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ABSTRACT: 

This research addressed the challenge of recognizing emotions from speech by developing a deep learning-based speech-

emotion recognition (SER) system. A key focus of the study is the creation of a new Hausa emotional speech dataset, aimed 

at addressing the linguistic and cultural imbalance in existing SER datasets, which predominantly feature Western 

languages. This study captured four emotions: happy, sad, angry, and surprise among native Hausa speakers. The self-

captured dataset was recorded in an environment that is devoid of noise to ensure high quality and uniformity in the audio 

data. A public dataset; RAVDESS was used for benchmarking the proposed technique. CNN and Bi-Directional Long Short-

Term Memory (BiLSTM) architectures were combined and used as proposed model for the SER experiment. The developed 

CNN architecture helped in extracting spatial features, while the BiLSTM without the attention mechanism captured 

temporal dependencies from the audio data. The approach reduced time complexity and improved performance to 100% 

and 96% recognition accuracies against 94% and 90% of the benchmark model for the local and benchmark datasets 

respectively. The results demonstrate the proposed approach's robustness to generalize across linguistic contexts.  

KEYWORDS: Emotion Recognition, Hausa Audio Data, Bi-Directional Long-Term Short-Term Memory Network, 

BILSTM, Cross-Cultural Variations. 

1. INTRODUCTION 

        The task of recognizing emotions in audio data is one of the 

key components of improving human-computer interaction 

(HCI) (Selvaraj et al., 2016). With the increase in smart gadgets 

like Apple HomePod and Amazon Echo, voice interaction has 

become a key component of recent technologies. This innovation 

has led to a vast amount of audio data that can be further 

analyzed. There is a need to improve recognition of speech 

emotion because of the increased reliance on verbal 

communication between humans and technology (Duttaa et al., 

2023). Speech Emotion Recognition (SER) has become very 

important part of these systems by allowing machines to 

recognise human emotions, improve communication and offer 

more individualised smiles. This development showcases the 

increasing demand for technology, that can understand the 

emotional states that underlie human speech in addition to 

recognising it (Hossain & Muhammad, 2018). An example is the 

identifying of driving stress of fatigue by SER in automotive 

systems, thereby enhancing safety. When this emotional distress 

is being identified, healthcare industry can easily track mental 

health. In addition to this, emotion-aware systems in gaming and 

education advance, their interactions according to user emotions, 

to produce more engaging settings (Vaaras et al., 2023). 

Although these developments are being put in place, creating 

trustworthy SER systems are proving difficult since speech 

analysis of human emotions is complicated (Goncalves et al., 

2023). 

        On of the main issue in SER is speech length variability 

which features extraction and model training. To guarantee fixed 

input sizes for deep learning models, traditional approaches 

which entails clipping or padding voice data is being used 

(Rasheed et al., 2024). This procedure however runs the risk of 

increasing computing costs or losing important emotional 

information if something goes wrong along the way both of 

which impair system performance. One other challenge is the 

 
* Corresponding author 

This is an open access under a CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/) 

local vs global feature conundrum, methods that can be used are 

the conventional approaches, which include identifying local 

features including minute variations in tone or pitch, but they find 

it difficult to capture long-range contextual dependencies over 

whole speech sequences because longer speeches may hide 

certain emotional information (Duttaa et al., 2023). The 

development of Convolutional Neural Network (CNN) and 

Recurrent Neural Network (RNN) helped eliminate the 

restrictions on longer speeches. CNNs and RNNs has shown their 

strength to reconciling the intricacies in audio data (Rasheed et 

al., 2024). These algorithms are perfect when it comes to 

identifying complicated patterns in a large amount of data. This 

makes them ideal for examining human speech for emotional 

clues (Sundar et al., 2022). CNN, RNN, hybrid models are 

prominent architectures that have shown good results for matrix 

factorization (Hassan, 2025), COVID-19 cases confirmation 

(Hassan & Ahmed, 2023), web vulnerabilities detection (Ali et 

al., 2025), sign language recognition (Ahmed et al., 2024), 

(Irhebhude et al., 2024), and emotion recognition using facial 

images (Irhebhude et al., 2023), (Hasan, 2022) due to their 

capacity to extract robust information; CNNs also be used for 

analysing speech signals. CNNs can capture changes in spoken 

expressions by identifying patterns in the audio frequency that 

carry emotional information  (Kim et al., 2015). CNNs can 

process spectrograms or Mel-Frequency Cepstral Coefficients 

(MFCCs) in a frequency-based manner, to bring out significant 

features that aid in emotion recognition. RNNs on the other hand, 

can be used to analyze speech sequential data because emotions 

are often expressed temporally (Dixit & Satapathy, 2023). LSTM 

networks can accurately capture emotional dynamics in speech 

by recording patterns and dependencies often expressed over 

time (Jeong et al., 2023). LSTMs capture emotional expressions 

over time by connecting the short-term and long-term 

dependency in speech data. Ensemble models often outperform 

other single models in tasks involving emotion recognition 

(Vaaras et al., 2023). CNNs which extract spatial information and 

RNNs which capture temporal dependencies can be combined 
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and used as ensemble model for emotion identification systems 

(Tarunika et al., 2018). 

