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ABSTRACT:

Matrix factorization techniques, such as Singular Value Decomposition (SVD), Eigenvalue Decomposition (EVD), and QR
decomposition, have long been pivotal in computational mathematics, particularly for applications in signal processing,
machine learning, and data analysis. With the growing size and complexity of data, traditional methods of matrix
factorization face challenges in efficiency and scalability. This paper investigates the implementation of Convolutional
Neural Networks (CNNs) for computing the singular values of both real and complex matrices. By leveraging the
hierarchical feature extraction capabilities of CNNs, this approach aims to enhance the accuracy, efficiency, and scalability
of SVD calculations. The proposed CNN-based SVD method is evaluated against the conventional SVD algorithm,
demonstrating superior performance in terms of computational time and accuracy.

KEYWORDS: Singular Value Decomposition, Matrix Factorization, Convolutional Neural Networks, Computational

Compelxity.

1. INTRODUCTION

At the core of computational mathematics, matrix
factorization stands out among others as the basis for many
applications. The singular value decomposition (SVD), Eigen
value decomposition (EVD) and the QR decomposition have
been the basic building blocks of popular matrix factorization
methods for the last decades due to of their reliability and
versatility (Golub & Van Loan, 2013). SVD breaks a matrix into
three other matrices retaining the core of the matrix and has wide
uses in various fields like data compression, signal processing
and machine learning mainly for reducing its dimension and
removing noises. In PCA, SVD plays the most important part to
recognize the major patterns hidden in vast dimensional vectors .
EVD, on the other hand, diagonalizes a square matrix into
eigenvalues and eigenvectors; which are useful in solving
systems of linear equations, stability analysis and optimisation
problem. It is also used in quantum mechanics, vibration analysis
and the analysis of network dynamics (Hogben 2006). Both the
SVD and EVD play a significant role in promoting research in
large dataset analysis by offering methodologies that can help to
extract significant information while alternately reducing huge
dataset’s intricacy, or improving algorithms’ performance in
data-based science. On the other hand, as the size and complexity
of data expands, it becomes more essential to use new and
innovative methods of calculating matrix factorization,
particularly for matrices of large size (Zhang, 2017).

Recently, there has been a remarkable surge in using deep
neural networks (DNNs), and specifically convolutional neural
networks (CNNs) to solve machine learning problems such as
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signal recognition (Mala & Mohammad, 2022), image analysis
(Anwar et. al., 2018), and natural language processing (Hassan
& Taher,2022). The domains frequently work with the complex
datastores that are arranged in the form of grids (Rawat & Wang,
2017). The ability of deep CNNs to outperform traditional
mathematical models and achieve over 98% prediction accuracy
can be credited to the fact that they were initially created for
image classification task (LeCun, 1998). Surprisingly, they have
overcome human-level performance in lots of sectors. As an
example, in speech recognition, conventional methods have been
overshadowed by statistical learning methods which incorporate
convolutional neural network architecture, which recently
achieved human-level accuracy (Finol et al., 2019).

Traditional matrix factorization is computationally
intensive, particularly when solving problems involving high-
dimensional datasets, making it less suitable for real-time
applications or big data. Using neural networks for computing
matrix decompositions helps mitigate these issues by take
advantage of the parallelism and efficiency of deep learning
architectures. Moreover, the scalability of neural network
approaches allows for efficient handling of larger datasets
without the exponential increase in resource requirements
typically associated matrix factorization (Nguyen et al., 2018). In
particular, the CNN-based approach significantly reduces
computational complexity while improving the accuracy of the
matrix decomposition process.

The primary contribution of this paper is the development
of a CNN model capable of computing the singular values for
matrices with real and complex scalar entries. The performance
of this model is evaluated in terms of accuracy and computational
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complexity, and is compared to that of the conventional SVD
algorithm.

The structure of this paper is as follows: Section 2 reviews
the related works. Section 3 discusses the conventional (SVD)
method, while Section 4 introduces the neural network approach
for computing SVD. The simulation results are presented in
Section 5, and the conclusions are outlined in Section 6.

Related Works:

The applicability of neural network-based algorithms for
matrix eigenvalue calculations was explored by (Yi, & Tang,.
2004), where they introduced a continuous time recurrent neural
networks (RNN) which can be applied only to symmetric®
matrices. There are two main limitation of their proposed
approach; firstly, the approach is valid only for non-symmetric
matrices and secondly, the computational complexity of the task
is still high. Similarly, in another study conducted by (Zou et al.,
2013), a recurrent neural network (RNN) was presented for the
Eigendecomposition of actual normal matrices. As the proposed
method is primarily focused on real normal matrices, its
applicability to other types of matrices can be somewhat
restricted. Despite the fact that the method can find n-
dimensional complex eigenvectors, the computational
complexity remains a problem especially when dealing with large
matrices. Building on these ideas, (Hang et al., 2013) extend the
use of neural networks for estimating the generalized EVD
(GEVD) algorithm. However, the proposed method does not
applicable for non-singular matrices or rank-deficient cases. In
addition, this method is relevant for computing only the greatest
and smallest eigenvalues.

