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ABSTRACT:  

Drought is a natural disaster that has severe implications for various aspects of society, including the economy, agriculture, 

environment, and community. The study conducted in the Erbil province, Kurdistan Region, Iraq from 1998 to 2017 aims 

to determine the frequency and intensity of drought, highlighting its diverse effects on society, encompassing the economy, 

agriculture, environment, and local community. Indicators, for instance, the Land Surface Temperature (LST) obtained from 

satellite data (Landsat) and the Vegetation Health Index (VHI), were employed to evaluate the severity of droughts. The 

outcomes indicated that Erbil encountered severe droughts in 1999, 2000, and 2008, which resulted in a significant decrease 

in crop outcomes. Additionally, 2008 was marked by escalating drought conditions, as measured by VHI values exceeding 

40; as a result, the percentages reached (86.5%, 67.6%, and 53.7%), respectively. Significant relationships were revealed, 

with a confidence level of 0.9, between VHI and various factors such as precipitation, LST, and crop yield, with 

corresponding degrees of (-0.612, 0.615, 0.613, and 0.635). The study also disclosed that alterations and decreases in 

precipitation occur as the growing season progresses, whereas the following years (2000, 2008, and 2012) saw a pronounced 

decline in yield, failing to meet the lower limit of water demands for crops. Moreover, the most affected locations in Erbil 

Province were found to be in the central and southwestern parts of the province. 

KEYWORDS: Erbil, Drought, Crops Yield, LST, VHI, Landsat Time Series. 

1. INTRODUCTION 

        Drought, one of the most significant natural perils, has 

numerous adverse effects on human activity (Wang et al., 2015). 

These include the decline of groundwater supplies, shrinkage of 

lakes and reservoirs, drinking water problems, and decreased 

supply of food and animal feed (Hameed, 2013; Al-Quraishi et 

al., 2020). Cutting-edge technology, known as satellite remote 

sensing, has emerged, enabling the continuous collection of 

spatiotemporal information regarding Earth's surface 

(Almamalachy et al., 2020; Gaznayee et al., 2022). This 

approach is ideal for long-term and wide-area drought monitoring 

because of its wide monitoring span, high frequency, and short 

cycle (Song et al., 2019). The above definitions serve as 

conceptual explanations that form the foundation for practical 

interpretation. The operational definition of drought aims to 

determine a specific region's commencement, conclusion, spatial 

extent, and severity, relying on scientific considerations (Leal 

Filho, 2011). Unlike other natural hazards, identifying a drought's 

exact onset and conclusion is challenging, and no single indicator 

or index can accurately predict its severity and onset. Moreover, 

the cumulative impacts of drought intensify over time, persisting 

from one season to another or even year to year (Lee et al., 2017; 

Park et al., 2019). Many contributing causes of droughts include 

extreme temperatures, severe winds, low humidity levels, rainfall 

patterns, and intensity during crop-growing seasons. In the Iraqi 

Kurdistan Region, for instance, climate change has resulted in a 

significant decrease in precipitation, with the region receiving 

only half of its usual rainfall until 2007 (Fadhil, 2011; Al-

Quraishi et al., 2020). This decline in precipitation has adversely 

impacted agriculture and water supplies, leading to a drop in the 

water level, reduced river water levels, and drying up of springs. 

Assessing the condition of vegetation is often regarded as a 

crucial factor in understanding drought-related changes to the 

land surface. Drought causes the loss of moisture in plants, 

subsequently influencing vegetation growth and overall health 

(Gaznayee & Al-Quraishi, 2019). Various remote sensing indices 

have been developed to monitor vegetation. Insufficient water 

availability to meet the normal demands of users results in 

significant damage to plants and loss of crop yields (Wilhite, 

2018). Several researchers have developed varied indices to 

assess, monitor, and map drought using indices created from 

remote sensing data combined with climatological parameters 

(Gaznayee et al., 2022). Land Surface Temperature (LST) and 

vegetation indices have emerged as potential indicators of 

drought (Carlson et al., 1990). Also, several studies have 

investigated the impact of drought stress on vegetation cover (Pei 

et al., 2018; Qu et al., 2019). A comparison between the 

vegetation drought index and crop production demonstrated that 

VHI is a suitable metric for tracking fluctuations in agricultural 

drought (Sholihah et al., 2016). Researchers have shifted their 

attention to studying vegetation responses as an indirect means 

of monitoring drought stress (USAID, 2008; Walther, 2011). 

Mikail and Rahel (2023) utilized remote sensing (RS) and GIS-

based techniques to evaluate the effectiveness of evidence-based 

belief function (EBF) and analytical hierarchy process (AHP) 

models for mapping flood-prone areas. The study also revealed 

that very high to high flood hazard zones accounted for 32% of 
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the area using the EBF method and 22% using the AHP method. 

