Available online at sjuoz.uoz.edu.krd

a!
J U0z

journals.uoz.edu.krd

Science Journal of University of Zakho

Vol. 13, No.1 pp58—64January-March,2025

5.9

p-ISSN: 2663-628X
e-ISSN: 2663-6298

WEB VULNERABILITIES DETECTION USING A HYBRID MODEL OF CNN, GRU AND
ATTENTION MECHANISM

Sarbast H. Ali !, Arman I. Mohammed !, Sarwar MA. Mustafa %, and Sardar Omar Salih > *

"Duhok Technical College, Duhok Polytechnic University, Duhok, Kurdistan Region, Irag.
2College of Science, University of Duhok, Duhok, Kurdistan Region, Iraq.
3Duhok Technical Institute, Duhok Polytechnic University, Duhok, Kurdistan Region, Iraq.

*Corresponding author email: sardar@dpu.edu.krg

Received: 14 Oct .2024 / Accepted:27 Nov. 2024/ Published: 12 Jan. 2025.

https://doi.org/10.25271/sju0z.2025.13.1.1404

ABSTRACT:

The frequency of cyber-attacks has been rising in recent years due to the fact that startup developers have failed to overlook
security issues in the core web services. This stated serious concerns about the security of the web. Therefore, this paper
proposes a hybrid model built on the base of Convolutional Neural Networks (CNN), Gated Recurrent Units (GRU) and an
attention mechanism to detect vulnerabilities in application code. Particularly, the model can help detect attacks based on
Structured Query Language Injection (SQLi), Cross-Site Scripting (XSS), and command injection. When using the dataset
SXCM1, our model achieved 99.77%, 99.66% and 99.63% for training, validation and testing, respectively. The results
obtained on data from the DPU-WVD dataset are even better because it was 99.97%, 99.98% and 99.99% for training,
validation and testing, respectively. These results significantly outperform the state-of-the-art models and can strongly
identify vulnerabilities in web applications. Through training, on both the SXCM1 and DPU-WVD datasets, the model
achieved an accuracy rate of 99.99%. The results show that this combination model is highly effective at recognizing three
vulnerability categories and surpasses cutting-edge models that usually specialize in just one type of vulnerability detection.

KEYWORDS: CNN, Web vulnerabilities, deep learning, XSS, SQL injection.1.

1. INTRODUCTION

Code injection attacks let attackers run malicious code
inside a program, therefore compromising the security and
integrity of web applications. The reliability and trustworthiness
of software products depend on detecting and reducing such
weaknesses. This research aims to build a strong solution for
automated code injection detection using deep learning methods,
thus enhancing the security posture of software applications. The
front-end applications and backend databases are susceptible to
numerous attacks due to their internet accessibility. Especially
noteworthy and often ranking among the top 10 vulnerabilities
found by OWASP (OWASP Top Ten | OWASP Foundation,
2021). The frequency of these attacks has grown by more than
300% in recent years as attackers progressively use sophisticated
methods such as encryption and obfuscated code to avoid
discovery (Alarfaj et al., 2023).

SQLi is a web security issue that allows an attacker to interfere
with the queries an application submits to its database. Typically,
it lets attackers read information they would not usually be able
to obtain. This could include user-owned data and any other data
the application can access. An assailant can regularly change or
eliminate this data, therefore affecting the content or
functionality of the program in a constant manner. An attacker,
in particular circumstances, may utilize an escalated SQLi attack
or a denial-of-service attack to compromise the underlying server
or other back-end infrastructure. In-band SQLi is the most often
occurring and basic SQLi attack. As can be seen in Figure 1, in-
band SQLi is the condition whereby an attacker can start an
attack and gather data utilizing the same communication channel.
The two most common variants of in-band SQLi are error-based
and union-based SQLi. (SQL Injection | OWASP Foundation,
2023).

' UNION SELECT username, password FROM users—— |

SELECT name, description FROM products WHERE category
UNION SELECT username, password FROM users—-—

= 'Gifts"'

‘F ------------------------ -«

ords

-
{#* Anp

L & All usernames

Figure 1: In-band SQLi Attack Diagram (Payloadbox/Sql-Injection-Payload-List: SQL Injection Payload List, 2021)

* Corresponding author

This is an open access under a CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

58

http://journals.uoz.edu.krd/
http://sjuoz.uoz.edu.krd/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.25271/sjuoz.2025.13.1.1404

Ali et al/ Science Journal of University of Zakho, 13(1), 58-64 January-March, 2025

Union-based SQLi combines the output of two or more SELECT
queries into a single result that is returned as part of the HTTP
response. Error-based SQLi is an in-band SQLi method that uses
the database server's error messages to gather details about the
database's structure. In some cases, an attacker can use error-
based SQLi to enumerate the entire database structure and access
all the data (Blind SQL Injection | OWASP Foundation, 2023).

