐺. 

Conversely: Suppose that  𝑥 is a zero divisor of ℤ2𝑛𝐺. 

Then by Remark.  𝑥. (2𝑛−1(1 + 𝑔 + 𝑔2 + ⋯ + 𝑔2𝑚−1
) = 0 
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(𝑎0 + 𝑎1𝑔 + 𝑎2𝑔2 + ⋯ + 𝑎2𝑚−1𝑔2𝑚−1
)2𝑛−1(1 + 𝑔 + 𝑔2 +

⋯ + 𝑔2𝑚−1
) = 0. 

So  2𝑛−1(𝑎0 + 𝑎1 + 𝑎2 + ⋯ + 𝑎2𝑚−1 + (𝑎0 + 𝑎1 + 𝑎2 + ⋯ +

𝑎2𝑚−1)𝑔 + ⋯ + (𝑎0 + 𝑎1 + 𝑎2 + ⋯ +       𝑎2𝑚−1)𝑔2𝑚−1
) = 0. 

Then 2𝑛−1(𝑎0 + 𝑎1 + 𝑎2 + ⋯ + 𝑎2𝑚−1)(1 + 𝑔 + ⋯ +

𝑔2𝑚−1
) = 0 

Therefore 2𝑛−1(𝑎0 + 𝑎1 + 𝑎2 + ⋯ + 𝑎2𝑚−1) = 0 ≡

2𝑛(𝑚𝑜𝑑 2𝑛).  

Thus 𝑎0 + 𝑎1 + 𝑎2 + ⋯ + 𝑎2𝑚−1 = 2𝑘, where 𝑘 ≥ 1.  

Proposition. Consider the group ring  ℤ2𝑛𝐺, where 𝐺 is a cyclic 

group of order 2𝑚. Then the element      𝑥 = 2𝑛−1 + 2𝑛−1𝑔 +

2𝑛−1𝑔2 + ⋯ + 2𝑛−1𝑔2𝑚−1
 is not a SAZD element. 

Proof: Suppose that 𝑥 is a SAZD element. Then there exist 𝑦 ∈

ℤ2𝑛𝐺 and 𝑎, 𝑏 ∈  ℤ2𝑛𝐺\{0, 𝑥, 𝑦} such that 𝑥𝑦 ≠ 0, 𝑎. 𝑥 ≠

0 and 𝑎. 𝑏 = 0. 

Since 𝑎 is a zero divisor of  ℤ2𝑛𝐺, then by Lemma  

𝑎 = 𝑎0 + 𝑎1𝑔 + ⋯ + 𝑎2𝑚−1𝑔2𝑚−1
 such that 𝑎0 + 𝑎1 + 𝑎2 +

⋯ + 𝑎2𝑚−1 = 2ℎ, where ℎ ≥ 1. Now: 

 𝑎. 𝑥 = (𝑎0 + 𝑎1𝑔 + 𝑎2𝑔2 + ⋯ + 𝑎2𝑚−1𝑔2𝑚−1
)(2𝑛−1 +

2𝑛−1𝑔 + ⋯ + 2𝑛−1𝑔2𝑚−1
) 

 = 2𝑛−1𝑎0 + 2𝑛−1𝑎1 𝑔 + ⋯ + 2𝑛−1𝑎2𝑚−1𝑔2𝑚−1
+ 2𝑛−1𝑎0𝑔

+ 2𝑛−1𝑎1𝑔2 + 2𝑛−1𝑎2𝑔3 + ⋯

+ 2𝑛−1𝑎2𝑚−1 + 

    2𝑛−1𝑎0𝑔2 + 2𝑛−1𝑎1𝑔3 + ⋯ + 2𝑛−1𝑎2𝑚−1𝑔 + ⋯ +

2𝑛−1𝑎0𝑔2𝑚−1
+ 2𝑛−1𝑎1 + ⋯ + 2𝑛−1𝑎2𝑚−1𝑔2(2𝑚−1). 

So 𝑎. 𝑥 = 2𝑛−1(𝑎0 + 𝑎1 + ⋯ + 𝑎2𝑚−1) + 2𝑛−1𝑔(𝑎0 + 𝑎1 +

⋯ + 𝑎2𝑚−1) + ⋯ + 2𝑛−1𝑔2𝑚−1
(𝑎0 + 𝑎1 + ⋯ +

                          𝑎2𝑚−1)). 

Since 𝑎0 + 𝑎1 + ⋯ + 𝑎2𝑚−1 = 2ℎ, ℎ ≥ 1 

So 𝑎. 𝑥 = 2𝑛−1. 2ℎ(1 + 𝑔 + 𝑔2 + ⋯ + 𝑔2𝑚−1
) = 0, which  

contradicts with  the assumption. 

So 𝑥 is not a SAZD element of the group ring ℤ2𝑛𝐺. 

Smarandache Anti Zero Divisor (Sazd) Ideals  

           In this section, we introduce the SAZD ideals. We 

determine those conditions which make a given ideal to be a 

SAZD ideal of the ring ℤ𝑛. The ideals are symbolled in capital 

letters, and (0) represents the zero ideal. 