Ibrahim (2024) 

employed GIS Pro 3.5 techniques alongside a modified 

Angström–Prescott equation to estimate the monthly average 

global solar radiation in the Erbil province based on latitude and 

daylight hours. The findings indicate that global solar energy in 

the region peaks at 8.4 kW·day⁻¹·m⁻² during summer and drops 

to a minimum of 1.6 kW·day⁻¹·m⁻² in winter. Erbil’s choice as 

the focal point of this study was driven by two principal 

considerations. First, Erbil's vulnerability to drought is rooted in 

geographical position and climatic conditions. Consequently, 

thoroughly comprehending drought feature mapping and 

classification in this locale can advance anticipatory measures for 

future drought occurrences. Second, the three designated zones 

within Erbil showed considerable discrepancies in topography 

(VHI), which represents the Vegetation Health Index (LST), 

Land Surface Temperature, and rainfall distribution. This 

resulted in distinct variations in drought attributes observed 

across these three areas. The objective of this study is to examine 

the spatiotemporal patterns of drought severity to assess their 

impact on agriculture. These drought events have significantly 

affected the region's economic development and ecological 

environment. In addition, this study aimed to inspect the impact 

of decreased precipitation on vegetation stress and offer useful 

information to agricultural planners and regional policymakers. 

Given the low precipitation levels in Erbil

2. MATERIALS AND METHODS 

Study Site Description 

        The study area was the Erbil Province is located in northern 

Iraq. This region encompasses two distinct physiographic units, 

mountainous terrain and foothills. Its geographical coordinates 

span from 36° 12' 11″ " to 36° 15' 10" north latitude and 44° 12' 

11" to 44° 15' 10"″ E longitude. The elevation within the confines 

of Erbil fluctuated between 400 and more than 3000 m above the 

average sea level. Around an approximate area of 15038.9 km2, 

the Erbil Province is comprised of ten districts and sub-districts: 

Mergasur, Choman, Koysinjaq, Makhmur, Shaqlawa, (Soran; 

sub-district: Rawanduz), (Hawler; including sub-districts: 

Khabat and Dashti Hawler). As illustrated in Fig.1(B), Erbil's 

precipitation distribution demonstrates spatial variation, 

featuring an average annual rainfall of approximately 430 mm. 

Most of this precipitation was concentrated in the northern 

region. Considering its inherent environmental characteristics, 

Erbil can be classified into three well-defined zones: the Arid 

Zone (depicted by the red-coloured area), the middle arid zone, 

and the mountainous area in the northern part. The average 

annual precipitation in Erbil ranges from 250 mm in the southern 

portion of the city to over 1200 mm in the highlands bordering 

the Turkish and Iranian borders to the northeast (Karim et al., 

2018). The mean annual temperature in the region is 

approximately 21 °C, with significant diurnal and annual 

temperature variations (UNESCO, 2009; UNISCO, 2014). The 

climate classification of the study area is categorized as Interior 

Mediterranean, characterized by mild winters and hot, dry 

summers (Saeed & Abas, 2012). Fig.1 shows how often it rains 

and snows, on average, in the Kurdistan area of Iraq. Generally, 

the Province experiences a Mediterranean climate, featuring cold 

and rainy winters and hot and dry summers. Evaporation in this 

region exceeds the annual rainfall. The United States Geological 

Survey (USGS) webpage provided access to Landsat raw data, 

and the months of April and May were the focus of this study. 

These months were chosen because of their association with the 

highest vegetation growth and proliferation rates. The acquired 

datasets comprised information from various satellites, 

encompassing vegetation, soil, and indices data. Before analysis, 

these datasets underwent preprocessing and digital processing to 

extract the relevant soil, vegetation cover, and LST information. 

 

Fig.1: (A) Map of Iraq and Kurdistan region, (B) Study area is 

Erbil Province and meteorological stations, with annual rainfall 

(mm/year) 1997-2017, (C) Digital Elevation Map (DEM) 

Drought Spectral Indices Methodology 

Gathering Data and Processing Digital Images: We used 

various algorithms, such as VHI and LST, to extract information 

about vegetation cover and LST such as VHI and LST. Landsat 

data for April and May in the Erbil region were selected for this 

study. This choice was made because drought occurrences are 

more frequent during these months than during others, 

profoundly affecting crop yields. 

LST: The Landsat thermal bands, mainly the 6th bands of 

Landsat 5 TM, Landsat 7 ETM+, and bands 10-11 of L8 TIRS, 

were utilized to extract fraction images of Land Surface 

Temperature (LST). Using the top of the atmospheric radiances 

obtained from the Thermal Infrared (TIR) sensor, the brightness 

temperature was calculated according to Planck's law. To obtain 

the brightness temperature, the U.S. The Geological Survey 

utilized TIR sensors and satellite datasets to calculate the top of 

atmospheric radiances, as mentioned by (Dash et al., 2002). Five 

drought categories were then compared, and the one displaying 

the most significant deviation from the other four was selected as 

the dominant category. The percentages of land falling under 

each drought type were then tallied for each period to illustrate 

the temporal changes. The methodology documented by (Sun & 

Kafatos, 2007) was employed to convert digital numbers into 

land surface equations. The LST was calculated in Kelvin using 

the equation mentioned by Sun and Kafatos, 2007, and the 

conversion from Kelvin to Celsius was performed using Equation 

(1) stated by (HS, 2009). Different equations were utilized for the 

Landsat 5 and 7 bands to change the temperature of the thermal 

infrared band to ground temperature values, as mentioned by HS, 

(2009). 

