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ABSTRACT:  

Matrix factorization techniques, such as Singular Value Decomposition (SVD), Eigenvalue Decomposition (EVD), and QR 

decomposition, have long been pivotal in computational mathematics, particularly for applications in signal processing, 

machine learning, and data analysis. With the growing size and complexity of data, traditional methods of matrix 

factorization face challenges in efficiency and scalability. This paper investigates the implementation of Convolutional 

Neural Networks (CNNs) for computing the singular values of both real and complex matrices. By leveraging the 

hierarchical feature extraction capabilities of CNNs, this approach aims to enhance the accuracy, efficiency, and scalability 

of SVD calculations. The proposed CNN-based SVD method is evaluated against the conventional SVD algorithm, 

demonstrating superior performance in terms of computational time and accuracy. 

KEYWORDS: Singular Value Decomposition, Matrix Factorization, Convolutional Neural Networks, Computational 

Compelxity.  

1. INTRODUCTION 

        At the core of computational mathematics, matrix 

factorization stands out among others as the basis for many 

applications. The singular value decomposition (SVD), Eigen 

value decomposition (EVD) and the QR decomposition have 

been the basic building blocks of popular matrix factorization 

methods for the last decades due to of their reliability and 

versatility (Golub & Van Loan, 2013). SVD breaks a matrix into 

three other matrices retaining the core of the matrix and has wide 

uses in various fields like data compression, signal processing 

and machine learning mainly for reducing its dimension and 

removing noises. In PCA, SVD plays the most important part to 

recognize the major patterns hidden in vast dimensional vectors . 

EVD, on the other hand, diagonalizes a square matrix into 

eigenvalues and eigenvectors; which are useful in solving 

systems of linear equations, stability analysis and optimisation 

problem. It is also used in quantum mechanics, vibration analysis 

and the analysis of network dynamics (Hogben 2006). Both the 

SVD and EVD play a significant role in promoting research in 

large dataset analysis by offering methodologies that can help to 

extract significant information while alternately reducing huge 

dataset’s intricacy, or improving algorithms’ performance in 

data-based science. On the other hand, as the size and complexity 

of data expands, it becomes more essential to use new and 

innovative methods of calculating matrix factorization, 

particularly for matrices of large size (Zhang, 2017). 

        Recently, there has been a remarkable surge in using deep 

neural networks (DNNs), and specifically convolutional neural 

networks (CNNs) to solve machine learning problems such as 

signal recognition (Mala & Mohammad, 2022), image analysis 

(Anwar et. al., 2018), and natural language processing (Hassan  

& Taher,2022). The domains frequently work with the complex 

datastores that are arranged in the form of grids (Rawat & Wang, 

2017). The ability of deep CNNs to outperform traditional 

mathematical models and achieve over 98% prediction accuracy 

can be credited to the fact that they were initially created for 

image classification task (LeCun, 1998). Surprisingly, they have 

overcome human-level performance in lots of sectors. As an 

example, in speech recognition, conventional methods have been 

overshadowed by statistical learning methods which incorporate 

convolutional neural network architecture, which recently 

achieved human-level accuracy  (Finol et al.,  2019).  

        Traditional matrix factorization is computationally 

intensive, particularly when solving problems involving high-

dimensional datasets, making it less suitable for real-time 

applications or big data. Using neural networks for computing 

matrix decompositions helps mitigate these issues by take 

advantage of the parallelism and efficiency of deep learning 

architectures. Moreover, the scalability of neural network 

approaches allows for efficient handling of larger datasets 

without the exponential increase in resource requirements 

typically associated matrix factorization (Nguyen et al., 2018). In 

particular, the CNN-based approach significantly reduces 

computational complexity while improving the accuracy of the 

matrix decomposition process. 

        The primary contribution of this paper is the development 

of a CNN model capable of computing the singular values  for 

matrices with real and complex scalar entries. The performance 

of this model is evaluated in terms of accuracy and computational 
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complexity, and is compared to that of the conventional SVD 

algorithm. 