Definition. An ideal 𝐼 of the ring 𝑅 is said to be a SAZD ideal, if 

we can find an ideal 𝐽 such 𝐼𝐽 ≠ (0) and there exist two proper 

ideals 𝐾, 𝐿 of 𝑅 which are different from 𝐼 and 𝐽 such that: 

1. 𝐼𝐾 ≠ (0)𝑜𝑟 𝐾𝐼 ≠ (0). 

2. 𝐿𝐽 ≠ (0)𝑜𝑟 𝐽𝐿 ≠ (0). 

3. 𝐾𝐿 = (0)𝑜𝑟 𝐿𝐾 = (0). 

Note.  Since the ring ℤ𝑛   is commutative for any positive integer 

𝑛, then the three conditions in Definition. are considered as   

𝐼𝐾 ≠ (0), 𝐿𝐽 ≠ (0) and 𝐾𝐿 = (0). 

Remark. Trivially the ideal (𝑝𝑘−1) is not a SAZD ideal of the 

ring ℤ𝑝𝑘 . 

Theorem .In ℤ𝑝𝑘, 𝑝 is prime and 𝑘 > 6, every non zero ideal is 

a SAZD ideal except (𝑝𝑘−1). 

Proof: The proper ideals of ℤ𝑝𝑘 are of the form (𝑝𝑖), for 𝑖 =

1,2, … , 𝑘 − 1. 

Case1: If 𝐼 = (𝑝), Then for 𝐽 = (𝑝2), 𝐾 = (𝑝𝑘−3) and 𝐿 = (𝑝3) 

we see that all of them are distinct. 

Now 𝐼𝐽 ≠ (0), 𝐼𝐾 ≠ (0), 𝐽𝐿 ≠ (0) and 𝐾𝐿 = (0). 

Hence 𝐼 = (𝑝) is a SAZD ideal of ℤ𝑝𝑘. 

Case2: Let 𝐼 = (𝑝𝑘−2). Then for 𝐽 = (𝑝), 𝐾 = (𝑝𝑘−3) and 𝐿 =

(𝑝3) we see that all of them are distinct. 

Now 𝐼𝐽 ≠ (0), 𝐼𝐾 ≠ (0), 𝐽𝐿 ≠ (0) and 𝐾𝐿 = (0). 

Hence 𝐼 is a SAZD ideal of 𝑍𝑝𝑘. 

Case3: Let 𝐼 = (𝑝𝑠) for 1 < 𝑠 < 𝑘 − 2. Then for 𝐽 = (𝑝), 𝐾 =

(𝑝2) and            𝐿 = (𝑝𝑘−2) we see that all of them are distinct. 

Now 𝐼𝐽 ≠ (0), 𝐼𝐾 ≠ (0), 𝐽𝐿 ≠ (0) and 𝐾𝐿 = (0). 

Hence 𝐼 is a Smarandache anti zero divisor ideal of 𝑍𝑝𝑘. 

By Remark 3.3, we have (𝑝𝑘−1) is not a SAZD ideal. 

Therefore, every non zero ideal of 𝑍𝑝𝑘 anti zero divisor ideal 

except (𝑝𝑘−1). 

Remark. If 𝑝 < 𝑞 are primes, then ℤ𝑝𝑞 has no SAZD ideal. 

Proposition. In ℤ𝑝𝑞𝑟, where 𝑝 < 𝑞 < 𝑟 are primes, every non 

zero ideal is a SAZD ideal. 

Proof: Clearly proper ideals of ℤ𝑝𝑞𝑟 are of the form 

(𝑝), (𝑞), (𝑟), (𝑝𝑞), (𝑝𝑟) and (𝑞𝑟). 

We proof for the case 𝐼 = (𝑃). Take 𝐽 = (𝑞), 𝑘 = (𝑝𝑞). and 𝐿 =

(𝑟). We see that ideals 𝐼, 𝐽, 𝐾 and 𝐿 are distinct and 𝐼𝐽 ≠

(0), 𝐼𝐾 ≠ (0), 𝐽𝐿 ≠ (0) and 𝐾𝐿 = (0). 

The proof is similar for all other ideals. 

Hence every non zero ideal of  ℤ𝑝𝑞𝑟  is a SAZD ideal . 

Proposition.  In ℤ𝑝1𝑝2…𝑝𝑟
, where 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑟 are primes, 

every proper ideal is a SAZD ideal. 

Proof: Let 𝐼 = (𝑝1𝑝2 … 𝑝𝑗−3𝑝𝑗𝑝𝑗+3 … 𝑝𝑟) be a proper ideal 

of 𝑍𝑝1𝑝2…𝑝𝑟
. Then we take ideals 𝐽 =
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(𝑝1𝑝2 … 𝑝𝑗−3𝑝𝑗−2𝑝𝑗𝑝𝑗+2𝑝𝑗+3 … 𝑝𝑟), 𝐿 =

(𝑝1𝑝2 … 𝑝𝑗−3𝑝𝑗−2𝑝𝑗+2𝑝𝑗+3 … 𝑝𝑟) and 𝐾 = (𝑝𝑗−1𝑝𝑗𝑝𝑗+1). We 

see that 𝐼, 𝐽, 𝐾 and 𝐿 are distinct ideals. Now 𝐼𝐽 ≠ (0), 𝐼𝐾 ≠

(0), 𝐽𝐿 ≠ (0) and 𝐾𝐿 = (0). 