Additionally, there are many other types of SQLi that make
high potential risks to web application security, such as
(Inferential SQLi, Boolean-based, Time-based Blind SQLi, Out-
of-band SQLi and Voice Based SQLi). XSS is a high-risk online
vulnerability that arises when malevolent scripts are injected into
websites that are otherwise reliable and secure. XSS attacks occur
when a hacker transmits malicious code, usually in the form of a
browser-side script, to another user via an online application.
These vulnerabilities are prevalent and occur when a web
application neglects to adequately authenticate or encode user
input before including it in its output. An unidentified user may
be subjected to a harmful script sent by an assailant employing
XSS. The script will execute because the end user's browser lacks
the capability to ascertain the level of trustworthiness of the
script. This malicious script has the ability to get any cookies,
session tokens, or other confidential information that is kept by
the browser and associated with the website. This is possible
because the script is perceived as trustworthy, originating from a
source named KirstenS in the year 2022. The XSS vulnerability
can be classified into two types: server XSS and client XSS. The
level of risk associated with both types depends on the specific
scripts that have been implemented XSS | OWASP Foundation,
2022). Furthermore, command injection attacks seek to exploit
vulnerabilities in an application in order to run unauthorized
instructions on the underlying operating system. Command
injection attacks can occur when an application transmits a
system shell along with sensitive user information, such as forms,
cookies, and HTTP headers. In this attack, the attacker often
executes operating system commands using the privileges of the
vulnerable software. Inadequate input validation is a significant
contributing element to the potential occurrence of command
injection attacks. This attack distinguishes itself from code
injection by enabling the attacker to embed personalized code
that the program will eventually run. Command injection enables
an attacker to augment the inherent capabilities of a program by
executing system commands without manually inserting code
(Command Injection | OWASP Foundation, 2021).

This paper aims to design robust deep learning methods that
can accurately predict and categorise different code flaws (SQL1,
XSS, Command Injection, benign code segments). This is
possible by varied input data consisting of coding snippets and
achieving strong predictions because of using codified features
as inputs that can be dynamic text, a static vector of tokens, or
both, and using a collection of convolutional neural network
layers and recurrent neural network layers.

This paper is organized as follows: Section 2 reviews related
works, providing a foundation for the study. Section 3 details the
data collection and preprocessing methods employed. Section 4
introduces the proposed approach, outlining the novel techniques
implemented. Section 5 presents the results, analyzing the
effectiveness of our approach. Finally, Section 6 concludes the
paper, summarizing the key findings and suggesting directions
for future research.

2. THEORETICAL BACKGROUND

(Arasteh et al., 2024) Proposed a robust technique for
identifying SQLI attacks in online applications, to improve the
reliability, exactness, and responsiveness of the detection
process. (Kakisim, 2024) developed a new technique called
"Bidirectional LSTM-CNN based on Multi-View Consensus"
(MVC-BICNN) that uses deep learning to detect SQLi threats.
(Tadhani er al., 2024) introduced an innovative method to

59

improve the security of online applications against SQLi and
XSS assaults by implementing deep learning techniques. The
new hybrid deep learning model integrates Convolutional Neural
Networks (CNNs) to extract features and Long Short-Term
Memory (LSTM) networks to capture connected relationships in
sequential data. (Younas et al., 2024) proposed a highly effective
artificial intelligence method for promptly identifying XSS
attacks in web applications using Long Short-Term Memory
(LSTM). (Sethi et al.,, 2023) presented a flexible and scalable
method that uses deep learning techniques to promptly detect and
mitigate XSS attacks in web applications. The research shows the
advantages of the Multilayer Perceptron (MLP) architecture by
analyzing different deep learning models. (Abhishek et al., 2023)
introduced a mixed architecture that combines CNN and Machine
Learning (ML) to identify instances of XSS. The framework is
designed to address the pervasive problem of XSS attacks in web
applications by providing a strong and accurate method for
identifying and categorizing. The study conducted by
(Nilavarasan et al., 2023) focuses on applying CNN to detect
XSS vulnerabilities in web applications when they achieved
significant levels of accuracy, precision, and recall in their
findings. (Tan et al., 2023) proposed the PATS model, which
utilizes abstract syntax trees and attention mechanisms to identify
XSS vulnerabilities, and this approach led to high accuracy and
enabled proactive security. The study work by (Mondal et al.,
2023) tried to prevent adversarial attacks by focusing on
enhancing the detection of XSS by utilizing one of the
reinforcement learning approaches known as Trust Region Policy
Optimization (TRPO). Another fascinating work focused on
identifying SQLi threats using Natural Language Processing
(NLP) and Deep Learning (DL) techniques, which was done by
(Natarajan et al., 2023). They used CNN to indicate a greater
performance than classical Machine Learning (ML) algorithms
(Sun et al, 2023). Enhanced the detection performance by
implementing the combination of Text CNN and Bi-LSTM
neural networks, and further improvement was achieved by
incorporating an attention mechanism and word embeddings via
pre-trained BERT vectors. (Yan et al, 2022) presented an
advanced MRBN-CNN model modified for detecting XSS
attacks by displaying a high standard of accuracy metrics. A
deep-learning approach for identifying web injection strikes with
the mean of merging features extracted from HTTP and URL
request bodies to construct a multi-classification model was
introduced by (Zhao et al, 2022). Mondal et al. (2022)
recommended using reinforcement learning to bolster XSS
detection and counter adversarial attacks by fortifying the
algorithm's protection to assaults. (Abdulhamz et al., 2022)
introduced a 2D-CNN model customized specifically for SQLi
detection on a designated dataset. Deploying deep learning
algorithms, this model autonomously extracts features from SQL
queries, converting them into a two-dimensional matrix for
classification purposes. (Roy et al., 2022) focused on identifying
SQLi attacks using machine learning classifiers like Logistic
Regression, AdaBoost, Random Forest, Naive Bayes, and
XGBoost. (Ashlam er al, 2022) presented a multi-phase
algorithmic framework that integrates advanced machine
learning and deep learning techniques to mitigate SQLi attacks
and elevate real-time database security. (Zhang et al., 2022)
presented a specialized deep neural network model to identify
SQLi attacks. This achievement can be due to various reasons,
such as transforming data into word vectors, employing ReLU
functions, optimizing loss functions, and including Dropout to
improve generalization abilities. (Demilie et al., 2022) conducted
a study on SQLi attacks in web applications. They developed a
comprehensive framework to detect and prevent these attacks
using a combination of machine learning (ML) algorithms and
classical methods such as Naive Bayes, Decision Trees, Support
Vector Machines, Random Forests, Logistic Regression, and
Multilayer Perceptron-based Neural Networks. (Niu et al, 2020)
propose a hybrid CNN-GRU model aimed at enhancing the

