

journals.uoz.edu.krd

Available online at sjuoz.uoz.edu.krd

Vol. 13, No.1 pp58–64January-March,2025

p-ISSN: 2663-628X

e-ISSN: 2663-6298

* Corresponding author

This is an open access under a CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

58

WEB VULNERABILITIES DETECTION USING A HYBRID MODEL OF CNN, GRU AND

ATTENTION MECHANISM

Sarbast H. Ali 1, Arman I. Mohammed 1, Sarwar MA. Mustafa 2, and Sardar Omar Salih 3, *

1Duhok Technical College, Duhok Polytechnic University, Duhok, Kurdistan Region, Iraq.
2 College of Science, University of Duhok, Duhok, Kurdistan Region, Iraq.

3Duhok Technical Institute, Duhok Polytechnic University, Duhok, Kurdistan Region, Iraq.

*Corresponding author email: sardar@dpu.edu.krg

Received: 14 Oct .2024 Accepted:27 Nov. 2024 Published: 12 Jan. 2025. https://doi.org/10.25271/sjuoz.2025.13.1.1404

ABSTRACT:

The frequency of cyber-attacks has been rising in recent years due to the fact that startup developers have failed to overlook

security issues in the core web services. This stated serious concerns about the security of the web. Therefore, this paper

proposes a hybrid model built on the base of Convolutional Neural Networks (CNN), Gated Recurrent Units (GRU) and an

attention mechanism to detect vulnerabilities in application code. Particularly, the model can help detect attacks based on

Structured Query Language Injection (SQLi), Cross-Site Scripting (XSS), and command injection. When using the dataset

SXCM1, our model achieved 99.77%, 99.66% and 99.63% for training, validation and testing, respectively. The results

obtained on data from the DPU-WVD dataset are even better because it was 99.97%, 99.98% and 99.99% for training,

validation and testing, respectively. These results significantly outperform the state-of-the-art models and can strongly

identify vulnerabilities in web applications. Through training, on both the SXCM1 and DPU-WVD datasets, the model

achieved an accuracy rate of 99.99%. The results show that this combination model is highly effective at recognizing three

vulnerability categories and surpasses cutting-edge models that usually specialize in just one type of vulnerability detection.

KEYWORDS: CNN, Web vulnerabilities, deep learning, XSS, SQL injection.1.

1. INTRODUCTION

 Code injection attacks let attackers run malicious code

inside a program, therefore compromising the security and

integrity of web applications. The reliability and trustworthiness

of software products depend on detecting and reducing such

weaknesses. This research aims to build a strong solution for

automated code injection detection using deep learning methods,

thus enhancing the security posture of software applications. The

front-end applications and backend databases are susceptible to

numerous attacks due to their internet accessibility. Especially

noteworthy and often ranking among the top 10 vulnerabilities

found by OWASP (OWASP Top Ten | OWASP Foundation,

2021). The frequency of these attacks has grown by more than

300% in recent years as attackers progressively use sophisticated

methods such as encryption and obfuscated code to avoid

discovery (Alarfaj et al., 2023).

SQLi is a web security issue that allows an attacker to interfere

with the queries an application submits to its database. Typically,

it lets attackers read information they would not usually be able

to obtain. This could include user-owned data and any other data

the application can access. An assailant can regularly change or

eliminate this data, therefore affecting the content or

functionality of the program in a constant manner. An attacker,

in particular circumstances, may utilize an escalated SQLi attack

or a denial-of-service attack to compromise the underlying server

or other back-end infrastructure. In-band SQLi is the most often

occurring and basic SQLi attack. As can be seen in Figure 1, in-

band SQLi is the condition whereby an attacker can start an

attack and gather data utilizing the same communication channel.

The two most common variants of in-band SQLi are error-based

and union-based SQLi. (SQL Injection | OWASP Foundation,

2023).

Figure 1: In-band SQLi Attack Diagram (Payloadbox/Sql-Injection-Payload-List: SQL Injection Payload List, 2021)

http://journals.uoz.edu.krd/
http://sjuoz.uoz.edu.krd/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.25271/sjuoz.2025.13.1.1404

Ali et al/ Science Journal of University of Zakho, 13(1), 58-64 January-March, 2025

59

Union-based SQLi combines the output of two or more SELECT

queries into a single result that is returned as part of the HTTP

response. Error-based SQLi is an in-band SQLi method that uses

the database server's error messages to gather details about the

database's structure. In some cases, an attacker can use error-

based SQLi to enumerate the entire database structure and access

all the data (Blind SQL Injection | OWASP Foundation, 2023).