        Studies have shown that CNNs and LSTM can be 

combined in hybrid learning architectures. The kind of 

information captured by CNN and LSTM can be integrated and 

used for emotion recognition tasks (Sundar et al., 2022).  

        Rasheed et al. (2024) used the Ryerson Audio-Visual 

Database of Emotional Speech and Song (RAVDESS) dataset, a 

well-known English emotional speech dataset with eight emotion 

classes—Angry, Calm, Disgust, Fear, Happy, Neutral, Sad, and 

Surprise—to group emotional data in speech made by human, 

thereby combining CNN for feature extraction with Bi-

Directional Long Short Term Memory (BiLSTM) networks with 

attention mechanisms. An average of 94% recognition accuracy 

was achieved. However, the implementation of these methods 

resulted in additional computational burden, thereby rendering 

these models less appropriate for implementation on devices with 

low resources (Abbaschian et al., 2021).  A 6% error margin can 

be further decreased in order to allow for greater recognition 

accuracy. Datasets like IEMOCAP and RAVDESS are being 

relied on significantly for SER studies which include Western 

languages and emotional expressions (Barazida, 2021). Hausa 

which is one of the underrepresented languages is being kept at a 

disadvantage because of linguistics bias limitation of the 

generalizability of these systems across culturally diverse 

population (Saunders, 2023). 

        Speech Emotion Recognition (SER) has emerged as a 

crucial component of human-computer interaction (HCI), mental 

health monitoring, and affective computing (Selvaraj, et al., 

2016). Despite its growing importance, most SER research has 

been centered on Western languages, leaving underrepresented 

linguistic groups, such as Hausa speakers, without adequate 

representation. This imbalance raises concerns about the 

generalizability of existing models, as they may struggle to 

interpret emotional expressions in different cultural and linguistic 

contexts (Barazida, 2021). 

        Traditionally, SER studies have often relied on datasets like 

the Ryerson Audio-Visual Database of Emotional Speech and 

Song (RAVDESS) ( Livingstone & Russo, 2018), the Toronto 

Emotional Speech Set (TESS), and the Interactive Emotional 

Dyadic Motion Capture (IEMOCAP) dataset. While these 

datasets have been instrumental in advancing SER research, they 

primarily feature Western speakers, limiting their effectiveness 

for non-Western languages (Barazida, 2021). Researchers such 

as Abbaschian et al., (2021) and Lucas et al., (2023) have 

highlighted the risk of misclassifications when these models 

encounter speakers from different cultural backgrounds, 

emphasizing the need for more diverse datasets. 

        Some efforts have been made to address this limitation by 

creating datasets for underrepresented languages. The Berlin 

Database of Emotional Speech (EMO-DB) and the Arabic 

Speech Emotion Dataset (ASED) have contributed to expanding 

SER research beyond English and European languages. 

However, African languages, particularly Hausa, remain largely 

unexplored in the context of SER. While Ryumina et al., (2022) 

acknowledged the significance of linguistic diversity in emotion 

recognition, existing resources for African languages are limited, 

hindering the development of effective models. 

                Previous research efforts, such as (Ibrahim, 2021) have 

focused on speech recognition for Hausa speakers rather than 

emotion detection, which primarily focus on transcribing spoken 

language rather than identifying emotional cues. Speech 

recognition datasets capture linguistic content without 

emphasizing the prosodic features such as pitch, tone, or rhythm, 

essential for emotion recognition, highlighting the absence of 

dedicated emotional speech datasets. 

        Recognizing these gaps, this study takes a significant step 

toward bridging the divide by developing a Hausa Emotional 

Speech Dataset tailored for SER. Unlike previous Hausa speech 

datasets, which primarily address phoneme recognition, this 

dataset is specifically designed to capture emotional expressions. 

It is also benchmarked against the widely-used RAVDESS 

dataset, ensuring a comparative analysis of its effectiveness. By 

integrating Convolutional Neural Networks (CNN) and Bi-

Directional Long Short-Term Memory (BiLSTM) networks, this 

research enhances the recognition of emotional nuances in Hausa 

while optimizing computational efficiency by omitting attention 

mechanisms. 

        There are still a number of significant shortcomings even 

with the advancements in deep learning based SER. The absence 

of culturally inclusive datasets that faithfully capture emotional 

expressions from underrepresented language has limited the 

capacity of existing models to generalise across various linguistic 

contexts. The robustness of SER system is diminished when 

applied to non-western languages because the majority of 

existing datasets like the RAVDESS dataset, and the Acted 

Emotional Speech Dynamic Database (AESDD) were designed 

with western speakers in mind (Barazida, 2021). Goncalves et al. 

(2023) and Abbaschian et al. (2021) noted that the lack of 

culturally diverse datasets causes biases in emotion detection 

algorithms, this however, lowers the systems accuracy when they 

come across storage accents or language. Secondly, attention 

technique add some computational costs and reduce the models 

suitability for real-time applications on devices with constrained 

processing capacity even while they enhance model performance 

by selectively focusing on important portions of input sequences. 