        The structure of this paper is as follows: Section 2 reviews 

the related works. Section 3 discusses the conventional (SVD) 

method, while Section 4 introduces the neural network approach 

for computing SVD. The simulation results are presented in 

Section 5, and the conclusions are outlined in Section 6. 

Related Works: 

        The applicability of neural network-based algorithms for 

matrix eigenvalue calculations was explored by (Yi, & Tang, 

2004), where they introduced a continuous time recurrent neural 

networks (RNN) which can be applied only to symmetric 

matrices. There are two main limitation of their proposed 

approach; firstly, the approach is valid only for non-symmetric 

matrices and secondly, the computational complexity of the task 

is still high. Similarly, in another study conducted by (Zou  et al., 

2013), a recurrent neural network (RNN) was presented for the 

Eigendecomposition of actual normal matrices. As the proposed 

method is primarily focused on real normal matrices, its 

applicability to other types of matrices can be somewhat 

restricted. Despite the fact that the method can find n-

dimensional complex eigenvectors, the computational 

complexity remains a problem especially when dealing with large 

matrices. Building on these ideas, (Hang  et al., 2013) extend the 

use of neural networks for estimating the generalized EVD 

(GEVD) algorithm. However, the proposed method does not 

applicable for non-singular matrices or rank-deficient cases. In 

addition, this method is relevant for computing only the greatest 

and smallest eigenvalues. 

        In a different approach, Han, Lu, and Zhou, (2020) used 

deep neural network to develop a new method to solve high-

dimensional eigenvalue problems by transform the problem into 

parabolic equation. This approach is the hybrid of the diffusion 

Monte Carlo (DMC) and the neural network learning of the 

eigenfunctions, which allows for efficient and accurate 

estimation of the potential energy eigenvalue and the 

corresponding eigenfunction or their gradient. Also, the direct 

use of eigenvalue calculation has been explored by Finol et al, 

(2019), where propose deep CNNs designed for solving 

eigenvalue problems used in mechanics in the fields of one-

dimensional and two-dimensional phononic crystals. As this 

paper shows, CNNs are more accurate and data efficient for 

predicting eigenvalues than fully connected neural networks 

(MLPs). Furthermore,  Hu, (2022) pointed out that deep learning 

network-based matrix eigenvalue algorithms are able to calculate 

much faster than traditional algorithms (17% faster in the matrix 

range of 4 × 4).  

Conventional Singular Value Decomposition (Svd): 

        SVD is a very useful matrix factorization technique that is 

used in multiple computational tasks in varied domains. It gives 

a fascinating and in-depth picture of a matrix. It helps to explore 

its inner structure and thus to be applied in different fields like 

signal processing, image analysis, machine learning and 

scientific computing. SVD has become the most efficient and 

robust numerical way for diagonalization of any size matrices, 

including 𝑀 × 𝑁 and having complex scalar coefficients, and the 

transformation to the canonical basis is the final point. Different 

from the EVD, the SVD doesn't require the input matrix to be 

Hermitian for the basis of diagonal decomposition (Golub  & Van 

Loan,  2013). 

        At its core, SVD decomposes a given matrix 𝑨 into three 

constituent matrices, each offering valuable insights into the 

original matrix: 

𝑨 = 𝑼𝚺𝑽𝑇 

where: 

• 𝑼 is an 𝑚 × 𝑚 orthogonal matrix containing the left singular 

vectors of 𝑨. 

• 𝜮 is an 𝑚 × 𝑛 diagonal matrix with non-negative real numbers 

(singular values) on its diagonal, arranged in descending order. 

• 𝑽𝑇 is the transpose of an 𝑛 × 𝑛 orthogonal matrix 𝑽, containing 

the right singular vectors of 𝑨. 

        The orthonormal matrices 𝑼 and 𝑽 can reflect the input and 

output spaces' rotations and reflections, respectively, while 𝜮 the 

diagonal matrix captures the scale factors along each dimension. 