 Additionally, there are many other types of SQLi that make

high potential risks to web application security, such as

(Inferential SQLi, Boolean-based, Time-based Blind SQLi, Out-

of-band SQLi and Voice Based SQLi). XSS is a high-risk online

vulnerability that arises when malevolent scripts are injected into

websites that are otherwise reliable and secure. XSS attacks occur

when a hacker transmits malicious code, usually in the form of a

browser-side script, to another user via an online application.

These vulnerabilities are prevalent and occur when a web

application neglects to adequately authenticate or encode user

input before including it in its output. An unidentified user may

be subjected to a harmful script sent by an assailant employing

XSS. The script will execute because the end user's browser lacks

the capability to ascertain the level of trustworthiness of the

script. This malicious script has the ability to get any cookies,

session tokens, or other confidential information that is kept by

the browser and associated with the website. This is possible

because the script is perceived as trustworthy, originating from a

source named KirstenS in the year 2022. The XSS vulnerability

can be classified into two types: server XSS and client XSS. The

level of risk associated with both types depends on the specific

scripts that have been implemented XSS | OWASP Foundation,

2022). Furthermore, command injection attacks seek to exploit

vulnerabilities in an application in order to run unauthorized

instructions on the underlying operating system. Command

injection attacks can occur when an application transmits a

system shell along with sensitive user information, such as forms,

cookies, and HTTP headers. In this attack, the attacker often

executes operating system commands using the privileges of the

vulnerable software. Inadequate input validation is a significant

contributing element to the potential occurrence of command

injection attacks. This attack distinguishes itself from code

injection by enabling the attacker to embed personalized code

that the program will eventually run. Command injection enables

an attacker to augment the inherent capabilities of a program by

executing system commands without manually inserting code

(Command Injection | OWASP Foundation, 2021).

 This paper aims to design robust deep learning methods that

can accurately predict and categorise different code flaws (SQLi,

XSS, Command Injection, benign code segments). This is

possible by varied input data consisting of coding snippets and

achieving strong predictions because of using codified features

as inputs that can be dynamic text, a static vector of tokens, or

both, and using a collection of convolutional neural network

layers and recurrent neural network layers.

 This paper is organized as follows: Section 2 reviews related

works, providing a foundation for the study. Section 3 details the

data collection and preprocessing methods employed. Section 4

introduces the proposed approach, outlining the novel techniques

implemented. Section 5 presents the results, analyzing the

effectiveness of our approach. Finally, Section 6 concludes the

paper, summarizing the key findings and suggesting directions

for future research.

2. THEORETICAL BACKGROUND

 (Arasteh et al., 2024) Proposed a robust technique for

identifying SQLi attacks in online applications, to improve the

reliability, exactness, and responsiveness of the detection

process. (Kakisim, 2024) developed a new technique called

"Bidirectional LSTM-CNN based on Multi-View Consensus"

(MVC-BiCNN) that uses deep learning to detect SQLi threats.

(Tadhani et al., 2024) introduced an innovative method to

improve the security of online applications against SQLi and

XSS assaults by implementing deep learning techniques. The

new hybrid deep learning model integrates Convolutional Neural

Networks (CNNs) to extract features and Long Short-Term

Memory (LSTM) networks to capture connected relationships in

sequential data. (Younas et al., 2024) proposed a highly effective

artificial intelligence method for promptly identifying XSS

attacks in web applications using Long Short-Term Memory

(LSTM). (Sethi et al., 2023) presented a flexible and scalable

method that uses deep learning techniques to promptly detect and

mitigate XSS attacks in web applications. The research shows the

advantages of the Multilayer Perceptron (MLP) architecture by

analyzing different deep learning models. (Abhishek et al., 2023)

introduced a mixed architecture that combines CNN and Machine

Learning (ML) to identify instances of XSS. The framework is

designed to address the pervasive problem of XSS attacks in web

applications by providing a strong and accurate method for

identifying and categorizing. The study conducted by

(Nilavarasan et al., 2023) focuses on applying CNN to detect

XSS vulnerabilities in web applications when they achieved

significant levels of accuracy, precision, and recall in their

findings. (Tan et al., 2023) proposed the PATS model, which

utilizes abstract syntax trees and attention mechanisms to identify

XSS vulnerabilities, and this approach led to high accuracy and

enabled proactive security. The study work by (Mondal et al.,

2023) tried to prevent adversarial attacks by focusing on

enhancing the detection of XSS by utilizing one of the

reinforcement learning approaches known as Trust Region Policy

Optimization (TRPO). Another fascinating work focused on

identifying SQLi threats using Natural Language Processing

(NLP) and Deep Learning (DL) techniques, which was done by

(Natarajan et al., 2023). They used CNN to indicate a greater

performance than classical Machine Learning (ML) algorithms

(Sun et al., 2023). Enhanced the detection performance by

implementing the combination of Text CNN and Bi-LSTM

neural networks, and further improvement was achieved by

incorporating an attention mechanism and word embeddings via

pre-trained BERT vectors. (Yan et al., 2022) presented an

advanced MRBN-CNN model modified for detecting XSS

attacks by displaying a high standard of accuracy metrics. A

deep-learning approach for identifying web injection strikes with

the mean of merging features extracted from HTTP and URL

request bodies to construct a multi-classification model was

introduced by (Zhao et al., 2022). Mondal et al. (2022)