𝑇𝐵 =  𝐾2  𝑙𝑛((𝐾1 / 𝐿𝜆)⁄ + 1)                (1) 

where:  TB: brightness temperature in Kelvin (K) 

 Lλ is the Spectral Radiance at the sensor aperture (in 

watts/m2×ster×μm) 
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K1: band-specific thermal conversion constant (measured in 

watts/m2×srad×μm) 

K2: represents the band-specific thermal conversion constant 

(measured in Kelvin) 

One has seen the most significant shift compared to the other 

four categories. To show how the   droughts progressed over 

time, the percentage of land affected by each type of drought 

was calculated for each timeframe.  

The LST in Kelvin was measured using the following equation: 

𝑇 =  𝑇𝐵  [1 + (𝜆 ×  𝑇𝐵 / 𝜌) 𝑙𝑛𝜀] ⁄               (2) 

where:  λ: stands for the wavelength of emitted radiance, 

ρ = h × c/σ (1.438 × 10−2 m∙K), h is Planck’s constant (6.626 × 

10−34 J∙s),  

σ = Boltzmann constant (1.38 × 10−23 J/K), c = velocity of light 

(2.998 × 10−8 m/s),  

ε is the emissivity, given by the following equation: ε = 1.009 + 

0.047 ln (NDVI) by Sun   

 and Kafatos, 2007. 

The following equation measures Kelvin to Celsius: 

𝑇𝑐 =  𝑇 − 273                                              (3) 

where:  T = LST value in Kelvin 

 Tc = LST value in Celsius 

Applying the following formulas, obtained from Landsat 5 and 

7, allowed for the conversion of the temperature of the thermal 

infrared band into surface temperature values: 

Convert DN value to radiance: 

0.05518 × (𝑖𝑙) + 1.2378                              (4) 

Convert radiance value to Kelvin: 

1260.56 / 𝑙𝑜𝑔 ((666.09 / 𝑖1)  + 1)             (5) 

Convert Kelvin value to Celsius: 

𝑖1 − 273.15                                                         (6) 

                where:  il: stands for the reflectance of the thermal infrared 

band (HS, 2009). 

VHI: The vegetation health index (VHI) has undergone 

additional development, as highlighted by several researchers 

(Du et al., 2013; Kogan, 2004; Kogan, 1990). This index was 

created to distinguish ecological factors from weather-related 

variables, specifically those associated with the NDVI 

components (Kogan, 1986). The Vegetation Condition Index is 

another equation that can be used to calculate another parameter. 

This equation uses NDVI measurements from the current month 

to define LST, where (NDVI min) and (NDVI max) represent the 

minimum and maximum NDVI values observed during the given 

interval, respectively. Although some researchers have 

advocated for the VHI to predict drought classification, relying 

solely on these values may offer an insufficiently precise 

description of drought conditions at any given location (Sahoo et 

al., 2015). VHI has seen further development through the 

incorporation of the following equations (Kogan, 1990; Kogan, 

2004; Du et al., 2013): 

𝑉𝐻𝐼 =  0.5 ×  𝑉𝐶𝐼 +  0.5 × 𝑇𝐶𝐼                            (7) 

The VCI was created to distinguish between NDVI's weather-

related and ecological elements of NDVI (Kogan, 1986). The 

computation can be accomplished using Equation 2 in the 

following manner: 

𝑉𝐶𝐼 = 100 ×
(𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)

(𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)
                  (8) 

𝑇𝐶𝐼 =  100 ×  (𝑇𝑚𝑎𝑥 –  𝑇𝑐)/ (𝑇𝑚𝑎𝑥 –  𝑇𝑚𝑖𝑛)    (9) 

 

Equation 2 uses the term "NDVI" to refer to the NDVI score for 

the current month, with (NDVI min) standing for the lowest 

NDVI value and (NDVI max) for the highest NDVI value 

recorded throughout the monitoring period. Several researchers 

have recommended that the VHI as a drought tool, but the VHI 

values alone did not sufficiently describe the drought status 

(Kogan, 1986). Table 1 shows Kogan's classification of VHI 

levels based on droughts in the study region (Kogan, 1990; Du et 

al., 2013). 

 

 

 

 

Table 1: Shows Kogan's classification of the VHI levels 

based on droughts in the study region (Kogan, 1990; Du et 

al., 2013) 

Drought classification Values 

Extreme ≤ 10 

Severe 10 < & ≤ 20 

Moderate 20 < & ≤ 30 
Mild 30 < & ≤ 40 

No Drought ≥ 40 
 

 

3. RESULTS AND DISCUSSION 

Vhi 

        During the study period, this study examined vegetation 

health in the Erbil region and uncovered the influence of drought 

on its spatial patterns. Table 2 identifies 2000 and 2008 as the 

driest periods. Conversely, in 2002 and 2016, the vegetation 

health index exhibited the highest values with minimal drought-

affected areas. Drought severity varied from mild to severe in 

these dry years, with an important portion of the study region 

enduring moderate-to-severe droughts. Figs. 2 and 3 effectively 

display the spatial distribution of drought events and severity 

categories, revealing that, although some small patches remained 

unaffected by drought, most of the study region experienced 

issues during these dry years. This study offers valuable insights 

into the spatial patterns of vegetation health and the 

consequences of drought in the Erbil region during the study 

period. These findings can help policymakers make well-

informed decisions about managing water supply in the region 

and offer useful insights for developing efficient drought control 

methods. The results of the research, depicted in Table 2 and 

Figs. 2 and 3, elucidated the spatial patterns of vegetation health 

at the study site, which were significantly influenced by drought 

throughout the growing seasons of the two driest years (2000 and 

2008) observed in Erbil throughout the study period. Table 2, 

presenting the VHI values, highlights that the smallest extent of 

the no-drought category (VHI>40) was observed in the year 

2000, covering a mere 5.5 km2 (0.5%) of the total area. In 2008, 

the area under the same drought category expanded to 494.1 km2 

(9.3%) of the entire study area. In 2016, the highest VHI area, 

encompassing 5,843.9 km2, accounted for 70.6% of the total area. 