Ali et al/ Science Journal of University of Zakho, 13(1), 58-64 January-March, 2025

accuracy of web attack detection. By capturing spatial and
sequential patterns in network data, their approach improves
detection performance and processing speed compared to
traditional methods. Similarly, (Jiang et al., 2021) introduce a
CNN-GRU-Attention model specifically for detecting malicious
domains. Adding an attention mechanism helps the model focus
on critical features within domain names, yielding higher
detection precision and increased robustness against evolving
threats. Together, these studies highlight the potential of CNN-
GRU architectures, particularly when combined with attention
mechanisms, to enhance security applications.

Data Collection:

Two distinct datasets are employed in the current study. The
primary dataset is designated as the SQL Injection XSS
Command Injection Mix Dataset. Version 1.0.0 (SXCMI),
introduced by the SQLi XSS Dataset in 2023 (SQLi XSS Dataset,
2023), comprises 206,636 distinct code fragments. We also
create a hybrid dataset (DPU-WVD) comprising about 1,003,996
code words written by humans and machines. Al produces one
million lines of code, whereas 3,996 lines are sourced from
various payloads on GitHub. The pseudocode utilized to produce
the Al-generated code is as follows.

Pseudo Code:

START
DEFINE FUNCTION generate random_string(length)

RETURN random string of letters and digits of
given length
DEFINE FUNCTION generate payload(index, payloads)

RETURN payloads[index % length of payloads]
DEFINE FUNCTION generate normal input()

IF random number < 0.3 THEN RETURN random
benign SQL query

ELSE IF random number < 0.6 THEN RETURN
random benign XSS string

ELSE RETURN random benign command input
SET num_samples to 250000
OPEN 'web_vulnerabilities dataset.csv' FOR writing

WRITE header ['Sentence', 'SQLInjection’, 'XSS',
CommandInjection', 'Normal']

FOR i FROM 0 TO num_samples - 1

WRITE row with generate payload(i, SQLi
payloads) as Sentence, 1, 0, 0, 0

WRITE row with generate payload(i, XSS payloads)
as Sentence, 0, 1,0, 0

WRITE row with generate payload(i, command
injection payloads) as Sentence, 0, 0, 1, 0

WRITE row with generate normal_input() as
Sentence, 0, 0, 0, 1
CLOSE file
END

The DPU-WVD includes highly challenging examples from
which the network can learn. For instance, the command Is -1
n27z8 is marked as vulnerable to command injection, while Is -1
R8wnZ is marked as normal. This suggests that in the dataset, the
filename "n27z8" might be interpreted by the system in such a

- citomaasion
Marooing D Loele ‘
. (@Pooling ST f
SR bias beta (32

moring mean (27

moring yriance (32
\ e e)

MarPooling1D

Bidirectional

way that it allows additional commands to be injected and
executed, making it vulnerable to command injection attacks. In
contrast, the filename "R8wnZ" does not display this behavior
and is regarded as secure or typical. Data preparation covers
multiple sequential steps. The main purpose of the proposed
method was to separate characters from symbols. The procedure
involved eliminating unwanted characters, addressing disparities
in the dataset, making important user data such as username,
password and proprietary code, and eliminating comments.