recommended using reinforcement learning to bolster XSS

detection and counter adversarial attacks by fortifying the

algorithm's protection to assaults. (Abdulhamz et al., 2022)

introduced a 2D-CNN model customized specifically for SQLi

detection on a designated dataset. Deploying deep learning

algorithms, this model autonomously extracts features from SQL

queries, converting them into a two-dimensional matrix for

classification purposes. (Roy et al., 2022) focused on identifying

SQLi attacks using machine learning classifiers like Logistic

Regression, AdaBoost, Random Forest, Naive Bayes, and

XGBoost. (Ashlam et al., 2022) presented a multi-phase

algorithmic framework that integrates advanced machine

learning and deep learning techniques to mitigate SQLi attacks

and elevate real-time database security. (Zhang et al., 2022)

presented a specialized deep neural network model to identify

SQLi attacks. This achievement can be due to various reasons,

such as transforming data into word vectors, employing ReLU

functions, optimizing loss functions, and including Dropout to

improve generalization abilities. (Demilie et al., 2022) conducted

a study on SQLi attacks in web applications. They developed a

comprehensive framework to detect and prevent these attacks

using a combination of machine learning (ML) algorithms and

classical methods such as Naive Bayes, Decision Trees, Support

Vector Machines, Random Forests, Logistic Regression, and

Multilayer Perceptron-based Neural Networks. (Niu et al, 2020)

propose a hybrid CNN-GRU model aimed at enhancing the

Ali et al/ Science Journal of University of Zakho, 13(1), 58-64 January-March, 2025

60

accuracy of web attack detection. By capturing spatial and

sequential patterns in network data, their approach improves

detection performance and processing speed compared to

traditional methods. Similarly, (Jiang et al., 2021) introduce a

CNN-GRU-Attention model specifically for detecting malicious

domains. Adding an attention mechanism helps the model focus

on critical features within domain names, yielding higher

detection precision and increased robustness against evolving

threats. Together, these studies highlight the potential of CNN-

GRU architectures, particularly when combined with attention

mechanisms, to enhance security applications.

Data Collection:

 Two distinct datasets are employed in the current study. The

primary dataset is designated as the SQL Injection XSS

Command Injection Mix Dataset. Version 1.0.0 (SXCM1),

introduced by the SQLi XSS Dataset in 2023 (SQLi XSS Dataset,

2023), comprises 206,636 distinct code fragments. We also

create a hybrid dataset (DPU-WVD) comprising about 1,003,996

code words written by humans and machines. AI produces one

million lines of code, whereas 3,996 lines are sourced from

various payloads on GitHub. The pseudocode utilized to produce

the AI-generated code is as follows.

Pseudo Code:

START

DEFINE FUNCTION generate_random_string(length)

 RETURN random string of letters and digits of

given length

DEFINE FUNCTION generate_payload(index, payloads)

 RETURN payloads[index % length of payloads]

DEFINE FUNCTION generate_normal_input()

 IF random number < 0.3 THEN RETURN random

benign SQL query

 ELSE IF random number < 0.6 THEN RETURN

random benign XSS string

 ELSE RETURN random benign command input

SET num_samples to 250000

OPEN 'web_vulnerabilities_dataset.csv' FOR writing

 WRITE header ['Sentence', 'SQLInjection', 'XSS',

CommandInjection', 'Normal']

 FOR i FROM 0 TO num_samples - 1

 WRITE row with generate_payload(i, SQLi

payloads) as Sentence, 1, 0, 0, 0

 WRITE row with generate_payload(i, XSS payloads)

as Sentence, 0, 1, 0, 0

 WRITE row with generate_payload(i, command

injection payloads) as Sentence, 0, 0, 1, 0

 WRITE row with generate_normal_input() as

Sentence, 0, 0, 0, 1

CLOSE file

END

The DPU-WVD includes highly challenging examples from

which the network can learn. For instance, the command ls -l

n27z8 is marked as vulnerable to command injection, while ls -l

R8wnZ is marked as normal. This suggests that in the dataset, the

filename "n27z8" might be interpreted by the system in such a

way that it allows additional commands to be injected and

executed, making it vulnerable to command injection attacks. In

contrast, the filename "R8wnZ" does not display this behavior

and is regarded as secure or typical. Data preparation covers

multiple sequential steps. The main purpose of the proposed

method was to separate characters from symbols. The procedure

involved eliminating unwanted characters, addressing disparities

in the dataset, making important user data such as username,

password and proprietary code, and eliminating comments.