The spatial distributions of drought events and severity categories 

for both dry and wet years are shown in Figs. 2 and 3. Drought 

severity ranged from mild to severe in 2000 and 2008 (Table 2). 

The maps (Figs. 2 and 3) clearly demonstrate that although 2000, 

2008, and 2012 were categorized as years with low precipitation, 

certain isolated areas in northern Erbil remained untouched by 

drought. Nonetheless, intense drought conditions were 

widespread across the entire region during these arid years, with 

most areas facing varying degrees of moderate to severe drought. 

Erbil's northern and eastern regions have higher elevations and 

generally receive more rain each year. An approach for assessing 

drought conditions within a chosen region was provided by 

examining a number of drought indices. Fluctuations in the 

Vegetation Health Index (VHI) demonstrate that from April 2000 

to 2008, there were notable stress and drought impacts on 

vegetation cover. The lower average precipitation and 

continuously high temperatures throughout these two years, 

which resulted in a decline in the VHI values, are responsible for 

this occurrence. The elevated LST observed during these periods, 

caused by limited precipitation and increased air temperature, 

further supports these findings. This correlation is evident in the 

VHI values. Consequently, LST and VHI can effectively detect 
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and map the severity of droughts. These results are consistent 

with those reported previously (Bhuiyan et al., 2006). 

Table 2: Shows the area of the different levels of drought severity in Erbil Province from 1998 to 2017 based on the VHI 
Drought Classification 

Year 

VHI <= 10  

Extreme 

10 < VHI <= 20  

Severe 

20 < VHI <= 30  

Moderate 

30 < VHI <= 40  

Mild 

VHI > 40  

No Drought 

Area 

[Km²] 

Area 

[%] 

Area 

[Km²] 

Area 

 [%] 

Area 

[Km²] 

Area 

 [%] 

Area 

[Km²] 

Area 

 [%] 

Area 

[Km²] 

 Area 

[%] 

1998 1,003.2 13.1 2,315.6 30.3 2,534.3 33.1 1,530.2 20.0 263.1 3.4 
1999 1,046.1 13.8 2,400.4 31.7 2,789.9 36.8 1,187.6 15.7 151.7 2.0 

2000 0.0 0.0 248.9 22.0 728.7 64.5 146.1 12.9 5.5 0.5 

2001 81.4 1.4 1,387.8 23.4 1,866.3 31.5 1,507.0 25.4 1,085.5 18.3 
2002 0.0 0.0 0.0 0.0 357.1 4.3 2,075.2 25.1 5,843.9 70.6 

2003 1.4 0.0 1,287.4 15.8 2,512.5 30.9 2,408.5 29.6 1,914.5 23.6 

2004 0.0 0.0 360.3 3.6 2,898.3 28.8 3,546.4 35.2 3,262.7 32.4 
2005 0.0 0.0 0.0 0.0 489.3 6.9 2,933.3 41.1 3,711.0 52.0 

2006 5.0 0.1 1,185.2 15.0 1,745.4 22.1 2,138.6 27.1 2,811.5 35.7 

2007 0.0 0.0 198.7 2.6 2,386.3 31.2 2,772.3 36.3 2,278.8 29.8 
2008 99.0 1.9 1,410.9 26.7 2,164.3 40.9 1,125.3 21.3 494.1 9.3 

2009 0.0 0.0 409.0 5.4 1,625.5 21.7 2,535.5 33.8 2,935.3 39.1 

2010 3.5 0.0 303.6 3.0 2,412.3 23.6 3,441.0 33.7 4,054.2 39.7 
2011 0.0 0.0 0.4 0.0 934.7 15.1 2,798.7 45.1 2,467.5 39.8 

2012 0.0 0.0 888.9 13.4 2,216.0 33.5 2,050.6 31.0 1,468.7 22.2 

2013 254.9 2.7 2,142.4 22.5 2,413.8 25.3 2,483.7 26.1 2,227.8 23.4 

2014 1,715.2 17.9 2,783.0 29.0 2,854.5 29.8 1,685.7 17.6 553.1 5.8 

2015 65.9 0.7 2,079.1 22.1 3,107.7 33.0 2,735.0 29.0 1,439.0 15.3 
2016 2,003.2 19.5 2,113.6 20.5 2,257.0 21.9 2,034.3 19.8 1,884.0 18.3 

2017 0.0 0.0 206.1 2.5 1,938.5 23.2 2,842.9 34.1 3,352.2 40.2 

 

