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ABSTRACT:

This paper aims to discover the impact of the fear of predators in prey, Allee effect for predator reproduction and time delay
corresponding to the gestation period on the dynamics of a predator- prey model. Existence, non-negativity, and boundedness of the
model solutions are guaranteed. The criteria for asymptotically stability of all the biologically feasible steady state points are

determined. It is also determined a critical value for time delay, where the model under goes Hopf -bifurcation near coexistence steady
state point. Finally, with the help of the MATLAB program, to confirm the analytical results and discover the impact of fear, the Allee
effect, and time delay, the model was solved numerically.it is observed that fear affect negatively on both prey and predator species
and the time delay may system may induce a transition of the dynamics of system from the a stability situation to the state where the

populations oscillate periodically or vice versa.
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1. INTRODUCTION

Predator-prey interactions are an important feature of
ecological communities, and many researchers have used
mathematics to study the dynamic interactions between predators
and prey. Studying the factors that affect the dynamics of
predator-prey interactions through mathematical models has
become an important area of research in ecology and theoretical
biology.

Xiaoying et al. (2016) considered a predator—prey model
with incorporating effect of fear on prey reproduction. In their
paper, they consider two prey predator models. The first one
incorporates the bilinear functional response while the second
one incorporates Holling type II functional response, they
observed that fear has no impact on the stability of first model,
but for the second one, they showed that the fear can make the
system become stable. Based on their model, Pal ef al. (2019)
discussed the stability and some bifurcation types of a prey
predator model with effect of fear and harvesting. Huisen ef al.
(2019) showed that fear effect can stabilize a predator—prey
model with prey refuge. Pingping et al. (2021) showed that fear
can change the chaotic state of a food chain model to a stable
state. Yipping et al. (2022) considered and studied the impact
reduction of prey growth rate due to the anti-predator behavior
on a predator-prey model when an epidemic disease is spread
among the prey population. For more results about the fear effect,
see (Jimil et al.,2023; Xiaoqin ef al., 2020; Menxin et al., 2022;
Soumitr et al.,2023; Yaseen et al.,2024).

The period of the time between the prey predation and
predator response to the predation is called ecological time lag.
Hague (2011) investigated effect of delay in a LotkaVolterra type
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predator-prey model with a transmissible disease in the predator
species. Jliu (2021) studied the dynamics of a predator-prey
model with the effect of both fear and time Delay. Dehingia
(2022) investigated a tumor-macrophages interaction model with
a discrete-time delay in the growth of pro-tumor M2
macrophages. For more results on time delay, see (Naji et al.
2020; Lavanya et al., 2022; Rihan et al., 2020; Dehingia et al.,
2023; Das,2024; Dehingia et al., 2024).

The concept of fitness is central to the study of Allee effects.
In particular, a demographic Allee effect refers to a positive
correlation between the size or density of a population and the
average fitness of the individuals in it. In other words, the greater
the size or density of the population, the greater the average
fitness. Alternatively, the lower the size or density of the
population, the lower the average fitness (Alan, 2015).

Soura (2018) studied an ecological model with multiple
Allee effects induced by fear factors. Yining et al. (1996)
proposed a delay diffusive predator—prey model with a strong
Allee effect in the prey and a fear effect on predator, they showed
that the parameters of fear species. Alan (2015) considered the

following prey predator modeling with Beddington-DeAngelis:

W (1-8) - _2F

dt K 1+bN+qP (1)
dpP caNP P

—= (—) —dP — mP?

dt 1+bN+qP \h+P

Where, 7 is rate of intrinsic growth of prey. k is the carrying
capacity, h is the intensity of Allee effect; a is the consumption
rate of prey by predator; b is the effect of capture rate; c¢ is the
conversion and m is rate of predator aggression.

The aim of this paper is to discover the impact of the delay
time between the prey predation and predator response to the
predation and the predator fear on prey reproduction on the

This is an open access under a CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/)


http://journals.uoz.edu.krd/
http://sjuoz.uoz.edu.krd/
mailto:arkan.mustafa@univsul.edu.iq
https://doi.org/10.25271/sjuoz.2025.13.1.1406

Mustafa and Nman / Science Journal of University of Zakho, 13(1), 83-88 January-March, 2025

dynamic of trajectories of system (1). Therefore, by the
aforementioned works, we modified system (1) by incorporating
it with the effect of both fear and time lag. The modified system
(1) can be written as follows:

dN bN aNP
== —dN —cN? —
dt 1+fP 1+rN+qP
dap eaN(t—-1)P P
— = 4(_) —d,P — mP?
dt 1+rN(t—-7)+qP \h+P
2

Where, N(0) > 0, P(0) > 0 and parameters are positive, their
description are given in Table 1.