Concept And Methods:

 The proposed methodology involves preprocessing the

training data by transforming each character of the words in the

dataset into vectors, as well as constructing a hybrid model of

CNN, GRU, and the multi-head attention mechanism.

Vectorizing Characters:

 This research presents a highly effective method for

identifying web vulnerabilities, such as SQLi, XSS, command

injection, and normal code segments. We aim to develop a highly

efficient AI model to categorise the input code accurately. The

incoming text performs preprocessing using several functions.

The initial phase entails dividing the input text into individual

letters and symbols utilizing two different procedures.

Throughout this step, cleaning and eliminating unnecessary

sentences, such as comments, is implemented.

 The initial function exclusively retrieves characters from the

input text. It changes a list of strings X (input data) into sequences

of character indices using a predefined alphabet. Subsequently, it

adjusts these sequences to a fixed length by padding or truncating

them to a maximum length of max_len. Initially, the function

establishes a set of legal characters known as an alphabet. "mat"

is a blank list determined to record the indications of valid

characters for each string in 𝑋 variable. If the

is_remove_comment flag is set to True, the comments within the

string are removed. Then, every character is transformed into

lowercase, and if it belongs to the alphabet, its position is added

to the mat array. Upon completion of processing, the variable

"mat" is added to the results list. This technique is repeated to

extract symbol tags from the provided input text.

Hybrid Model of CNN And GRU:

 The paper introduces a new model for detecting web

vulnerabilities. Our proposed model is a multilevel architecture

developed to efficiently manage and interpret complicated input

data. Furthermore, it utilizes a fusion of embedding layers,

CNNs, bidirectional GRUs, and multi-channel attention

mechanisms to handle and gain knowledge from textual and

symbolic input. The architecture combines CNNs to extract inner

features and GRUs to model sequential dependencies.

Additionally, the attention mechanism is utilized to rank relevant

segments of the sequences, as illustrated in Figure 2. The primary

objective of this comprehensive technique is to achieve a

powerful capability in identifying web vulnerabilities by

analyzing a wide range of complicated input data.

Figure 2: Proposed Hybrid Model of CNN and GRUs.

Ali et al/ Science Journal of University of Zakho, 13(1), 58-64 January-March, 2025

61

The model launches by analyzing two separate categories of

inputs. The primary input is in the form of text, which has the

potential to include various types of textual information, such as

code snippets, error messages, or descriptions that may include

vulnerabilities. The second input consists of symbols that act as

representations of specific tokens or symbols that are significant

in the context of web vulnerabilities. These symbols may include

special characters found in code or configuration files.

Embedding layers, as described by (Mikolov et al., 2013)

transform inputs that are high-dimensional and sparse, such as

integers, into vectors that are dense and few-dimensional. The

function of this layer is crucial in decreasing the number of

dimensions by converting inputs into a more easily manageable

format that the neural network can process efficiently. Moreover,

feature learning is crucial since it enables the model to acquire

representations of the input data in which related inputs possess

comparable representations, improving pattern recognition.

CNNs have multiple functions within the model. Firstly, they

demonstrate exceptional proficiency in extracting features and

identifying local patterns and characteristics within the input

sequences, such as certain sequences of tokens frequently

observed in vulnerability signatures. In addition, CNNs assist in

reducing the dimensionality of data by incorporating max pooling

layers. These layers effectively decrease the complexity of the

input, resulting in more efficient computations in succeeding

layers while preserving the most significant properties.

Moreover, regularization techniques such as batch normalization

and dropout layers are utilized to mitigate the problems of

overfitting and underfitting. Batch normalization standardizes the

inputs to subsequent layers, whereas dropout layers

stochastically eliminate some neurons during training, improving

the model's resilience and capacity to generalize. The hybrid

model utilizes a recurrent neural network layer, notably GRUs

(Cho et al., 2014), to effectively capture the sequential

relationships present in the data. GRUs that update and reset

gates allow the model to analyze input sequences bidirectionally,

effectively capturing dependencies that may occur in both

forward and backward directions. Bidirectional processing is

essential for comprehending context in sequences. GRUs are

particularly adept at understanding the time-based patterns and

extended connections in sequences commonly found in web

application logs, user actions, and code execution pathways.

Including a multi-head attention mechanism (Vaswani et al.,

2017) improves the model's capabilities in various aspects.

Firstly, attention enables the model to assign varying levels of

importance to distinct sections of the input sequences,

prioritizing the most pertinent portions that are probably to

highlight vulnerabilities. In addition, the model can enhance its

knowledge of the data by using numerous heads to capture

different types of interactions and correlations between different

regions of the sequences, as shown in Figure 3.