Concept And Methods:

The proposed methodology involves preprocessing the
training data by transforming each character of the words in the
dataset into vectors, as well as constructing a hybrid model of
CNN, GRU, and the multi-head attention mechanism.

Vectorizing Characters:

This research presents a highly effective method for
identifying web vulnerabilities, such as SQLi, XSS, command
injection, and normal code segments. We aim to develop a highly
efficient AI model to categorise the input code accurately. The
incoming text performs preprocessing using several functions.
The initial phase entails dividing the input text into individual
letters and symbols utilizing two different procedures.
Throughout this step, cleaning and eliminating unnecessary
sentences, such as comments, is implemented.

The initial function exclusively retrieves characters from the
input text. It changes a list of strings X (input data) into sequences
of character indices using a predefined alphabet. Subsequently, it
adjusts these sequences to a fixed length by padding or truncating
them to a maximum length of max len. Initially, the function
establishes a set of legal characters known as an alphabet. "mat"
is a blank list determined to record the indications of valid
characters for each string in X variable. If the
is_remove comment flag is set to True, the comments within the
string are removed. Then, every character is transformed into
lowercase, and if it belongs to the alphabet, its position is added
to the mat array. Upon completion of processing, the variable
"mat" is added to the results list. This technique is repeated to
extract symbol tags from the provided input text.

Hybrid Model of CNN And GRU:

The paper introduces a new model for detecting web
vulnerabilities. Our proposed model is a multilevel architecture
developed to efficiently manage and interpret complicated input
data. Furthermore, it utilizes a fusion of embedding layers,
CNNs, Dbidirectional GRUs, and multi-channel attention
mechanisms to handle and gain knowledge from textual and
symbolic input. The architecture combines CNNs to extract inner
features and GRUs to model sequential dependencies.
Additionally, the attention mechanism is utilized to rank relevant
segments of the sequences, as illustrated in Figure 2. The primary
objective of this comprehensive technique is to achieve a
powerful capability in identifying web vulnerabilities by
analyzing a wide range of complicated input data.

kermel
bias (122

GiobaléveragePooling1D

Activation

Figure 2: Proposed Hybrid Model of CNN and GRUs.

60

Ali et al/ Science Journal of University of Zakho, 13(1), 58-64 January-March, 2025

The model launches by analyzing two separate categories of
inputs. The primary input is in the form of text, which has the
potential to include various types of textual information, such as
code snippets, error messages, or descriptions that may include
vulnerabilities. The second input consists of symbols that act as
representations of specific tokens or symbols that are significant
in the context of web vulnerabilities. These symbols may include
special characters found in code or configuration files.
Embedding layers, as described by (Mikolov et al, 2013)
transform inputs that are high-dimensional and sparse, such as
integers, into vectors that are dense and few-dimensional. The
function of this layer is crucial in decreasing the number of
dimensions by converting inputs into a more easily manageable
format that the neural network can process efficiently. Moreover,
feature learning is crucial since it enables the model to acquire
representations of the input data in which related inputs possess
comparable representations, improving pattern recognition.
CNNs have multiple functions within the model. Firstly, they
demonstrate exceptional proficiency in extracting features and
identifying local patterns and characteristics within the input
sequences, such as certain sequences of tokens frequently
observed in vulnerability signatures. In addition, CNNs assist in
reducing the dimensionality of data by incorporating max pooling
layers. These layers effectively decrease the complexity of the
input, resulting in more efficient computations in succeeding
layers while preserving the most significant properties.
Moreover, regularization techniques such as batch normalization
and dropout layers are utilized to mitigate the problems of
overfitting and underfitting. Batch normalization standardizes the
inputs to subsequent layers, whereas dropout layers
stochastically eliminate some neurons during training, improving
the model's resilience and capacity to generalize. The hybrid
model utilizes a recurrent neural network layer, notably GRUs
(Cho et al, 2014), to effectively capture the sequential
relationships present in the data. GRUs that update and reset
gates allow the model to analyze input sequences bidirectionally,
effectively capturing dependencies that may occur in both
forward and backward directions. Bidirectional processing is
essential for comprehending context in sequences. GRUs are
particularly adept at understanding the time-based patterns and
extended connections in sequences commonly found in web
application logs, user actions, and code execution pathways.
Including a multi-head attention mechanism (Vaswani et al.,
2017) improves the model's capabilities in various aspects.
Firstly, attention enables the model to assign varying levels of
importance to distinct sections of the input sequences,
prioritizing the most pertinent portions that are probably to
highlight vulnerabilities. In addition, the model can enhance its
knowledge of the data by using numerous heads to capture
different types of interactions and correlations between different
regions of the sequences, as shown in Figure 3.
Multi-Head Attention

t

£ i
Scaled Dot-Product h
Attention
$ll
L L 1 L L
Linear Linear Linear
\% K Q

Figure 3: Multi-Head Attention (Vaswani et al., 2017).