Writing this paper arranged as follow: in the next section,
some property of the solution of system (2) are proved. Locally
as well as globally, asymptotically stability conditions as well as
of all feasible equilibrium points are determined, in section three.
In section four, Hopf- bifurcations, near all steady state points,
are discussed and the critical value for time delay, where the
model undergoes Hopf -bifurcation near coexistence equilibrium
points is founded. In section five, the model is solved numerically
using modified Euler method. Finally, in section six, a brief
conclusion on the whole work is given.

Table 1: Parameter description of system (2)

parameters Description
b Prey Birth rate in absence of fear of predators
f Level of fear due to prey response to anti-predators.
dy,d, Mortality rate of prey and predator, respectively
c,m Intraspecific competition rates of prey and predator, respectively in
a Rate of predation predator.
e Conversion efficiency from biomass of prey to biomass of predator
r capture rate
q Rate of reciprocal interaction among predators

2. SOME PROPERTIES OF THE SOLUTIONS OF
SYSTEM (2)

The function in the right-hand side system (2) is continuous
and has partial derivatives on the spaceR?. Therefore, system (2)
satisfies the Lipschitzian condition. Therefore, it has a unique
solution. Further, the time derivative of N is zero when N = 0
and the time derivative of P is zero whenP = 0. Therefore, if the
solution of system (2) initiates at a non-negative point, then the
components N and P of the solution points of system (2) cannot
cross N —axis and P —axis of the solution points. Hence
components Nand P are always non negative.
From system (2), it gets

(r=- (1 52) <22 6= (1-32)
i—fSeaN(t—r)P—mPZ

Therefore, the following Theorem can be derived.
Theorem 1. Any solution of system (2)initiate positively,
satisfies the following:

1. If b<d,, then tlLrglo N(t) = tll_)rg P(t) =0.

2. If b>d,;, then tlimSup X)) < ? and

. ea(b-d)
tll)rg Sup P(t) < e

3. Ifb>d; +2, then limInf X(t) > 244471 5 ¢,
q t—oo qc

Note. The first and the second part of the above theorem, tell us
that all solution of system (2) are
bounded, while the third part makes clear that under

condition b > d; + i , the prey species persist continuously.

3. STEADY STATES AND THEIR STABILITY
ANALYSIS

System (2) has the most three steady states. They are the
total extinction steady stateS,(0,0), which always exists, the

Predator-free steady state S; (%, 0), which exists, if b >

d,and coexistence steady state S,(N*, P*), where
N = GtmPOBEPYURGP) g pe i a positive root
ea P*—r(d,+m P*)(h+ P*) p

of G(P) where,

b aP .
G(P) = m— (d1 + CF(P)) —m with
_ (dp+mP)(h+P)(1+qP)
F(P) - eaP-r(d,+mP)(h+P)
From Theorem 1, we have tlim SupP(t) < %. So, we

ea

. b—d
search P* in [0, I . l]. Mean value theorem guaranteed that

m
ealb—-d|
mc

G(P) has a positive root P* if, G(0) < 0 and G ( )>0or

G(0) < 0and G (=4 > 0. Further, if ea P* > r(d; +

m P*)(h + P*), the coexistence steady state exists.

To investigate the locally asymptotical stability (LAS) and
globally asymptotical stability (GAS) for each steady state,
firstly, let linearize system (2) around a point (N, P). Using the
perturbed variables U(t) = N(t) — N  andV(t) = P(t) — P,
system (2) can be linearized as follows:

o © (t-
at | _ Ut Ult—rt )
av(t) _jl(NﬁP)(V(t)) +]2(N'P)(V(t—'[)
dt
0 0
Where, J,(N,P) = (M 0)
(1+rN+qP)?
and J;(N,P) =
b a(1+qP)P bfN a(14+rN)N
1+fP dy = 2¢N — (1+bN+qP)2 T (@+fP)2 (1+rN+qP)?
0 ca(1+rN)NP eahNP —d, -
(1+rN+qP)2(h+P) = (1+rN+qP)(h+P)? 2

The total extinction steady state S, (0,0)

The eigenvalues of J;(0,0) + e™*7J,(0,0), are b — d;
and —d,

So, S5¢(0,0) is LAS if and only if, b < d,
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Further, from theorem 1, it is proved that for any initial
value of N(t) and

tlim N(t) =tlim P(t) =0, if b<d;.