Figure 3: Multi-Head Attention (Vaswani et al., 2017).

 The concatenation and global average pooling layers in

combining layers have two primary functions. To begin with,

they consolidate information from various viewpoints by

merging the results of the GRU layers with the attention

mechanism. Additionally, global average pooling reduces the

sequence data into a vector of a constant size, effectively

decreasing the number of dimensions and making the input more

feasible for the dense layers.

 The utilization of these layers enhances the efficiency of the

model by integrating CNNs, GRUs, and attention mechanisms,

resulting in multiple benefits. Firstly, it does a thorough analysis

by capturing both local and global patterns in the data. Moreover,

the model's flexibility is improved by incorporating trainable

embedding layers and attention mechanisms, which allow it to

easily adapt to various types of input data and successfully learn

important features. In addition, the model's robustness is

enhanced by regularization techniques such as dropout and batch

normalization, which reduce overfitting and enhance

performance on unfamiliar data. Moreover, the utilization of

bidirectional GRUs and attention mechanisms guarantees a

comprehensive understanding of the context, allowing the model

to precisely detect vulnerabilities by comprehending the context

of input sequences.

3. RESULTS AND DISCUSSION

 In this section, we provide and examine the results of this

study, establishing connections between them and the previously

published hypothesis. The results are methodically analyzed to

identify patterns, anomalies, and important trends. After

presenting the data using figures and tables, we proceed to have

a thorough discussion in which we place our findings within the

context of existing literature and theoretical frameworks.

Training Process:

 The proposed methodology was trained using both datasets

(SXCM1 and DPU-WVD) on the online deep-learning platform

Kaggle, utilizing two T4 GPUs. The training process of the first

dataset took about 96 minutes and 66 seconds to finish 100

epochs while the second dataset took about 115 minutes to finish

the training process of 20 epochs. Both datasets are trained with

the hyperparameters defined in Table 1. The datasets were split

into 80% for the training set and 20% for the testing set. The

training set was split into 80% for training and 20% for

validation.

Table 1: Hyperparameter Initialization

Hyperparameter Initialization

Input Size (Max_len) 1 * 1000

Optimizer Adam

Learning Rate 0.001

Loss Function Categorical Cross-entropy

Batch Size 64

Epochs 20-100

Dropout 0.3 (throughout network)

Training Results :

 The proposed model showed impressive results in terms of

accuracy and loss for both datasets, as illustrated in Figures 4 and

5. The SXCM1 dataset gained a training accuracy of 96.57% and

a validation accuracy of 94.35% in the first epoch, which is

impressive. The DPU-WVD dataset, on the other hand, stated

higher starting values, with training and validation accuracies

reaching 99.75% and 95.84%, respectively.

 During the training process, the model's performance

exhibited continuous improvement in accuracy and loss for both

datasets. In the SXCM1 dataset, the training loss started at a low

value of 0.1061, which coincides with the high initial training

accuracy of 96.57%. This suggests that the model rapidly

Ali et al/ Science Journal of University of Zakho, 13(1), 58-64 January-March, 2025

62

comprehended the patterns in the data. Nevertheless, the initial

validation accuracy of 94.35% indicated the presence of

overfitting. However, this issue was addressed and reduced as the

training advanced by implementing dropout and batch

normalization techniques in the proposed model. As a result, the

training and validation accuracies peaked at 99.78% and 99.67%

respectively, indicating the model's strong ability to learn and

generalize.

 In the case of the DPU-WVD dataset, the model initially

exhibited much greater accuracy for training and validation. The

training procedure enabled a seamless and consistent

improvement in performance indicators. The model effectively

adjusted to the complex elements of the dataset, ultimately

obtaining training and validation accuracies of 99.97% and

99.98% accordingly by the conclusion of epoch 20. The

significant enhancement highlights the model's ability to acquire

knowledge from a wide range of data distributions and well

manage different levels of starting correctness. Despite the DPU-

WVD dataset being larger than SXCM1, the hybrid model

demonstrated faster learning capabilities. This can be attributed

to the clarity and uniformity of the code phrases created using AI.

Figures 4 and 5 visually represent this progressive enhancement

in performance. They clearly illustrate the upward trajectory of

the training and validation accuracies over successive epochs for

both datasets. The consistent increase in accuracy metrics

highlights the effectiveness of the proposed model's architecture

and training regimen in achieving optimal results across different

datasets.

Figure 4: Training and loss metrics for SXCM1 dataset.

Figure 5: Training and loss metrics for DPU-WVD dataset.

 The model performs well on both datasets, achieving high

accuracy and low loss. For the SXCM1 dataset, there’s some

fluctuation in validation accuracy and loss, as seen in Figure 4,

suggesting slight overfitting and room for improvement.