        The study analyzed VHI maps' work in depth, indicating 

that plant growth depends on water supply through rainfall and 

irrigation (Bhuiyan, 2004). This study provides valuable insights 

into the spatial patterns of vegetation health and the impact of 

drought in the Erbil region during the study period. These 

findings can inform drought management strategies and help 

policymakers make informed decisions regarding water resource 

management in this region. As an early warning system, the VHI 

is one of the most vital indicators for monitoring the onset of 

drought stress (Bhuiyan, 2004). The southern areas are more 

exposed to severe drought due to low vegetation cover values and 

annual rainfall (Wan et al., 2004). Droughts are complex 

phenomena in their origin, as they are linked to a combination of 

topographic, atmospheric, and hydrological elements that 

collectively impact soil moisture and plant growth (Vogt et al., 

1998). The vegetation cover in Erbil has remained relatively 

consistent over the past decade, with notable exceptions in 2000, 

2008, and 2012. The convergence of factors, including the 

region's low altitude and high latitude, accompanied by a decline 

in yearly precipitation and elevation in Land Surface 

Temperature (LST), could be attributed to the primary drivers 

behind this occurrence. The explanation is that the southern 

sectors of Erbil are characterized by unusual rainfall, with annual 

precipitation not exceeding 200 mm. High temperatures in April 

cause fluctuations in the amount of rain, which stresses plants and 

increases the evaporation of crops grown in such location. 

According to the VHI and LST maps, the Erbil Plain was 

classified under drought conditions, particularly in 2000, 2008, 

and 2012 (Figs. 2, 3, 4, 5, and 6). The decline in crop area, yield, 

and agricultural land is an issue of great concern (Table 5). The 

Fig. 2: Drought severity classification from 1998 to 2007 

based on the VHI index 

 

Fig. 3: Drought severity classification from 2008 to 2017 

based on the VHI index 
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rise in temperature and decrease in rainfall have significantly 

affected crop area and yield, adversely affecting agriculture in the 

region. The southern areas of Erbil Province bear the brunt of this 

impact, receiving minimal rainfall, with annual totals not 

exceeding 200 mm. For crops growing in these specific areas, 

unpredictable precipitation in April and high temperatures 

increases the stress on plants and the process of evaporation. It is 

imperative to addressed these challenges and implemented 

measures to mitigate the impacts of climate change in the region. 

This could involve implementing water conservation initiatives, 

enhancing irrigation techniques, and promoting the cultivation of 

drought-resistant crops. 

Lst 

        Fig. 4 illustrates the LST conditions in the research area 

from 1998 to 2017. The procedure involved comparing the 

average Land Surface Temperature (LST) values for each year 

within the research timeframe with the average LST over the 

course of 20 years in Erbil Province from 1998 to 2017. Erbil's 

temperature gradually increased; however, between 20°C (2002) 

and 22°C (2010), there was a declining trend.  

Fig.4: Shows the mean of annual LST values for the study site 

(Erbil) between1998 to 2017 
 

In contrast, Erbil's LST in 2000 and 2008 were approximately 

38°C and 37°C, respectively. In general, the southern parts of the 

study area had higher temperatures. This temperature disparity 

can be largely attributed to factors such as lower precipitation, 

limited vegetation cover, and lower elevation in these areas. The 

southern regions consistently encountered elevated temperatures 

in comparison to the northern regions because of these 

contributing factors. The Land Surface Temperature (LST) map 

further illustrates the trend of temperature escalation from the 

northeastern region toward the southwestern part. Mountainous 

areas exhibited relatively lower temperatures, whereas plains 

experienced higher temperatures. Vegetation cover affected LST, 

while areas with low rainfall and bare soil tended to have higher 

temperatures. Furthermore, the study area has experienced 

periods of drought, with some areas in the southern part of Erbil 

being hit by severe and very severe droughts during dry years. 

The drought severity levels in Erbil Province from 1998 to 2017, 

their area values presented in square kilometers and their 

percentages are shown in Table 3. These drier periods were 

divided into five different groups. Interestingly, the three years 

2002, 2008, and 2012 experienced the worst drought conditions, 

which were marked by temperatures above 40 °C. Regarding the 

intensity of the drought, these years were categorized as being in 

category five. The severe character of the droughts in those 

particular years is highlighted by this classification. Statistically, 

LST was negatively correlated with the VHI, indicating that areas 

with better vegetation growth tended to have lower LST. (Figs 5 

and 6), respectively. The lower part of the LST map (in red color 

Class 5 > 40 °C) of the study area had a lower temperature than 

the middle part (in orange color Class 4, 30-40 °C). However, the 

lower part has an altitude is lower than the middle part, and 

characterized by low annual rainfall (Figs 5 and 6). In addition, 

the soils of that area tend to be bright in color in most places. In 

terms of statistical analysis, there were noteworthy negative 

correlations between the LST and VHI, as shown in Table 2. 

Reduced evapotranspiration on the shaded side is vital in 

promoting vegetation growth, especially within mountains in 

semi-dry regions (Wan et al., 2004). Remarkably, the study site 

is situated within a semi-dry area, leading to a similar correlation 

between the aspect ratio and vegetation cover. Conversely, the 

study investigated temperature fluctuations within the region. 