In a different approach, Han, Lu, and Zhou, (2020) used
deep neural network to develop a new method to solve high-
dimensional eigenvalue problems by transform the problem into
parabolic equation. This approach is the hybrid of the diffusion
Monte Carlo (DMC) and the neural network learning of the
eigenfunctions, which allows for efficient and accurate
estimation of the potential energy eigenvalue and the
corresponding eigenfunction or their gradient. Also, the direct
use of eigenvalue calculation has been explored by Finol ef al,
(2019), where propose deep CNNs designed for solving
eigenvalue problems used in mechanics in the fields of one-
dimensional and two-dimensional phononic crystals. As this
paper shows, CNNs are more accurate and data efficient for
predicting eigenvalues than fully connected neural networks
(MLPs). Furthermore, Hu, (2022) pointed out that deep learning
network-based matrix eigenvalue algorithms are able to calculate
much faster than traditional algorithms (17% faster in the matrix
range of 4 x 4).

Conventional Singular Value Decomposition (Svd):

SVD is a very useful matrix factorization technique that is
used in multiple computational tasks in varied domains. It gives
a fascinating and in-depth picture of a matrix. It helps to explore
its inner structure and thus to be applied in different fields like
signal processing, image analysis, machine learning and
scientific computing. SVD has become the most efficient and
robust numerical way for diagonalization of any size matrices,
including M X N and having complex scalar coefficients, and the
transformation to the canonical basis is the final point. Different
from the EVD, the SVD doesn't require the input matrix to be

Hermitian for the basis of diagonal decomposition (Golub & Van
Loan, 2013).

At its core, SVD decomposes a given matrix A into three
constituent matrices, each offering valuable insights into the
original matrix:

A=UzyT
where:
U is an m X m orthogonal matrix containing the left singular
vectors of A.

X is an m X n diagonal matrix with non-negative real numbers
(singular values) on its diagonal, arranged in descending order.

VT is the transpose of an n X n orthogonal matrix V, containing
the right singular vectors of A.

The orthonormal matrices U and V can reflect the input and
output spaces' rotations and reflections, respectively, while X' the
diagonal matrix captures the scale factors along each dimension.
The SVD has some important properties and interpretations. The
magnitudes of singular vectors in U and V are represented by
singular values on the diagonal matrix X, which are ordered in
decreasing order by importance with the first singular value
indicating the major direction of data variation. The rank of
matrix A is equivalent to the number of non-zero singular values
in X, hence rank computation and low-rank matrix approximation
by retaining the largest singular values and their corresponding
vectors is possible. Therefore, both U and V are orthogonal
matrices and their column vectors remains orthogonal and
maintain the original matrix orthogonality. Although exact
reconstruction of matrix 4 from SVD includes multiplying three
constituent matrices, many applications involve keeping a subset
of the singular values and vectors for an approximation in lower
dimensions (Strang, 2022).

The Golub-Reinsch algorithm, also known as the SVD by
Bidiagonalization and Golub-Kahan-Reinsch algorithm, is a
common and easy-to-use technique that is commonly used in
finding the SVD for matrices. This algorithm involves several
steps: the process of bidiagonalization starts by applying
Householder reflections to transform the initial matrix into
bidiagonal form. If the matrix is already square, it further
tridiagonalizes by performing Givens rotations making the
matrix a tridiagonal form. Secondly, an iterative QR algorithm
diagonalizes the tridiagonal matrix by performing orthogonal
similarity transformations until a converged diagonal or nearly
diagonal form results. At the end, the singular values are pulled
out from the elements through the main diagonal of the obtained
matrix, and singular vectors can be rebuilt through the unitary
transformations implemented during bidiagonalization (Hogben,
2006; Wu & Tsai, 2019).

Neural Network For Computing SVD:

This section introduces a deep neural network structure
specifically designed for computing SVD, with particular
emphasis on its application in CNNs. The details of SVD
computation using CNNs are explored, including the selection of
data and the configuration of CNN parameters.