61

The concatenation and global average pooling layers in
combining layers have two primary functions. To begin with,
they consolidate information from various viewpoints by
merging the results of the GRU layers with the attention
mechanism. Additionally, global average pooling reduces the
sequence data into a vector of a constant size, effectively
decreasing the number of dimensions and making the input more
feasible for the dense layers.

The utilization of these layers enhances the efficiency of the
model by integrating CNNs, GRUs, and attention mechanisms,
resulting in multiple benefits. Firstly, it does a thorough analysis
by capturing both local and global patterns in the data. Moreover,
the model's flexibility is improved by incorporating trainable
embedding layers and attention mechanisms, which allow it to
casily adapt to various types of input data and successfully learn
important features. In addition, the model's robustness is
enhanced by regularization techniques such as dropout and batch
normalization, which reduce overfitting and enhance
performance on unfamiliar data. Moreover, the utilization of
bidirectional GRUs and attention mechanisms guarantees a
comprehensive understanding of the context, allowing the model
to precisely detect vulnerabilities by comprehending the context
of input sequences.

3. RESULTS AND DISCUSSION

In this section, we provide and examine the results of this
study, establishing connections between them and the previously
published hypothesis. The results are methodically analyzed to
identify patterns, anomalies, and important trends. After
presenting the data using figures and tables, we proceed to have
a thorough discussion in which we place our findings within the
context of existing literature and theoretical frameworks.

Training Process:

The proposed methodology was trained using both datasets
(SXCMI1 and DPU-WVD) on the online deep-learning platform
Kaggle, utilizing two T4 GPUs. The training process of the first
dataset took about 96 minutes and 66 seconds to finish 100
epochs while the second dataset took about 115 minutes to finish
the training process of 20 epochs. Both datasets are trained with
the hyperparameters defined in Table 1. The datasets were split
into 80% for the training set and 20% for the testing set. The
training set was split into 80% for training and 20% for
validation.

Table 1: Hyperparameter Initialization

Hyperparameter Initialization

Input Size (Max_len) 1 * 1000

Optimizer Adam

Learning Rate 0.001

Loss Function Categorical Cross-entropy
Batch Size 64

Epochs 20-100

Dropout 0.3 (throughout network)

Training Results :

The proposed model showed impressive results in terms of
accuracy and loss for both datasets, as illustrated in Figures 4 and
5. The SXCM1 dataset gained a training accuracy of 96.57% and
a validation accuracy of 94.35% in the first epoch, which is
impressive. The DPU-WVD dataset, on the other hand, stated
higher starting values, with training and validation accuracies
reaching 99.75% and 95.84%, respectively.

During the training process, the model's performance
exhibited continuous improvement in accuracy and loss for both
datasets. In the SXCM1 dataset, the training loss started at a low
value of 0.1061, which coincides with the high initial training
accuracy of 96.57%. This suggests that the model rapidly

Ali et al/ Science Journal of University of Zakho, 13(1), 58-64 January-March, 2025

comprehended the patterns in the data. Nevertheless, the initial
validation accuracy of 94.35% indicated the presence of
overfitting. However, this issue was addressed and reduced as the
training advanced by implementing dropout and batch
normalization techniques in the proposed model. As a result, the
training and validation accuracies peaked at 99.78% and 99.67%
respectively, indicating the model's strong ability to learn and
generalize.

In the case of the DPU-WVD dataset, the model initially
exhibited much greater accuracy for training and validation. The
training procedure enabled a seamless and consistent
improvement in performance indicators. The model effectively
adjusted to the complex elements of the dataset, ultimately
obtaining training and validation accuracies of 99.97% and

99.98% accordingly by the conclusion of epoch 20. The
significant enhancement highlights the model's ability to acquire
knowledge from a wide range of data distributions and well
manage different levels of starting correctness. Despite the DPU-
WVD dataset being larger than SXCMI1, the hybrid model
demonstrated faster learning capabilities. This can be attributed
to the clarity and uniformity of the code phrases created using Al
Figures 4 and 5 visually represent this progressive enhancement
in performance. They clearly illustrate the upward trajectory of
the training and validation accuracies over successive epochs for
both datasets. The consistent increase in accuracy metrics
highlights the effectiveness of the proposed model's architecture
and training regimen in achieving optimal results across different
datasets.

model loss
model accuracy R
1.00 0.200 - —— ftrain
PR validation
A
/’ 0.175 4
0.99 |
| 0.150 A
0.98 0.125 A
>
]]
£ 097 S 0.100 4
g
0.075 4
0.96
0.050 4
0.95 J \
train 0.025 _\"‘-A-_.,
validation e
T T T T T T 0.000 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch
Figure 4: Training and loss metrics for SXCM1 dataset.
model accuracy model loss
1.00 / —_ —— frain
0.14 1 validation
0.12 4
0.99 1
0.10
z
€ 0.98 y 0.08 7
§ o
* 0.06
0.97 0.04 |
0.02
0.96 — train
7 validation 0.00 I —e
T T T . T T T T T T T T T T T T
0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 0.0 2.5 5.0 75 10.0 12.5 15.0 17.5
epoch epoch

Figure 5: Training and loss metrics for DPU-WVD dataset.