Essentially, there is a gradient from the northeast to the 

southwest, where temperatures rise while vegetation cover 

diminishes. For instance, areas with the highest Land Surface 

Temperature (LST) values (>40°C) also presented extremely low 

vegetation cover, as indicated by the Vegetation Health Index 

(VHI), whereas regions with LST values ranging from 30 to 40°C 

showed dense vegetation cover. Numerous environmental 

factors, including topography, temperature, precipitation, and 

their collective influence on climate, significantly control 

Fig. 5: Drought severity classes in Erbil from 1998 to 2007, 

based on the LST index 

 

Fig. 6: Drought severity classes in Erbil from 2008 to 2017, 

based on the LST index 
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vegetation cover. The first step in validating the results was to 

conduct field visits to randomly chosen locations in the study 

area. These locations were georeferenced to ensure their 

placement accuracy.

Table 3. Shows drought severity zones in the Erbil Province based on the LST Index, and LST classification calculated from 

Landsat Thermal Bands from 1998 to 2017 

Year 

Category 1 

< 10 °C 

Category 2 

10-20 °C 

Category 3 

20-30 °C 

Category 4 

30-40 °C 

Category 5 

> 40 °C 

Area 

(Km²) 

Area 

(%) 

Area 

(Km²) 

Area 

(%) 

Area 

(Km²) 

Area 

(%) 

Area 

(Km²) 

Area 

(%) 

Area 

(Km²) 

Area 

(%) 

1998 370.5 2.5 1,219.7 8.2 6,060.0 40.9 7,100.6 47.9 67.3 0.5 
1999 602.4 4.1 1,585.2 10.7 4,110.5 27.7 8,514.6 57.5 5.4 0.0 

2000 328.9 2.2 235.8 1.6 857.0 5.8 2,763.7 18.7 10,632 71.8 

2001 203.8 1.4 999.6 6.7 4,630.1 31.2 8,949.2 60.4 35.4 0.2 
2002 1,331.3 9.0 6,085.5 41.1 5,523.4 37.3 1,800.7 12.2 77.3 0.5 

2003 295.4 2.0 597.0 4.0 6,209.0 41.9 7,684.0 51.9 32.7 0.2 
2004 596.8 4.0 2,221.0 15.0 11,890 80.2 86.7 0.6 23.4 0.2 

2005 665.5 4.5 2,264.5 15.3 10,617 71.7 832.7 5.6 438.1 3.0 

2006 261.0 1.8 1,523.7 10.3 6,621.9 44.7 6,406.0 43.2 5.5 0.0 

2007 254.7 1.7 973.7 6.6 9,302.6 62.8 4,280.1 28.9 7.0 0.0 

2008 164.2 1.1 407.8 2.8 2,203.1 14.9 7,366.0 49.7 4,677.1 31.6 

2009 311.5 2.1 2,190.5 14.8 5,605.7 37.8 6,560.9 44.3 149.6 1.0 

2010 593.3 4.0 3,341.9 22.6 10,408 70.2 474.5 3.2 0.0 0.0 
2011 743.2 5.0 4,259.3 28.7 9,695.1 65.4 120.5 0.8 0.0 0.0 

2012 143.6 1.0 124.0 0.8 3,115.7 21.0 8,192.2 55.3 3,242.6 21.9 

2013 128.5 0.9 367.5 2.5 4,809.5 32.5 9,050.4 61.1 462.2 3.1 
2014 516.5 3.5 1,269.7 8.6 7901.7 53.3 5,101.8 34.4 28.5 0.2 

2015 162.1 1.1 193.7 1.3 4,150.9 28.0 9,437.9 63.7 873.5 5.9 

2016 539.4 3.6 469.9 3.2 8,992.5 60.7 4,742.9 32.0 73.5 0.5 
2017 317.8 2.1 1,077.5 7.3 6,283.5 42.4 6,876.1 46.4 263.2 1.8 

 

To determine the best vegetation index, several locations with 

low vegetation cover were selected and placed on all vegetation 

index maps using ArcMap. The values of reflectance number 

(DN) were then taken from all vegetation index maps for the 

same locations and compared to one another. VHI was a 

prominent indicator among the evaluated vegetation indicators, 

and the findings were supported through field validation. Nearly 

half of the cultivated wheat and barley crops suffered losses, 

primarily due to agricultural drought. We can infer from Fig. 5, 

that the severe agricultural drought in 2008 caused substantial 

crop damage, leading to a significant drop in crop yield. Based 

on a comprehensive analysis, satellite remote sensing has 

emerged as a viable approach for monitoring agricultural 

drought. Within the range of indices discussed in this study, LST 

and VHI, combining the Vegetation Condition Index (VCI) and 

Temperature Condition Index (TCI), exhibit higher spatial 

resolution. Primarily, the most affected areas lie in the southern 

part of Erbil, situated within the southern region of the broader 

Erbil area, where extreme drought conditions are prevalent.  