Hence 𝐼 is a SAZD ideal of  ℤ𝑝1𝑝2…𝑝𝑟
. 

Therefore, every non zero ideal of  ℤ𝑝1𝑝2…𝑝𝑟
 is a SAZD ideal. 

Theorem. In ℤ𝑛 , with the prime factorization of 𝑛 =

𝑝1
𝛼1𝑝2

𝛼2 … 𝑝𝑟
𝛼𝑟, for 𝛼𝑖 ≥ 1 where 𝑖 = 1,2, … , 𝑟, every proper 

ideal is a SAZD ideal. 

Proof: Let 𝐼 =

(𝑝1
𝛼1−𝑠1𝑝2

𝛼2−𝑠2 … 𝑝𝑗−3
𝛼𝑗−3−𝑠𝑗−3𝑝𝑗

𝛼𝑗𝑝𝑗+3
𝛼𝑗+3−𝑠𝑗+3 … 𝑝𝑟

𝛼𝑟−𝑠𝑟), 

for 𝑠𝑖 ≥ 1, and 𝑖 = 1, … , 𝑟. Then we take 

 𝐽 = (𝑝𝑗−3
𝑠𝑗−3), 𝐾 = (𝑝1

𝛼1𝑝2
𝛼2 … 𝑝𝑗−3

𝛼𝑗−3𝑝𝑗+3
𝑠𝑗+3 … 𝑝𝑟

𝛼𝑟  and  

𝐿 = (𝑝𝑗−2
𝛼𝑗−2𝑝𝑗

𝛼𝑗𝑝𝑗−2
𝑠𝑗−2), we see that 𝐼, 𝐽, 𝐾 and 𝐿 are distinct 

ideals. Now 

𝐼𝐽 ≠ (0), 𝐼𝐾 ≠ (0), 𝐽𝐿 ≠ (0) and 𝐾𝐿 = (0). 

Hence every non zero ideal 𝐼 of  ℤ𝑛 is a SAZD ideal. 

Appendix 

           The well-known Computer Algebra System (GAP)-code 

was studied in The GAP Group ( 2016), we use this code in this 

study to check the results. If this code  is applied, one can see that 

which element of the ring ℤ𝑛 or which element of the group ring 

ℤ𝑛𝐺 is a SAZD element, and which element is not a SAZD 

element, for any positive integer 𝑛. For instance, if we put 𝑚 =

2, and 𝑘 = (1,2,3,4) in the first row of the code, it means that 

which element of the group ring ℤ2𝐺 is a SAZD element, where 

𝐺 is a cyclic group of order 4 generated by 𝑔. After running the 

code, we get the following results: 

ℤ2𝐺 = {0,1, 𝑔, 𝑔2, 𝑔3, 1 + 𝑔, 1 + 𝑔2, 1 + 𝑔3, 𝑔 + 𝑔2, 𝑔 +

𝑔3, 𝑔2 + 𝑔3, 1 + 𝑔 + 𝑔2  , 1 + 𝑔 + 𝑔3, 1 + 𝑔2 + 𝑔3, 𝑔 + 𝑔2 +

𝑔3, 1 + 𝑔 + 𝑔2 + 𝑔3},  

where 

0 and 1 + 𝑔 + 𝑔2+𝑔3 are not SAZD elements, and the other 

elements are SAZD. 

#SAZD 

GR:=GroupRing(ZmodnZ(𝑚),Group(𝑘)); 

A:=[];  

B:=[]; 

F:=[]; 

e:=Elements(GR); 

  for i in [1..Size(e)] do 

     for j in [1..Size(e)] do 

      x:=e[i];  

      y:=e[j]; 

      if x*y<>Zero(GR)then 

       for k in [2..Size(e)] do 

        for h in [2..Size(e)] do 

         a:=e[k]; 

         b:=e[h]; 

         if a<>x and a<>y then 

          if b<>x and b<>y then 

           if (a*b=Zero(GR)and a*x<>Zero(GR)and 

b*y<>Zero(GR)) then                      

           #Print(a,"*",b,"    ");          

             Add(B,x); 

             Add(A,["x=",x,"             y=",y,"          a=",a,"        

b=",b]); 

             Print(x,"  ",y,"  ",a,"  ",b,"     "); 

           fi; 

          fi; 

         fi; 

         if x in B then 

          break; 

         fi;      

        od; 

        if x in B then 

         break; 

        fi;      

       od;  

       if x in B then 

         break; 

        fi;      

      fi; 

     od; 

if not x in B then 

Add(F,x); 

fi; 

   od; 

A:=AsSet(A); 

B:=AsSet(B); 

F:=AsSet(F); 

Print(F,"are not SAZDs","\n"); 

Print(B,"are SAZD","\n"); 

Print(Size(F),"\n",Size(B),"\n",Size(GR)); 
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