Therefore, Sy(0,0) is GAS if and only if, b < d;

)
,0),

The eigenvalues of  J; (b_cdl , 0) + e—/h-jz (b_cdl
,0) is LAS if and only if, b > d;.

ii.

The predator-free steady state Sy (b_cdl ,

are d; —band —d,
So, 5, (=2

Further, the GAS for S; (%, 0) is given in the

following theorem

Theorem 2: If S; = (=2,0) is exist, then it is GAS, if

b2 <

4cm
4)

a(b—d;) <
dzc
)
Proof: Consider the function

b - dl b - dl
Lv,P) =N -2 n|-= dl] +P

¢ eaN(s)P ( P ) J
_;1+7rN(s)+qP\h +P s
It is clear that L, (N, P) is positive and L, (N, P) = 0,if and only

if N=2% andP = 0. Further,
dL,(NP) _ (N _ b—dl) [—bfP _
dt c 1+fP
b—d4 _ aP
e (N =22) - s
eaN(t—1)P (L) _
1+rN(t-1)+qP \h+P
d,P — mP?
eaN(t)P (L) _
1+7N(t)+qP \h+P
eaN(t—T)P (L)
1+rN(t—1)+qP \h+P
Accordingly,
dL,(N,P) b-d;\%2  bfP
< —e(v-n) - (v -

b—di) 2
—C) mP

a(b—-dq)
c(1+rN(t)+qP)

a(e—-1)NP [
1+rN+qP

dz] P

Conditions (4) and (5) guarantee that —dh::'m

is negative, this
completes the proof.
111. The coexistence steady state S,(N*, P*)

The linearized system around S,(N*, P*) can be written as

au

E = N1U - NZV

av

52 Plu(t—T) +P2V

(6)
Where, U(t) = N(t) —N*, V(t) =P(t)—P*,N; =
b . a(1+qP*)P*
1P dy = 2cN (1+7N*+qP")?’
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_ _bfN" a(1+rN*)N* _
27 @afP)2 T QNP2 1T
ea(1+qP*)P*
(—q)z and
(14rN*+qP*)
PZ =
qpP”
d, + mP* [ —]
-+ ) e 1+rN*+qP*

Theorem 3: If S,(N*, P*) is exist, then it is LAS if,

_eP1
7
R b 1] bfN*
dy + 2cN™ > 1+£P* 2 l(a+rP?)2
a(1+rN*)N* 2
e ®)
Proof:Consider the function
1 1 P, (¢t
L,(UV) ==U2+=V?+ —1f U%(s)ds
2 2 e J._;

It is clear that L, (U, V) is positive andL,(0,0), if and only if
U=0andV =0

% = (& +2em - ﬁ) U(®) = N;U(DV ()
—%szz(t)
—2U(t—1) — PUE - DV () —
~PV2(®)

Due to conditions (7), (8), it gets

%<_[ A
2 2
(6.
This completes the proof.
Theorem 4: If S,(N*, P*) exists, then it is GAS if,

[ath*P—ahz—arth* _ _] 4-_m[ _

G*G(N,P) F(P)
arh?P*+arhP*p

G*G(N,P) ] ®
G* (aN*P*P aN*P?  aNP*?
aN*ZP*( e t2- cvpP) G ) >
G(N,P)P
e (10)
Where, G(N,P) = (1+7rN+qP)(h+p), G* =

(1 +rN*+qP*)(h+ P*) and
F(P) = (1+ fP)(1+ fP)
Proof: Consider the function L(N,P) = L3(N,P) +
L,(N, P) where,