Correlation Matrix Statically Analysis 

        Rainfall is a key factor influencing vegetation growth, 

providing the necessary moisture for plants to grow and thrive. A 

lack of rainfall can lead to drought, which can cause vegetation 

stress and even death. Several factors, including the amount of 

vegetation cover, land cover type, and soil moisture in the soil, 

influence LST. A positive correlation exists between rainfall and 

VHI because increased rainfall typically leads to increased 

vegetation growth and health. However, the relationship between 

rainfall and LST is more complex. Table 4, shows understanding 

the connection between rainfall, VHI, and LST within a study 

area is crucial for discerning the well-being and productivity of 

vegetation in that region and evaluating the influence of different 

environmental factors. Significant positive correlations emerged 

between the Vegetation Health Index (VHI) and precipitation 

(r=0.615**) and between VHI and crop yield (r=0.613**), while 

negative correlations were observed between VHI and LST (r=-

0.612**), and between VHI and Class 5 LST (r=-0.800**).

 

Table 4: The relationship coefficients between precipitation, crop area, crop yield, and the spectral indicators. 
 VHI LST Precipitation (mm) Crop Yield (ton) Crop Area (km2) Class 5 (LST) 

VHI 1 -0.612** 0.615** 0.613** 0.105 -0.800** 

LST -0.612** 1 -0.456* -0.407 -0.197 0.790** 
Precipitation (mm) 0.615** -0.456* 1 0.604** 0.212 -0.505* 

Crop Yield (ton) 0.613** -0.407 0.604** 1 0.486* -0.486* 

Crop Area (km2) 0.105 -0.197 0.212 0.486* 1 -0.143 
Class 5 (LST) -0.800** 0.790** -0.505* -0.486* -0.143 1 

2-tailed - correlation with two stars (**) are significant at the 0.01 level 

2-tailed - correlation with one star (*) are significant at the 0.05 level 

 
 

        The mountainous terrains characterized by higher elevations 

approximately more than 3,000 m a.s.l (Razvanchy, 2008). 

expand in a northeast-to-southwest orientation, regularly 

diminishing towards the southwest. From a statistical 

perspective, meaningful, significant relationships were identified 

between rainfall, VHI, and LST indices. Moreover, in 2000 and 

2008, a higher LST was observed, which could be caused by a 

lack of precipitation and high air temperature. The VHI numbers 

clearly demonstrate this drop. VHI can accurately identify and 

map the severity of droughts. The study analysed VHI maps, 

which showed that while plant growth depends on water 

availability from rain and irrigation, it can endure unfavourable 

hydrological and meteorological conditions over several seasons 

(Sahoo et al., 2015). The southern parts of Erbil Province are 

more vulnerable to severe drought because of the low vegetation 

cover and annual rainfall. These features could indicate relatively 

low vegetation cover and photosynthetic activity, which causes 

slight temporal variations (Zhang et al., 2019). Across the studied 
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timeframe, the southern region of Erbil Province displayed a 

notable rise in Land Surface Temperature (LST). This elevation 

in LST seems to be linked to land degradation induced by 

droughts, a problem in this area. The origins of droughts are 

complicated because of their connection to atmospheric, 

topographic, and hydrological elements that influence soil 

moisture and vegetation growth (Sutcliffe, 2012). The highest 

VHI values in this study were observed in the northern region, 

which was associated with the highest Precipitation and higher 

elevations. The statistical relationship between rainfall and VHI 

was significantly positive in this study, also reported by 

(Sutcliffe, 2012). The results presented in Table 5 show a 

substantial inverse relationship between VHI and LST (r= -

0.937). A positive relationship (r=0.909 and 0.827) existed 

between the VHI with elevation and precipitation. However, the 

relationship between LST, DEM, precipitation, and VHI was 

negative (r= –0.913, –0.890, and –0.937). The correlation Matrix 

between precipitation, elevation, VHI, and LST and the mean for 

the 20 sub-district locations are presented in Table 5 and Fig.7. 

A statistically significant relationship existed between the remote 

sensing-based spectral indicators and precipitation.

  

Table 5: Relationship coefficients between precipitation, correlation matrix values between elevation (m) and precipitation (mm), 

and spectral indicators. 

 DEM (m) Precipitation (mm) LST VHI 

DEM (m) 1 0.881 -0.913 0.909 
Precipitation (mm) 0.881 1 -0.890 0.827 

LST -0.913 -0.890 1 -0.937 

VHI 0.909 0.827 -0.937 1 

Bold numbers indicate differences from 0 with a significance level of alpha = 0.05 

 

Multiple Linear Regression Statically Analysis 

        Rainfall has a significant impact on vegetation growth 

because it gives plants the moisture they need to develop and 

flourish. Drought conditions brought on by insufficient rainfall 

can stress or even kill plants. The land surface temperature (LST) 

is a measurement that depends on several elements such as the 

kind and quantity of vegetation cover as well as the soil's 

moisture content. Rainfall and plant health are positively 

correlated because higher rainfall generally promotes healthier 

and more vegetative growth. Rainfall and LST have a more 

complicated relationship because more rainfall might result in 

more soil moisture and a drop in surface temperature, can also 

lead to increased vegetation cover, which can cause a reduction 

in surface temperature. Fig.7 illustrates the geographic 

distributions of variations in elevation, precipitation, LST, and 

VHI in the 20 sub-districts of the Erbil Province. This suggests 

that while LST significantly increased, rainfall and VHI 

significantly decreased in the south. Despite knowing that 

fluctuations in LST and NDVI were observed in the study 

locations, there were considerable decreases in LST noted in the 

northern region of the country that were driven by higher 

elevations and VHI values.