Techniques like regularization or data augmentation could help

stabilize the results. In contrast, the DPU-WVD dataset shows

smooth and consistent performance, with both training and

validation accuracy reaching near-perfect levels quickly, as

illustrated in Figure 5, indicating strong generalization. Overall,

the model handles DPU-WVD data very well, while a few

adjustments might improve stability on SXCM1.

Testing Results:

 The testing phase is crucial for assessing a model's

efficiency and robustness when evaluated with unseen data. This

phase serves as a key evaluation metric to demonstrate how the

proposed model will perform in production. Table 2 provides

information on both datasets in terms of accuracy, precision, and

recall. Notably, the hybrid model achieved an accuracy of

99.63% for the SXCM1 dataset and 99.99% for our proposed

dataset

Table 2: Testing metrics for both dataset

 Metric SXCM1 dataset DPU-WVD dataset

Accuracy 99.63% 99.99%

Precision 99.66% 99.98%

Recall 99.63% 99.99%

 The suggested hybrid model has been evaluated against

contemporary cutting-edge models for various tasks, such as

XSS, SQLi, and Command Injection detection. Our hybrid model

is capable of detecting all three sorts of vulnerabilities, unlike

Ali et al/ Science Journal of University of Zakho, 13(1), 58-64 January-March, 2025

63

earlier models that only detect a single type. In addition, it has

the capability to detect regular language that does not have any

weaknesses, resulting in improved precision. The exceptional

result is exemplified in Table 3, showcasing the efficacy and

adaptability of our methodology.

Table 3: Comparison of the proposed model versus benchmark models

Model XSS SQL injection Command Injection All

(Arasteh et al., 2024) 99.68%

(Kakisim, 2024) 99.96%

(Younas et al., 2024) 99.00%

(Abhishek et al., 2023) 99.9%

(Natarajan et al., 2023) 99.29%

(Zhao et al., 2022) 99.39%

(Abdulhamza & Al-Janabi, 2022) 99.66%

(Zhang et al., 2022) 96%

(Roy et al., 2022) 98.33%

Our model

SXCM1 99.63%

DPU-WVD 99.99%

 The comparison table shows various models' accuracy rates

for detecting specific web security vulnerabilities, including XSS

(Cross-Site Scripting), SQL Injection, and Command Injection.

Among these, the model by Kakisim (2024) demonstrates the

highest SQL Injection detection rate at 99.96%, closely followed

by Abhishek et al. (2023) with 99.9% for XSS detection. The

models by Younas et al. (2024) and Roy et al. (2022) also focus

on XSS, achieving high accuracies of 99% and 98.33%,

respectively. Meanwhile, Zhao et al. (2022) and our model's

DPU-WVD configuration display exceptional performance in

overall detection, with 99.39% and 99.99%, respectively.

Overall, the proposed model in the table achieves near-perfect

accuracy with DPU-WVD at 99.99%, surpassing most other

models for combined vulnerability detection, suggesting high

reliability across all attack types.

CONCLUSIONS

 This research paper presents an approach that integrates

CNN, GRUs and an attention mechanism to identify

vulnerabilities, in code written by programmers for the web

development domain. Additionally showcased is the DPU-WVD

dataset featuring web payloads paired with one million code

snippets generated by artificial intelligence. Through training, on

both the SXCM1 and DPU-WVD datasets the model achieved an

accuracy rate of 99.99%. The results show that this combination

model is highly effective at recognizing three vulnerability

categories and surpasses cutting-edge models that usually

specialize in just one type of vulnerability detection. The model

shows promising potential for real world use in software

development tasks with an emphasis on identifying the security

leaks due to its accuracy. To guarantee the models flexibility and

trustworthiness across programming scenarios and settings it is

crucial to assess its performance, in diverse programming

languages and environments. Future research may focus on

developing real-time detection capabilities within widely used

integrated development environments (IDEs), offering

developers immediate feedback during the coding process. This

represents a significant opportunity for additional research.

Acknowledgement

 The authors thanks Duhok Technical institute, Duhok

Polytechnic University for providing the necessary resources and

support that made this research possible.

Ethical Statements

 This research was not required the ethical approval because

the authors was not involving human and animal subjects.

Author contributions

 S.H.A., Model design, Original Draft. A.I.M., Data,

Preprocessing, Software, Validation. S.M.A.M., Formal analysis,

Investigation, Review & Editing. S.O.S., Supervision, and Final

Editing.

REFERENCES

Abdulhamza, F. R., & Al-Janabi, R. J. S. (2022). SQL Injection

Detection Using 2D-Convolutional Neural Networks (2D-CNN).