The SVD has some important properties and interpretations. The 

magnitudes of singular vectors in 𝑼 and 𝑽 are represented by 

singular values on the diagonal matrix 𝜮, which are ordered in 

decreasing order by importance with the first singular value 

indicating the major direction of data variation. The rank of 

matrix 𝑨 is equivalent to the number of non-zero singular values 

in 𝜮, hence rank computation and low-rank matrix approximation 

by retaining the largest singular values and their corresponding 

vectors is possible. Therefore, both 𝑼 and 𝑽 are orthogonal 

matrices and their column vectors remains orthogonal and 

maintain the original matrix orthogonality. Although exact 

reconstruction of matrix 𝑨 from SVD includes multiplying three 

constituent matrices, many applications involve keeping a subset 

of the singular values and vectors for an approximation in lower 

dimensions (Strang, 2022). 

        The Golub-Reinsch algorithm, also known as the SVD by 

Bidiagonalization and Golub-Kahan-Reinsch algorithm, is a 

common and easy-to-use technique that is commonly used in 

finding the SVD for matrices. This algorithm involves several 

steps: the process of bidiagonalization starts by applying 

Householder reflections to transform the initial matrix into 

bidiagonal form. If the matrix is already square, it further 

tridiagonalizes by performing Givens rotations making the 

matrix a tridiagonal form. Secondly, an iterative QR algorithm 

diagonalizes the tridiagonal matrix by performing orthogonal 

similarity transformations until a converged diagonal or nearly 

diagonal form results. At the end, the singular values are pulled 

out from the elements through the main diagonal of the obtained 

matrix, and singular vectors can be rebuilt through the unitary 

transformations implemented during bidiagonalization (Hogben, 

2006;  Wu & Tsai, 2019). 

Neural Network For Computing SVD: 

        This section introduces a deep neural network structure 

specifically designed for computing SVD, with particular 

emphasis on its application in CNNs. The details of SVD 

computation using CNNs are explored, including the selection of 

data and the configuration of CNN parameters.  

Convolutional Neural Networks (CNN): 

         CNNs are significant in deep learning networks that have 

been specifically created for the complex process of image and 

video processing. Due to their hierarchical architecture 

comprising of layers of cells, the CNNs are uniquely able to 

automatically detect and extract patterns and features from input 
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data without human involvement. Our native aptitude in this field 

is the reason why CNNs are highly in demand in different 

applications like image classification, object detection and facial 

recognition. CNNs use convolutional layers to extract prominent 

features from the input data, and pooling layers are responsible 

for the reduction of spatial dimensions which increases neural 

network efficiency. Then, the fully connected layers incorporate 

these features to finally produce the correct predictions or 

classifications. The extensive implementation and continued 

development of CNNs has not only reshaped the outlook of 

computer vision, but it has also established them as a 

fundamental technology of deep learning, which is a 

comprehensive domain (Albawi  et al., 2017;  Li et al., 2021). 

SVD-Based CNN: 

        The proposed CNN network architecture takes the singular 

values obtained from the diagonalized matrix 𝜮, which are the 

result of applying the conventional SVD algorithm to a scalar A 

matrix as inputs. In order to maintain the computational 

efficiency and avoid the overfitting of the model, the feedforward 

neural network (FNN)  component is applied in the prediction 

phase that consists of multiple layers such as input, hidden (fully 

connected layers) and output layers. In the proposed 

implementation the fully connected layers utilize two hidden 

layers with 32 and 16 neurons each that help to identify complex 

dependencies within the matrices and provide for the extraction 

of features at multiple abstraction levels, facilitating learning. 