Convolutional Neural Networks (CNN):

CNN:s are significant in deep learning networks that have
been specifically created for the complex process of image and
video processing. Due to their hierarchical architecture
comprising of layers of cells, the CNNs are uniquely able to

automatically detect and extract patterns and features from input
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data without human involvement. Our native aptitude in this field
is the reason why CNNs are highly in demand in different
applications like image classification, object detection and facial
recognition. CNNs use convolutional layers to extract prominent
features from the input data, and pooling layers are responsible
for the reduction of spatial dimensions which increases neural
network efficiency. Then, the fully connected layers incorporate
these features to finally produce the correct predictions or
classifications. The extensive implementation and continued
development of CNNs has not only reshaped the outlook of
computer vision, but it has also established them as a
fundamental technology of deep learning, which is a
comprehensive domain (Albawi et al., 2017; Li et al., 2021).

SVD-Based CNN:

The proposed CNN network architecture takes the singular
values obtained from the diagonalized matrix X, which are the
result of applying the conventional SVD algorithm to a scalar A
matrix as inputs. In order to maintain the computational
efficiency and avoid the overfitting of the model, the feedforward
neural network (FNN) component is applied in the prediction
phase that consists of multiple layers such as input, hidden (fully
connected layers) and output layers. In the proposed
implementation the fully connected layers utilize two hidden

Ground Truth

layers with 32 and 16 neurons each that help to identify complex
dependencies within the matrices and provide for the extraction
of features at multiple abstraction levels, facilitating learning.
ReLU activation functions are rectified in the hidden layers to
introduce non-linearity and increase the model's capacity of
cathing complex patterns, and at the output layers, the linear
activation functions are used to facilitate regression and singular
values estimation. In this CNN-based SVD architecture, the
predicted values are iteratively compared to real ones using MSE
to minimize error and evaluate the model effectiveness. As
shown in Figure 1 below, the block diagram illustrates the
proposed CNN-based SVD architecture, used for both training
and implementation. The CNN undertakes hierarchical feature
extraction using convolutional and pooling layers, whereas FNN
uses multiple hidden layers to carry out complex decision-
making to predict the singular values as obtained from
conventional SVD. The CNN, on the other hand, has two
convolutional layers with ReLU activation functions that have 32
and 16 filters, respectively; each layer extracts features from the
input matrices A. In addition, max-pooling layers with a size of
(2x2) and a stride of (2x2) are applied to convolve the extracted
features, thereby enhancing computational efficiency and
retaining important information. Algorithm 1 provides the
pseudocode for implementing this architecture.

¢ )

—, SVD [ 3
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Figure 1: Proposed CNN- based SVD architectures

As shown in Figure 1, this process starts with a K set of
matrices. SVD applied to each matrix, A (k) separately in the data
set for the purpose of extraction of singular values Z(k).
Furthermore, the CNN is trained using these matwrices as inputs,
and their singular values as outputs. The network “learns” to
reduce the Mean Square Error (MSE) until it converges to the
expected level. Trained with this network, it can efficiently
evaluate the singular values for any matrix A applied.
Algorithm 1: CNN-based SVD for calculating Singular Value
Decomposition for matrices with real or complex entries.

Input:
- Matrix Ay, », with real or complex values
- Training data (matrix, singular value pairs)
- CNN model architecture

Output:
- Singular values of Matrix 4

1. Preprocess the Input Matrix:

a. Normalize Matrix A.
b. Reshape Matrix A into a suitable form for CNN input (e.g.,
a 2D or 3D tensor).

c. If necessary, augment the input with additional channels (e.g., real

and imaginary parts for complex matrices).

2. Define Cnn Model Architecture:

a. Input layer: Takes in the reshaped matrix.
b. Convolutional layers:

i. Apply multiple convolutional filters to capture spatial
dependencies.
ii. Use ReLU activation after each convolution.
c. Pooling layers:
i. Apply max pooling to reduce dimensionality.
d. Fully connected layers:
i. Flatten the output of the convolutional and pooling
layers.
ii. Apply fully connected (dense) layers to map the output
to singular values.
e. Output layer:

i. Predict the singular values corresponding to Matrix A.3.
Train the CNN Model:

a. Initialize the model with randomly assigned weights.

b. Use a training dataset of matrix, singular value pairs.

c. Define loss function:

i. Use mean squared error (MSE) between the predicted

and true singular values.

d. Choose an optimization algorithm (e.g., Adam or SGD).

e. Train the model by minimizing the loss function using
backpropagation.

4. Test the CNN Model:

a. Input Matrix A into the trained CNN model.
b. Obtain the predicted singular values.
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5. Post-Process the Output:

a. Convert the predicted output to the correct scale (if
necessary, based on normalization).
b. Return the predicted singular values.
End.