Ly(N,P) =N =N*~NIn "+
T—
" P
N(S)P NP
Ly(N,P) = ft T [G(N(S)P) e
N*P*? G*N(S)P? ]
o NG PN

It is clear that L3 (N, P) and L, (N, P) are positive
andL;(N*, P*) =0, ifand only if N = N* andP = P*. Further,

dLs(NpP) [ arh?P*+arhP*p Y
at [C G*G(N,P) ](N N7)*+
ahgP*P—ah®—arh®N*  f T _ px
[ G*G(N,P) F(P)] (N N )(P P )
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M pey2, GN'PE | aNP? aNP?
e (P—P)*+ G(N,P) G* G(N,P)
aN(t—1)P? __aN(t-T)P'P _ aN'P’P
G(N(t-1),P) G(N(t—1),P) G*
and
dLy(N,P) _ aNP? _ aN(t—-T)P? _ G*NP?
dat GNP GIN(t-1),P) G(N,P)N*P*?
G*N(t-T)P?
G(N(t-7),P)N*P*?
So,
aLve) [ arh?P*+arhP*p Y
dat [C G*G(N,P) ](N N+
ahqP*P—ah?—arh?N* _L] g _ ps
[ G*G(N,P) F(P) (N =N")(P —P7)
M, piy2 , GN'PE aNPT?
e (P—P)"+ G(N,P) G*
aN(t-t1)P'P _ aN’P’P _ aN'P"? G*NP?
G(N(t—1),P) G* G* G(N,P)N*P*?
aN*p*? G*N(t-T)P?
+ G* In G(N(t-7),P)N*P*?
_ _[._ arh®*P*+arhpP*p R\2
- [C G*G(N,P) ](N N+
ahqP*P—ah?-arh?N* _L] gk _ px
[ G*G(N,P) F(P) (N N )(P P )
_E _ "2 _H.N*P*z
= (P - P2 -
[ N({t-T)6'P . N(t-17)G*P
N*P*G(N(t—7),P) N*P*G(N(t—T),P)
anN*p*? G* [aN*P?  aNP*?
TG [_ an*p*? (G(N,P) Tt T
aN 1: P 2) 11— lnG(N*,P)I\i P]
G G*NP
Conditions (9) and (10) grantee that % is

negative. This completes the proof.

4. HOPF-BIFURCATION

The necessary condition for undergoing Hopf bifurcation
near a steady state point (N,P) of system (2) is that, the
J1(N,P) +e~*"J,(N,P) are two complex
conjugate. Since b —d; and —d, are the eigenvalues of
J1(0,0) + e=*7J,(0,0) and d; — b and —d, are the eigenvalues
of J; (b_dl ) 0) + ey, (%, O) s0, there is no possibility

c
to have a Hopf-bifurcation near S,(0,0) andS; (b_cdl, O).

The conditions that guarantee the occurring of Hopf-bifurcation
near the coexistence steady state S, = (N*, P*) are established in
the following theorem.

eigenvalues of

Theorem 5: If S,(N*, P*) is exists and the following conditions
hold:

N, <0 and P, <0
(11)

NZP? < N2P?
(12)

(Ny + Py)yg < NpPy
(13)

then, at 7=7T ,System (2) undergoes a Hopf-bifurcation
near S, = (N*, P*), where 7 and y, are given in the proof.

Proof: The eigenvalues of J;(N*, P*) +e *7J,(N*, P*) satisfy
the equation

86

22— (Ny + P)A+ NP, +
N,Pie ™™ =0
Clearly, the roots of the above equation are neither zero nor
positive. Therefore, the eigenvalues are negative or complex.
Note that whent = 0, condition 9, guarantees that all eigenvalues
have negative real part. Suppose T # 0 , A(t) = x(7) + iy(7)
is the root of the equation 30, and T is least positive number such
thatx(7) =10 ,
Then
x2(0) = y?(1) = (N + P)x(0) + Ny Py =
N,P,e~*@r cos(‘ry('r)) (14)
2x(@)y (@) — (Ny + P)y(r) =
NoPye *@7sin(zy (7)) (15)
Putting 7 =7 in the above two equations, then adding and
squaring them, the following equation get
y*(D) + (N? + P{)y*(©) + N{ P — N3P}

=0 (16)
It is obvious that under condition (12), Eq. 1, always has one
and only positive root, sayyy.
From Eq. (15), it gets

(N1 + P2)y, =

—N, Py sin(Ty,)
17
Due to condition 13, Eq. 17 has much positive solution, let T =

T be least positive satisfy Eq. 15.Further, suppose [Z_ﬂ ~
=T

0, then from Eq. 14 and Eq. 15, it gets
2 _

Yo =
2 ox
y§ > 0 , therefore [arL_— *+ 0,

=7

- % (NZ + P2) , which is impossible because
The proof'is completed.