The model performs well on both datasets, achieving high
accuracy and low loss. For the SXCM1 dataset, there’s some
fluctuation in validation accuracy and loss, as seen in Figure 4,
suggesting slight overfitting and room for improvement.
Techniques like regularization or data augmentation could help
stabilize the results. In contrast, the DPU-WVD dataset shows
smooth and consistent performance, with both training and
validation accuracy reaching near-perfect levels quickly, as
illustrated in Figure 5, indicating strong generalization. Overall,
the model handles DPU-WVD data very well, while a few
adjustments might improve stability on SXCM1.

Testing Results:

The testing phase is crucial for assessing a model's
efficiency and robustness when evaluated with unseen data. This
phase serves as a key evaluation metric to demonstrate how the
proposed model will perform in production. Table 2 provides
information on both datasets in terms of accuracy, precision, and

recall. Notably, the hybrid model achieved an accuracy of
99.63% for the SXCM1 dataset and 99.99% for our proposed
dataset

Table 2: Testing metrics for both dataset

Metric SXCMI1 dataset DPU-WYVD dataset
Accuracy 99.63% 99.99%
Precision 99.66% 99.98%
Recall 99.63% 99.99%

The suggested hybrid model has been evaluated against
contemporary cutting-edge models for various tasks, such as
XSS, SQLi, and Command Injection detection. Our hybrid model
is capable of detecting all three sorts of vulnerabilities, unlike

62

Ali et al/ Science Journal of University of Zakho, 13(1), 58-64 January-March, 2025

earlier models that only detect a single type. In addition, it has
the capability to detect regular language that does not have any
weaknesses, resulting in improved precision. The exceptional

result is exemplified in Table 3, showcasing the efficacy and
adaptability of our methodology.

Table 3: Comparison of the proposed model versus benchmark models

Model XSS SQL injection Command Injection All

(Arasteh et al., 2024) 99.68%

(Kakisim, 2024) 99.96%

(Younas et al., 2024) 99.00%

(Abhishek et al., 2023) 99.9%

(Natarajan et al., 2023) 99.29%

(Zhao et al., 2022) 99.39%

(Abdulhamza & Al-Janabi, 2022) 99.66%

(Zhang et al., 2022) 96%

(Roy et al., 2022) 98.33%

Our model SXCM1 99.63%
DPU-WVD 99.99%

The comparison table shows various models' accuracy rates
for detecting specific web security vulnerabilities, including XSS
(Cross-Site Scripting), SQL Injection, and Command Injection.
Among these, the model by Kakisim (2024) demonstrates the
highest SQL Injection detection rate at 99.96%, closely followed
by Abhishek et al. (2023) with 99.9% for XSS detection. The
models by Younas ef al. (2024) and Roy et al. (2022) also focus
on XSS, achieving high accuracies of 99% and 98.33%,
respectively. Meanwhile, Zhao et al. (2022) and our model's
DPU-WVD configuration display exceptional performance in
overall detection, with 99.39% and 99.99%, respectively.
Overall, the proposed model in the table achieves near-perfect
accuracy with DPU-WVD at 99.99%, surpassing most other
models for combined vulnerability detection, suggesting high
reliability across all attack types.

CONCLUSIONS

This research paper presents an approach that integrates
CNN, GRUs and an attention mechanism to identify
vulnerabilities, in code written by programmers for the web
development domain. Additionally showcased is the DPU-WVD
dataset featuring web payloads paired with one million code
snippets generated by artificial intelligence. Through training, on
both the SXCM1 and DPU-WVD datasets the model achieved an
accuracy rate of 99.99%. The results show that this combination
model is highly effective at recognizing three vulnerability
categories and surpasses cutting-edge models that usually
specialize in just one type of vulnerability detection. The model
shows promising potential for real world use in software
development tasks with an emphasis on identifying the security
leaks due to its accuracy. To guarantee the models flexibility and
trustworthiness across programming scenarios and settings it is
crucial to assess its performance, in diverse programming
languages and environments. Future research may focus on
developing real-time detection capabilities within widely used
integrated development environments (IDEs), offering
developers immediate feedback during the coding process. This
represents a significant opportunity for additional research.

63

Acknowledgment

The authors wish to express their sincere appreciation to the
Duhok Technical Institute, for providing the facilities and
academic environment that supported this reseach.

Author Contributions

All authors contributed to the design and completion of this
research. S.H.A., developed the methodology and conducted the
formal analysis. A.I.M., handled investigation and data curation,
and drafted the manuscript. S.M.A. contributed to validation, and
resource provision. S.0.S. led the review and editing of the
manuscript. All authors have read and approved the final version.

Ethical Statement
This work did not involve human or animal studies.