2. RESULTS AND DISCUSSION

To demonstrate the benefits of the proposed artificial neural
network (ANN) architecture, the results of the SVD-based CNN
and the computational load required for their generation will be
presented. Using MATLAB's Deep Learning Toolbox, the

performance of the envisioned CNN architecture was developed
and observed. The model was trained and tested on 10,000
samples from a synthetically generated dataset in the form of 5x5
matrices, created from zero-mean, independent, and identically
distributed (i.i.d.) random processes. Conventional singular value
decomposition was used to compute the singular values for
testing the proposed model. For adaptive learning, the Adagrad
(Adaptive Gradient Algorithm) optimizer was applied, with an
initial learning rate of 0.01, and the maximum number of epochs
set to 50. Training and testing were conducted over 50 epochs,
resulting in an average Mean Squared Error (MSE) value of
0.085, as shown in Figure 2.

1.6 T T T T

Mean Squared Error (MSE)

T T T T T T

5 10 15

20

25 30 35 40 45 50
Epoch

Figure 2: The MSE accuracy of the SVD calculation is assessed using CNN, as a function of the number of epochs.

An important factor that should be taken in consideration is
the computational complexity of the presented SVD-based CNN
algorithm since it limits its application particularly in the
environment that uses a regular CPU. Thus, the results of the
SVD-based CNN will be presented, along with an analysis of the
number of computations required to obtain this solution.

The evaluation of proposed method covers the CPU time
required to solve the problem with the aid of the proposed method

in contrast to standard SVD methods. CPU time in seconds
denotes the time, which the processor requires to perform all the
necessary computations to execute the algorithm on the given
data set or problem size. This measure considers the
computational cost, continuity of the operations and the hardware
resources used (Hsu & Kremer, 2003; Hsia ef al., 2021).

1072
— Conventional SVVD

— ©@- -CNN-based SVD

CPU Time (Sec)

104> !
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Figure 3: Time complexity analysis for calculating singular values using both CNN-based SVD and the conventional SVD algorithm
across varying input matrix sizes.

Figure 3 presents an evaluation of the time complexity involved
in calculating the singular values of matrices of varying sizes.
The data clearly shows that larger matrices require more
computational time. Furthermore, it is apparent that the
traditional SVD algorithm takes significantly longer to compute
singular values compared to the neural network-based approach.

4

As observed, the majority of the previous research has centered
on the application of neural networks for approximating the
eigenvalues of matrices. However, the algorithm proposed in this
paper turns its attention to the estimation of singular values,
which is a different challenge and offers unique applications.
Table 1 indicates a summary of the distinguish methods used in
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various studies on the selected themes. This table provides a
comparison of neural network models employed in matrix
decomposition strategies, reflecting the continuously increasing

attention of researchers to the machine learning-based

calculations of matrices.

Tablel: Neural Network Techniques and Matrix Decomposition Types Used in Various Studies

Paper

Neural Network Technique

Type of Matrix Factorization

Yi, Z.,Fu, Y., and Tang, H. J.,
2004

Zou, X., etal., 2013

Hang, T., et al., 2013

Han, J., Lu, J., and Zhou, M.,
2020

Finol, D., et al., 2019
Hu, Z., 2022

Proposed Approach

Recurrent Neural Network

Neural Network for Generalized EVD

Deep Neural Networks with Diffusion
Monte Carlo

Deep Convolutional Neural Networks

Deep Learning-Based Matrix Eigenvalue
Algorithm

Deep Convolutional Neural Networks

Continuous-Time Recurrent Neural
Networks

Eigenvalue Decomposition

Eigenvalue Decomposition
Generalized Eigenvalue Decomposition

High-Dimensional Eigenvalue Problems

Eigenvalue Decomposition for 1D and 2D
phononic crystals in mechanics

Eigenvalue Decomposition

Singular Value Decomposition for
matrices with real or complex entries.

CONCLUSION

This paper presents a new approach to SVD using CNNs,
addressing the limitations of traditional SVD methods in
handling large and complex matrices. The CNN-based SVD
method exhibits significant improvements in computational
efficiency and accuracy, as demonstrated through rigorous
testing on synthetic datasets. The proposed architecture
effectively leverages CNNs' hierarchical feature extraction
capabilities and advanced optimization techniques to achieve
high precision in singular value calculations. These findings
highlight the potential of integrating deep learning frameworks
into classical matrix factorization tasks, paving the way for more
efficient and scalable computational methods in various
applications such as signal processing, machine learning, and
data analysis. Future work will focus on further optimizing the
CNN architecture and exploring its applicability to other matrix
factorization techniques.
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