Fig.7: Alterations in the spatial patterns of ecological parameters 

and drought indices were examined for 20 years across 20 

locations. 

        The relationship between seasonal fluctuations in vegetation 

output and environmental variables was examined using a 

multiple regression analysis. Many studies have used these 

analyses to quantify variability in vegetation dynamics over time 

and space (Busetto et al., 2010; Jiao et al., 2016; Guo et al., 

2017). A spatiotemporal relationship model was developed to 

determine the long-term responses of VHI and LST related to 

environmental variables.  

Table 6 shows the multiple regression statistics used to determine 

the significance of the ecological parameters of the regression 

models used to predict drought indicators in Erbil. The results of 

the LST module were (R2= 0.865), (RMSE= 1.486), 

(MSE=2.209), and (MAPE=4.182). However, the values of the 

VHI (module 1) were as follows: (R2= 0.829), (RMSE= 3.5), 

(MSE=12.25), and (MAPE=8.42). The regression models 

highlighted the complex interactions among elevation, rainfall, 

LST, and VHI. Elevation appeared to have significantly 

influenced both the LST and VHI values, whereas rainfall 

exhibited varying effects on different modules of the VHI.  

Moreover, LST demonstrated its impact on VHI in Module 2.  
 
 

Table 6: Regression model variables were applied in Erbil province to forecast indices of drought (LST and VHI). 
Index R2 RMSE MSE MAPE Module Equation 

LST Module 0.865 1.486 2.209 4.182 LST=34.0229-7.5890E-03*Elevation-5.1742E-03*Rainfall 

VHI Module1 0.829 3.500 12.252 8.427 VHI=18.8396+2.2214E-02*Elevation+3.2794E-03*Rainfall 

VHI Module2 0.899 2.768 7.662 5.064 VHI=70.2359+1.075E-02*Elevation-4.5369E-03*Rainfall-1.51063*LST 

(RMSE) stands for Root Mean Square Error 

(MSE) stands for Mean Squared Error 

(MAPE) stands for Mean Absolute Percentage Error 

 

        The most significant drop in crop yield occurred in 2000 and 

2008, primarily because of agricultural drought incidents (Table 

7). This decline can be related to fluctuations in the amount of 

precipitation necessary to meet the minimum water demand of 
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crops (Gaznayee & Al-Quraishi, 2019; Gaznayee, 2020). 

Typically, there is a correlation between crop yield, Vegetation 

Health Index (VHI), and Land Surface Temperature (LST); this 

observation could serve as a foundation for establishing a 

connection between indices and crop yield. Furthermore, the 

average precipitation levels were reduced during the three years 

of drought, leading to a noticeable reduction in VHI values.

 

Table 7: Shows the study area's average crop area (Km2), crop yield (ton), and yearly precipitation (mm) over a 20-year period. 

Years Average Annual Precipitation (mm) Crop Area (Km2) Crop Yield (ton) 

1997-1998 484.0 664.6 152,880.5 

1998-1999 258.5 539.7 54,215.7 

1999-2000 302.1 752.3 92,525.6 
2000-2001 471.8 687.4 162,442.9 

2001-2002 607.5 970.4 331,701.7 

2002-2003 695.1 953.8 249,196.3 
2003-2004 648.3 1,142.6 268,636.3 

2004-2005 538.9 1,209.8 340,220.5 

2005-2006 583.7 1,477.7 303,956.6 
2006-2007 582.5 1,503.8 535,975.2 

2007-2008 243.7 1,264.0 15,031.0 

2008-2009 332.0 1,521.6 37,3951.6 
2009-2010 529.8 1,225.3 354,899.3 

2010-2011 454.6 1,364.2 257,135.0 

2011-2012 389.9 628.8 101,292.0 
2012-2013 690.8 636.8 319,856.0 

2013-2014 435.8 132.9 337,224.0 

2014-2015 537.2 1,491.2 448,869.0 
2015-2016 659.0 1,380.1 601,396.0 

2016-2017 428.4 949.0 411,676.0 

 

CONCLUSIONS 

        This paper outlines a study on tracking droughts (LST and 

VHI) over 20 years in Iraq's Erbil Province using satellite 

imagery and geographic information systems. The findings of 

this study show that the southern region of Erbil Province has 

experienced three consecutive years of drought, which is 

attributed to a decrease in annual rainfall, rising temperatures, 

and increased evapotranspiration caused by high wind speeds, 

high temperatures, and low relative humidity. Elevation was a 

significant factor affecting the variables in the study, particularly 

vegetation cover. The study also found a significant correlation 

between Landsat-based spectral drought indices, precipitation,  

and elevation. The correlations between the elevation and 

precipitation with the VHI and LST were strong. This study has 

important implications for policymakers in the KRI-Erbil to 

examine and evaluate drought-stricken areas. Based on research 

findings, the southern regions of Erbil Province have been 

experiencing drought due to a combination of factors, including 

a decrease in annual rainfall, rising temperatures, and increased 

evapotranspiration caused by high wind speeds, high 

temperatures, and low relative humidity. This study provides 

valuable insights into applying satellite imagery and GIS to 

drought monitoring. Future studies should have higher spatial 

and temporal resolutions to enhance drought monitoring 

accuracy. 
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