ReLU activation functions are rectified in the hidden layers to 

introduce non-linearity and increase the model's capacity of 

cathing complex patterns, and at the output layers, the linear 

activation functions are used to facilitate regression and singular 

values estimation. In this CNN-based SVD architecture, the 

predicted values are iteratively compared to real ones using MSE 

to minimize error and evaluate the model effectiveness. As 

shown in Figure 1 below, the block diagram illustrates the 

proposed CNN-based SVD architecture, used for both training 

and implementation. The CNN undertakes hierarchical feature 

extraction using convolutional and pooling layers, whereas FNN 

uses multiple hidden layers to carry out complex decision-

making to predict the singular values as obtained from 

conventional SVD. The CNN, on the other hand, has two 

convolutional layers with ReLU activation functions that have 32 

and 16 filters, respectively; each layer extracts features from the 

input matrices A. In addition, max-pooling layers with a size of 

(2×2) and a stride of (2×2) are applied to convolve the extracted 

features, thereby enhancing computational efficiency and 

retaining important information. Algorithm 1 provides the 

pseudocode for implementing this architecture. 

 
Figure 1: Proposed CNN- based SVD architectures 

        As shown in Figure 1, this process starts with a 𝐾 set of 

matrices. SVD applied to each matrix, 𝑨(𝑘) separately in the data 

set for the purpose of extraction of singular values 𝚺(𝑘). 

Furthermore, the CNN is trained using these matwrices as inputs, 

and their singular values as outputs. The network “learns” to 

reduce the Mean Square Error (MSE) until it converges to the 

expected level. Trained with this network, it can efficiently 

evaluate the singular values for any matrix 𝑨 applied.  

Algorithm 1: CNN-based SVD for calculating Singular Value 

Decomposition for matrices with real or complex entries. 

Input: 

    - Matrix 𝑨𝑛𝑥 𝑚 with real or complex values 

    - Training data (matrix, singular value pairs) 

    - CNN model architecture 

Output: 

    - Singular values of Matrix 𝑨 

1. Preprocess the Input Matrix: 

    a. Normalize Matrix A. 

    b. Reshape Matrix A into a suitable form for CNN input (e.g., 

a 2D or 3D tensor). 

    c. If necessary, augment the input with additional channels (e.g., real 

and imaginary parts for  complex matrices). 

2. Define Cnn Model Architecture: 

    a. Input layer: Takes in the reshaped matrix. 

    b. Convolutional layers: 

        i. Apply multiple convolutional filters to capture spatial 

dependencies. 

        ii. Use ReLU activation after each convolution. 

    c. Pooling layers: 

        i. Apply max pooling to reduce dimensionality. 

    d. Fully connected layers: 

        i. Flatten the output of the convolutional and pooling 

layers. 

        ii. Apply fully connected (dense) layers to map the output 

to singular values. 

    e. Output layer: 

        i. Predict the singular values corresponding to Matrix A.3. 

Train the CNN Model: 

    a. Initialize the model with randomly assigned weights. 

    b. Use a training dataset of matrix, singular value pairs. 

    c. Define loss function: 

        i. Use mean squared error (MSE) between the predicted 

and true singular values. 

    d. Choose an optimization algorithm (e.g., Adam or SGD). 

    e. Train the model by minimizing the loss function using 

backpropagation. 

4. Test the CNN Model: 

    a. Input Matrix A into the trained CNN model. 

    b. Obtain the predicted singular values. 
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5. Post-Process the Output: 

  a. Convert the predicted output to the correct scale (if 

necessary, based on normalization). 

    b. Return the predicted singular values. 

End. 

2. RESULTS AND DISCUSSION 

        To demonstrate the benefits of the proposed artificial neural 

network (ANN) architecture, the results of the SVD-based CNN 

and the computational load required for their generation will be 

presented. Using MATLAB's Deep Learning Toolbox, the 

performance of the envisioned CNN architecture was developed 

and observed. The model was trained and tested on 10,000 

samples from a synthetically generated dataset in the form of 5x5 

matrices, created from zero-mean, independent, and identically 

distributed (i.i.d.) random processes. Conventional singular value 

decomposition was used to compute the singular values for 

testing the proposed model. For adaptive learning, the Adagrad 

(Adaptive Gradient Algorithm) optimizer was applied, with an 

initial learning rate of 0.01, and the maximum number of epochs 

set to 50. Training and testing were conducted over 50 epochs, 

resulting in an average Mean Squared Error (MSE) value of 

0.085, as shown in Figure 2. 