5. NUMERICAL COMPUTATION

In this section, some numerical simulations were conducted by
using the method of modification Euler rule, with the help of
MATLAB Program. The aim of numerical simulation is to
confirm the analytical finding observed in the previous sections
and discover the impact of fear, Allee effect, and time delay on
the dynamics of components of system (2). First, lets choose the
parameter values as follows:
b=25dy=d;,=0.01,c=0.1;a=0.09

e=08m=005;h=05f=1q=011=7

Fig.1 shows that trajectory of system (2) approaches coexistence
free steady state point, and since the parameter values given by
(18), they satisfy the global stability condition in Theorem3. So
Fig.1 confirms analytical result regarding to stability condition
ofS,.
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o] 2 4 3] B8 10

[+
Figure 1: the phase portrait show that trajectory of system 2
approaches coexistence steady state point,
when and other parameter values are as given in (18).

To show the impact of time lag, fear and Allee effect, and
time lag on the dynamics of system 2. Lets solve system 2 with
varying 7, and fixed others as given in (18). See Fig.2, Fig.2and
Fig.3.

For the parameter values in (18), the bifurcation value of
time delay in Theorem, is T = 7.8, therefore, we solve
system (2) when the time delay varying from?7 to 9 and fixed
other parameter values given in (18), the value of 7 in
range(7,9], see Fig.2.

In Fg.2, it has been shown that, dynamics of the system may
induce a transition from the stability situation to the state where
the populations oscillate periodically when the time delay value
increases.

85
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O I I 1

7 7.5 2 8.5 =]
T

Figure 2: Illustration of bifurcation diagram for system 2, when
T varies from 7 to 9
and other parameters are fixed as in (18).

30

Limit set of ™
Limit set of P

25

20

15

10

0 2 4 5
f
Figure 3: Illustration of bifurcation diagram for system (2),
when f varies from 0 to10
and other parameters are fixed as in (18).

8 10

87

In Fig. 3, it has been discovered that, when f increases, the
stability of coexistence steady limit value of both prey and
predator decreases, which means fear directly affects prey
dynamics as well as indirectly effects predator dynamics.

Lirnit set of M
Lirmit set of P

o] 2 4 3] 8 10
h

Figure 4 : Tllustration of bifurcation diagrams for system 2,
when h varies from 0 to 10
and other parameters are fixed as in (18).

In Fig.4, it has been observed that, when h increases, the
limit value of prey density increases too while the limit value of
predator density decreases.

In general, Fig.1 confirms the analytical results regarding to
stability for the coexistence steady state, Fig.2 discovers that the
time delay may induce a transition of the dynamics of system
from the a stability situation to the state where the populations
oscillate periodically or vice versa. Fear affects negatively on
both prey and predator species, Fig.3 shows that the fear affects
negatively on both prey and predator species and Fig4
demonstrates that Allee effect for predator reproduction has
positive impact on the prey density while it has negative impact
on the predators.

CONCLUSION
In this paper, a predator- prey model has been proposed. For
derivation purposes of the proposed model, it has been taken into
account the time lag corresponding to the gestation period and
the effect that the fear of predators has on prey and Allee effect
for predator reproduction. Firstly, it is proved that the model
solution is bounded and the prey species persist continuously

under the condition b > d; + % . It is explored that the possible

biological feasible steady states of system (2) are the total
extinction steady state, the predator-free steady state, and
coexistence steady state. It is proved that the total extinction
steady state is LAS and GAS if and only if, b < d; and the
Predator-free steady state is LAS if and only if b > d; the Local
stability of both the total extinction steady and the Predator-free
steady state are independent of fear levels. Alle effect and time
lags on LAS for but big value of fear may destabilize Predator-
free steady state for dome initial values of species because the
Predator-free steady state is GAS if, f2b? < 4cm and a(b —
dy) < d,c. According to coexistence steady state, the analytical
and numerical result show the time delay may induce a transition
of the dynamics of system from the a stability situation to the
state where the populations oscillate periodically or vice versa,
fear affect negatively on both prey and predator species and Allee
effect for predator reproduction has positive impact on the prey
density, while it has negative impact on the predators.
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