Funding
Nil

REFERENCES

Abdulhamza, F. R., & Al-Janabi, R. J. S. (2022). SQL Injection
Detection Using 2D-Convolutional Neural Networks (2D-
CNN). 2022 International Conference on Data Science and
Intelligent ~ Computing, ICDSIC 2022, 212-217.
https://doi.org/10.1109/ICDSIC56987.2022.10075777

Abhishek, S., Ravindran, R., Anjali, T., & Shriamrut. (2023). Al-
Driven Deep Structured Learning for Cross-Site Scripting
Attacks. International Conference on Innovative Data
Communication Technologies and Application, ICIDCA
2023 - Proceedings, 701-709.
https://doi.org/10.1109/ICIDCA56705.2023.10099960

Alarfaj, F. K., & Khan, N. A. (2023). Enhancing the Performance
of SQL Injection Attack Detection through Probabilistic
Neural Networks. Applied Sciences (Switzerland), 13(7).
https://doi.org/10.3390/APP13074365

Arasteh, B., Aghaei, B., Farzad, B., Arasteh, K., Kiani, F., &
Torkamanian-Afshar, M. (2024). Detecting SQL injection
attacks by binary gray wolf optimizer and machine learning

https://doi.org/10.1109/ICDSIC56987.2022.10075777
https://doi.org/10.1109/ICIDCA56705.2023.10099960
https://doi.org/10.3390/APP13074365

Ali et al/ Science Journal of University of Zakho, 13(1), 58-64 January-March, 2025

algorithms. Neural Computing and Applications, 36(12),
6771-6792. https://doi.org/10.1007/S00521-024-09429-Z
Ashlam, A. A., Badii, A., & Stahl, F. (2022). Multi-Phase
Algorithmic Framework to Prevent SQL Injection Attacks
using Improved Machine learning and Deep learning to
Enhance Database security in Real-time. Proceedings of the
2022 15th IEEE International Conference on Security of

Information and Networks, SIN 2022.
https://doi.org/10.1109/SIN56466.2022.9970504
Blind SQL Injection | OWASP Foundation. (2023).

https://owasp.org/www-
community/attacks/Blind_SQL _Injection

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning
Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation.

Command Injection | OWASP Foundation.
https://owasp.org/www-
community/attacks/Command_Injection

Cross Site Scripting (XSS) | OWASP Foundation. (2022).
https://owasp.org/www-community/attacks/xss/

Demilie, W. B., & Deriba, F. G. (2022). Detection and prevention
of SQLI attacks and developing compressive framework
using machine learning and hybrid techniques. Journal of
Big Data, 9(1). https://doi.org/10.1186/S40537-022-00678-
0

Kakisim, A. G. (2024). A deep learning approach based on multi-
view consensus for SQL injection detection. International
Journal of Information Security, 23(2), 1541-1556.
https://doi.org/10.1007/S10207-023-00791-Y

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient
Estimation of Word Representations in Vector Space.

Mondal, B., Banerjee, A., & Gupta, S. (2022). XSS filter evasion
using reinforcement learning to assist cross-site scripting
testing. International Journal of Health Sciences, 11779—
11793. https://doi.org/10.53730/ITHS.VONS2.8167

Mondal, B., Banerjee, A., & Gupta, S. (2023). XSS Filter
detection using Trust Region Policy Optimization. 1st
International Conference in Advanced Innovation on Smart
City, ICAISC 2023 - Proceedings.
https://doi.org/10.1109/ICAISC56366.2023.10085076

Natarajan, Y., Karthikeyan, B., Wadhwa, G., Srinivasan, S. A.,
& Akilesh, A. S. P. (2023). A Deep Learning Based Natural
Language Processing Approach for Detecting SQL
Injection Attack. Lecture Notes in Networks and Systems,
715 LNNS, 396-406. https://doi.org/10.1007/978-3-031-
35507-3 38

Nilavarasan, G. S., & Balachander, T. (2023). XSS Attack
Detection using Convolution Neural Network. Proceedings
of the International Conference on Artificial Intelligence
and Knowledge Discovery in Concurrent Engineering,
ICECONF 2023.
https://doi.org/10.1109/ICECONF57129.2023.10083807

OWASP Top Ten | OWASP Foundation. (2021).
https://owasp.org/www-project-top-ten/

payloadbox/sql-injection-payload-list: SQL Injection Payload
List. (2021). https://github.com/payloadbox/sql-injection-
payload-list

Roy, P., Kumar, R. & Rani, P. (2022). SQL Injection Attack
Detection by Machine Learning Classifier. Proceedings -

(2021).