Figure 2: The MSE accuracy of the SVD calculation is assessed using CNN, as a function of the number of epochs. 

 

        An important factor that should be taken in consideration is 

the computational complexity of the presented SVD-based CNN 

algorithm since it limits its application particularly in the 

environment that uses a regular CPU. Thus, the results of the 

SVD-based CNN will be presented, along with an analysis of the 

number of computations required to obtain this solution. 

        The evaluation of proposed method covers the CPU time 

required to solve the problem with the aid of the proposed method 

in contrast to standard SVD methods. CPU time in seconds 

denotes the time, which the processor requires to perform all the 

necessary computations to execute the algorithm on the given 

data set or problem size. This measure considers the 

computational cost, continuity of the operations and the hardware 

resources used (Hsu & Kremer, 2003; Hsia et al., 2021). 

 

 

Figure 3: Time complexity analysis for calculating singular values using both CNN-based SVD and the conventional SVD algorithm 

across varying input matrix sizes. 

Figure 3 presents an evaluation of the time complexity involved 

in calculating the singular values of matrices of varying sizes. 

The data clearly shows that larger matrices require more 

computational time. Furthermore, it is apparent that the 

traditional SVD algorithm takes significantly longer to compute 

singular values compared to the neural network-based approach. 

As observed, the majority of the previous research has centered 

on the application of neural networks for approximating the 

eigenvalues of matrices. However, the algorithm proposed in this 

paper turns its attention to the estimation of singular values, 

which is a different challenge and offers unique applications. 

Table 1 indicates a summary of the distinguish methods used in 
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various studies on the selected themes. This table provides a 

comparison of neural network models employed in matrix 

decomposition strategies, reflecting the continuously increasing 

attention of researchers to the machine learning-based 

calculations of matrices.

 

Table1: Neural Network Techniques and Matrix Decomposition Types Used in Various Studies 

Paper Neural Network Technique Type of Matrix Factorization 

Yi, Z., Fu, Y., and Tang, H. J., 

2004 

Continuous-Time Recurrent Neural 

Networks  

 

Eigenvalue Decomposition 

Zou, X., et al., 2013 Recurrent Neural Network Eigenvalue Decomposition 

Hang, T., et al., 2013 Neural Network for Generalized EVD Generalized Eigenvalue Decomposition 

Han, J., Lu, J., and Zhou, M., 

2020 

Deep Neural Networks with Diffusion 

Monte Carlo 
High-Dimensional Eigenvalue Problems 

Finol, D., et al., 2019 Deep Convolutional Neural Networks 
Eigenvalue Decomposition for 1D and 2D 

phononic crystals in  mechanics 

Hu, Z., 2022 
Deep Learning-Based Matrix Eigenvalue 

Algorithm 
Eigenvalue Decomposition 

Proposed Approach Deep Convolutional Neural Networks 
Singular Value Decomposition for 

matrices with real or complex entries. 

 

CONCLUSION 

        This paper presents a new approach to SVD using CNNs, 

addressing the limitations of traditional SVD methods in 

handling large and complex matrices. The CNN-based SVD 

method exhibits significant improvements in computational 

efficiency and accuracy, as demonstrated through rigorous 

testing on synthetic datasets. The proposed architecture 

effectively leverages CNNs' hierarchical feature extraction 

capabilities and advanced optimization techniques to achieve 

high precision in singular value calculations. These findings 

highlight the potential of integrating deep learning frameworks 

into classical matrix factorization tasks, paving the way for more 

efficient and scalable computational methods in various 

applications such as signal processing, machine learning, and 

data analysis. Future work will focus on further optimizing the 

CNN architecture and exploring its applicability to other matrix 

factorization techniques. 
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