2022 International Conference on Data Science and Intelligent

Computing, ICDSIC 2022, 212–217.

https://doi.org/10.1109/ICDSIC56987.2022.10075777

Abhishek, S., Ravindran, R., Anjali, T., & Shriamrut. (2023). AI-

Driven Deep Structured Learning for Cross-Site Scripting

Attacks. International Conference on Innovative Data

Communication Technologies and Application, ICIDCA 2023 -

Proceedings, 701–709.

https://doi.org/10.1109/ICIDCA56705.2023.10099960

Alarfaj, F. K., & Khan, N. A. (2023). Enhancing the Performance

of SQL Injection Attack Detection through Probabilistic Neural

Networks. Applied Sciences (Switzerland), 13(7).

https://doi.org/10.3390/APP13074365

Arasteh, B., Aghaei, B., Farzad, B., Arasteh, K., Kiani, F., &

Torkamanian-Afshar, M. (2024). Detecting SQL injection

attacks by binary gray wolf optimizer and machine learning

algorithms. Neural Computing and Applications, 36(12), 6771–

6792. https://doi.org/10.1007/S00521-024-09429-Z

Ashlam, A. A., Badii, A., & Stahl, F. (2022). Multi-Phase

Algorithmic Framework to Prevent SQL Injection Attacks using

Improved Machine learning and Deep learning to Enhance

Database security in Real-time. Proceedings of the 2022 15th

https://doi.org/10.1109/ICDSIC56987.2022.10075777
https://doi.org/10.1109/ICIDCA56705.2023.10099960
https://doi.org/10.3390/APP13074365
https://doi.org/10.1007/S00521-024-09429-Z

Ali et al/ Science Journal of University of Zakho, 13(1), 58-64 January-March, 2025

65

IEEE International Conference on Security of Information and

Networks, SIN 2022.

https://doi.org/10.1109/SIN56466.2022.9970504

Blind SQL Injection | OWASP Foundation. (2023).

https://owasp.org/www-

community/attacks/Blind_SQL_Injection

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D.,

Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning

Phrase Representations using RNN Encoder-Decoder for

Statistical Machine Translation.

Command Injection | OWASP Foundation. (2021).

https://owasp.org/www-community/attacks/Command_Injection

Cross Site Scripting (XSS) | OWASP Foundation. (2022).

https://owasp.org/www-community/attacks/xss/

Demilie, W. B., & Deriba, F. G. (2022). Detection and prevention

of SQLI attacks and developing compressive framework using

machine learning and hybrid techniques. Journal of Big Data,

9(1). https://doi.org/10.1186/S40537-022-00678-0

Kakisim, A. G. (2024). A deep learning approach based on multi-

view consensus for SQL injection detection. International

Journal of Information Security, 23(2), 1541–1556.

https://doi.org/10.1007/S10207-023-00791-Y

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient

Estimation of Word Representations in Vector Space.

Mondal, B., Banerjee, A., & Gupta, S. (2022). XSS filter evasion

using reinforcement learning to assist cross-site scripting testing.

International Journal of Health Sciences, 11779–11793.

https://doi.org/10.53730/IJHS.V6NS2.8167

Mondal, B., Banerjee, A., & Gupta, S. (2023). XSS Filter

detection using Trust Region Policy Optimization. 1st

International Conference in Advanced Innovation on Smart City,

ICAISC 2023 - Proceedings.

https://doi.org/10.1109/ICAISC56366.2023.10085076

Natarajan, Y., Karthikeyan, B., Wadhwa, G., Srinivasan, S. A.,

& Akilesh, A. S. P. (2023). A Deep Learning Based Natural

Language Processing Approach for Detecting SQL Injection

Attack. Lecture Notes in Networks and Systems, 715 LNNS,

396–406. https://doi.org/10.1007/978-3-031-35507-3_38

Nilavarasan, G. S., & Balachander, T. (2023). XSS Attack

Detection using Convolution Neural Network. Proceedings of the

International Conference on Artificial Intelligence and

Knowledge Discovery in Concurrent Engineering, ICECONF

2023. https://doi.org/10.1109/ICECONF57129.2023.10083807

OWASP Top Ten | OWASP Foundation. (2021).

https://owasp.org/www-project-top-ten/

payloadbox/sql-injection-payload-list: SQL Injection Payload

List. (2021). https://github.com/payloadbox/sql-injection-

payload-list

Roy, P., Kumar, R. & Rani, P. (2022). SQL Injection Attack

Detection by Machine Learning Classifier. Proceedings -

International Conference on Applied Artificial Intelligence and

Computing, ICAAIC 2022, 394–400.

https://doi.org/10.1109/ICAAIC53929.2022.9792964

Sethi, M., Verma, J., Snehi, M., Baggan, V., Virender, &

Chhabra, G. (2023). Web Server Security Solution for Detecting

Cross-site Scripting Attacks in Real-time Using Deep Learning.