64

International Conference on Applied Artificial Intelligence
and Computing, ICAAIC 2022, 394-400.
https://doi.org/10.1109/ICAAIC53929.2022.9792964

Sethi, M., Verma, J., Snehi, M., Baggan, V., Virender, &

Chhabra, G. (2023). Web Server Security Solution for

Detecting Cross-site Scripting Attacks in Real-time Using

Deep Learning. 2023 International Conference on Artificial

Intelligence and Applications, ICAIA 2023 and Alliance

Technology Conference, ATCON-1 2023 - Proceeding.

https://doi.org/10.1109/ICAIAS57370.2023.10169255
Injection | OWASP Foundation. (2023).

https://owasp.org/www-community/attacks/SQL_Injection

SQLi XSS dataset. (2023).
https://www.kaggle.com/datasets/alextrinity/sqli-xss-
dataset

Sun, H., Du, Y., & Li, Q. (2023). Deep Learning-Based Detection
Technology for SQL Injection Research and
Implementation. Applied Sciences (Switzerland), 13(16).
https://doi.org/10.3390/APP13169466

Tadhani, J. R., Vekariya, V., Sorathiya, V., Alshathri, S., & El-
Shafai, W. (2024). Securing web applications against XSS
and SQLi attacks using a novel deep learning approach.
Scientific Reports, 14(1). https://doi.org/10.1038/S41598-
023-48845-4

Tan, X., Xu, Y., Wu, T., & Li, B. (2023). Detection of Reflected
XSS Vulnerabilities Based on Paths-Attention Method.
Applied Sciences (Switzerland), 13(13).
https://doi.org/10.3390/APP13137895

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention
Is All You Need.

Yan, H., Feng, L., Yu, Y., Liao, W., Feng, L., Zhang, J., Liu, D.,
Zou, Y., Liu, C., Qu, L., & Zhang, X. (2022). Cross-site
scripting attack detection based on a modified convolution
neural network. Frontiers in Computational Neuroscience,
16. https://doi.org/10.3389/FNCOM.2022.981739

Younas, F., Raza, A., Thalji, N., Abualigah, L., Zitar, R. A., &
Jia, H. (2024). An efficient artificial intelligence approach
for early detection of cross-site scripting attacks. Decision
Analytics Journal, 11.
https://doi.org/10.1016/J.DAJOUR.2024.100466

Zhang, W., Li, Y., Li, X., Shao, M., Mi, Y., Zhang, H., & Zhi, G.
(2022). Deep Neural Network-Based SQL Injection
Detection Method. Security and Communication Networks,
2022. https://doi.org/10.1155/2022/4836289

Zhao, C., Si, S., Tu, T., Shi, Y., & Qin, S. (2022). Deep-Learning
Based Injection Attacks Detection Method for HTTP.
Mathematics, 10(16).
https://doi.org/10.3390/MATH10162914

Niu, Q. and Li, X. (2020)"A High-performance Web Attack
Detection Method based on CNN-GRU Model," IEEE 4th
Information Technology, Networking, Electronic and
Automation Control Conference (ITNEC), Chongqing,
China, 2020, pp- 804-808, doi:
10.1109/ITNEC48623.2020.9085028

Jiang, Y., Jia, M., Zhang, B. and Deng, L. (2021) "Malicious
Domain Name Detection Model Based on CNN-GRU-
Attention, 33rd Chinese Control and Decision Conference
(CCDC), Kunming, China, 2021, pp. 1602-1607, doi:
10.1109/CCD(C52312.2021.960237.

SQL

https://doi.org/10.1007/S00521-024-09429-Z
https://doi.org/10.1109/SIN56466.2022.9970504
https://owasp.org/www-community/attacks/Blind_SQL_Injection
https://owasp.org/www-community/attacks/Blind_SQL_Injection
https://owasp.org/www-community/attacks/Command_Injection
https://owasp.org/www-community/attacks/Command_Injection
https://owasp.org/www-community/attacks/xss/
https://doi.org/10.1186/S40537-022-00678-0
https://doi.org/10.1186/S40537-022-00678-0
https://doi.org/10.1007/S10207-023-00791-Y
https://doi.org/10.53730/IJHS.V6NS2.8167
https://doi.org/10.1109/ICAISC56366.2023.10085076
https://doi.org/10.1007/978-3-031-35507-3_38
https://doi.org/10.1007/978-3-031-35507-3_38
https://doi.org/10.1109/ICECONF57129.2023.10083807
https://owasp.org/www-project-top-ten/
https://github.com/payloadbox/sql-injection-payload-list
https://github.com/payloadbox/sql-injection-payload-list
https://doi.org/10.1109/ICAAIC53929.2022.9792964
https://doi.org/10.1109/ICAIA57370.2023.10169255
https://owasp.org/www-community/attacks/SQL_Injection
https://www.kaggle.com/datasets/alextrinity/sqli-xss-dataset
https://www.kaggle.com/datasets/alextrinity/sqli-xss-dataset
https://doi.org/10.3390/APP13169466
https://doi.org/10.1038/S41598-023-48845-4
https://doi.org/10.1038/S41598-023-48845-4
https://doi.org/10.3390/APP13137895
https://doi.org/10.3389/FNCOM.2022.981739
https://doi.org/10.1016/J.DAJOUR.2024.100466
https://doi.org/10.1155/2022/4836289
https://doi.org/10.3390/MATH10162914