2023 International Conference on Artificial Intelligence and

Applications, ICAIA 2023 and Alliance Technology Conference,

ATCON-1 2023 - Proceeding.

https://doi.org/10.1109/ICAIA57370.2023.10169255

SQL Injection | OWASP Foundation. (2023).

https://owasp.org/www-community/attacks/SQL_Injection

SQLi XSS dataset. (2023).

https://www.kaggle.com/datasets/alextrinity/sqli-xss-dataset

Sun, H., Du, Y., & Li, Q. (2023). Deep Learning-Based Detection

Technology for SQL Injection Research and Implementation.

Applied Sciences (Switzerland), 13(16).

https://doi.org/10.3390/APP13169466

Tadhani, J. R., Vekariya, V., Sorathiya, V., Alshathri, S., & El-

Shafai, W. (2024). Securing web applications against XSS and

SQLi attacks using a novel deep learning approach. Scientific

Reports, 14(1). https://doi.org/10.1038/S41598-023-48845-4

Tan, X., Xu, Y., Wu, T., & Li, B. (2023). Detection of Reflected

XSS Vulnerabilities Based on Paths-Attention Method. Applied

Sciences (Switzerland), 13(13).

https://doi.org/10.3390/APP13137895

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention Is

All You Need.

Yan, H., Feng, L., Yu, Y., Liao, W., Feng, L., Zhang, J., Liu, D.,

Zou, Y., Liu, C., Qu, L., & Zhang, X. (2022). Cross-site scripting

attack detection based on a modified convolution neural network.

Frontiers in Computational Neuroscience, 16.

https://doi.org/10.3389/FNCOM.2022.981739

Younas, F., Raza, A., Thalji, N., Abualigah, L., Zitar, R. A., &

Jia, H. (2024). An efficient artificial intelligence approach for

early detection of cross-site scripting attacks. Decision Analytics

Journal, 11. https://doi.org/10.1016/J.DAJOUR.2024.100466

Zhang, W., Li, Y., Li, X., Shao, M., Mi, Y., Zhang, H., & Zhi, G.

(2022). Deep Neural Network-Based SQL Injection Detection

Method. Security and Communication Networks, 2022.

https://doi.org/10.1155/2022/4836289

Zhao, C., Si, S., Tu, T., Shi, Y., & Qin, S. (2022). Deep-Learning

Based Injection Attacks Detection Method for HTTP.

Mathematics, 10(16). https://doi.org/10.3390/MATH10162914

Niu, Q. and Li, X. (2020)"A High-performance Web Attack

Detection Method based on CNN-GRU Model," IEEE 4th

Information Technology, Networking, Electronic and

Automation Control Conference (ITNEC), Chongqing, China,

2020, pp. 804-808, doi: 10.1109/ITNEC48623.2020.9085028

Jiang, Y., Jia, M., Zhang, B. and Deng, L. (2021) "Malicious

Domain Name Detection Model Based on CNN-GRU-Attention,

33rd Chinese Control and Decision Conference (CCDC),

Kunming, China, 2021, pp. 1602-1607, doi:

10.1109/CCDC52312.2021.960237.

https://doi.org/10.1109/SIN56466.2022.9970504
https://owasp.org/www-community/attacks/Blind_SQL_Injection
https://owasp.org/www-community/attacks/Blind_SQL_Injection
https://owasp.org/www-community/attacks/Command_Injection
https://owasp.org/www-community/attacks/xss/
https://doi.org/10.1186/S40537-022-00678-0
https://doi.org/10.1007/S10207-023-00791-Y
https://doi.org/10.53730/IJHS.V6NS2.8167
https://doi.org/10.1109/ICAISC56366.2023.10085076
https://doi.org/10.1007/978-3-031-35507-3_38
https://doi.org/10.1109/ICECONF57129.2023.10083807
https://owasp.org/www-project-top-ten/
https://github.com/payloadbox/sql-injection-payload-list
https://github.com/payloadbox/sql-injection-payload-list
https://doi.org/10.1109/ICAAIC53929.2022.9792964
https://doi.org/10.1109/ICAIA57370.2023.10169255
https://owasp.org/www-community/attacks/SQL_Injection
https://www.kaggle.com/datasets/alextrinity/sqli-xss-dataset
https://doi.org/10.3390/APP13169466
https://doi.org/10.1038/S41598-023-48845-4
https://doi.org/10.3390/APP13137895
https://doi.org/10.3389/FNCOM.2022.981739
https://doi.org/10.1016/J.DAJOUR.2024.100466
https://doi.org/10.1155/2022/4836289
https://doi.org/10.3390/MATH10162914