This research is focused on two main objectives to address these 

challenges: (1) The development of a human emotional speech 

dataset, which fills a critical gap in the SER literature by 

providing a resource for studying emotional expressions in an 

underrepresented African language  (Saunders, 2023); and (2) the 

design of a lightweight CNN-BiLSTM model that achieves high 

accuracy while eliminating the need for attention mechanisms. 

The proposed model offers a practical solution for real-world 

applications by balancing accuracy and efficiency with limited 

computational resources (Abbaschian et al., 2021).  

        The rest of this paper is structured as follows. Section 2 

shows the methodology, which involves data collection and 

model building. Section 3 presents the results of the experiment 

conducted. The final section concludes and presents future 

research plans.  

        SER has a lot of interest from many quarters to improve 

human-computer interaction (HCI) systems. Studies have shown 

efforts made using deep learning architectures to enhance the 

performance of emotion recognition systems. Deep learning 

architectures eliminate the need for handcrafting of features by 

automatically learning from speech data. This is the advantage 

CNN has over the traditional machine-learning approach to 

classification (Sundar et al., 2022). The combination of CNN and 

LSTM models was motivated to address the challenge of 

balancing local feature extraction with contextual awareness, 

among other difficulties (Goncalves et al., 2023).  

        Rasheed et al. (2024) in their study trained a hybrid deep 

learning model that combined CNNs and BiLSTM networks with 

attention mechanisms for the classification of four emotions 

using the RAVDESS dataset. The study showed the effectiveness 

of combining CNNs and BiLSTM, in handling sequential data-

related problems by recording an accuracy of 94%. However, the 

approach has issues such as the complexity of the attention 

mechanism; despite the excellent accuracy. The raise in the 

computing requirements made it less appropriate for deployment 

on low-resource devices or real-time applications. Risks of 

overfitting; when trained on smaller or less varied datasets, the 

complex architecture, which includes the attention mechanism-

presented a greater danger of overfitting. The model's efficacy is 

diminished because it was trained on datasets like RAVDESS 

which mostly reflect Western languages. The lack of application 

of the model of different datasets makes it difficult to generalize 

to other populations. 
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        SaiDhruv et al. (2023) recorded a high accuracy of 96.73% 

SER task using the LSTM model. The study showed the impact 

of adjusting the model’s parameters and how overfitting can be 

avoided as data complexity rises. The study demonstrated the 

dominance deep learning has over traditional machine learning 

in emotion recognition tasks. 

        Jeong et al. (2023) in their study suggested a method for 

recognizing emotion in conversation data. The approach works 

by integrating text and audio data using a multimodal fusion 

network with a pre-trained language model. The strength of the 

multimodal techniques in capturing a variety of emotional cues 

was demonstrated when it achieved a new state-of-the-art 

performance on the KEMD,20, and MELD datasets (Middya et 

al., 2022). 

        Schonevelda et al. (2020) approach to the audio-visual 

emotion recognition (AVER) task was tested on the RECOLA 

data (audiovisual recordings of French speakers in a range of 

emotional states). The proposed approach outperformed the 

selected state-of-the-art techniques. The suggested approach 

trained distinct audio and visual deep convolutional neural 

networks (DCNN) using a pre-trained network. These were used 

to extract generic emotion identification charactertistics, which 

were used to train a fusion module. The authors also 

differentiated the strategy with a number of cutting-edge 

techniques that employ features derived from deep neural 

networks or finding, the AVER predicts valence on the RECOLA 

dataset better than cutting-edge methods. A significant 

improvement of the concordance correlation coefficient (CCC) 

for valence prediction as reported by the authors is 0.665 as 

against the previous state-of-the-art CCC of 0.616. 

        In order to accomplish precise and almost real-time 

recognition of emotional states in speech, Abbaschian et al. 

(2021) used deep learning approaches to handle the SER 

challenge, which surrounds anger, happiness, neutral, disgust, 

and surprise in HCI. One of the methodologies employed was a 

thorough analysis of the most recent studies or deep learning 

strategies for SER. The authors carried act an extensive search of 

pertinent literature using a variety of scholarly databases and 

search engines, including google scholar, IEEE Xplore and the 

ACM Digital Library. Relevant material was chosen and 

examined based on particular inclusion and exclusion criteria, 

such as the application of deep learning methods for SER. The 

accessibility of training and testing datasets was taken into 

account following the models accuracy documentation. 

According to the findings, deep learning approaches such as 

CNNs, RNNs and their variations have outperformed 

conventional machine learning techniques and demonstrated 

encouraging outcomes for SER. The quality and availability of 

datasets for testing and training are essential for the SER models 

to achieve high accuracy and generalisation. The performance 

and generalisation of the models may be affected by the present 

SER database’s short size, lack of diversity, and lack of 

standardisation, among other issues. This performance of transfer 

learning and data augmentation approaches, which also assisted 

in overcoming some of the restrictions of the existing SER 

databases. Some of the future research directions in SER are the 

creation of more varied and standardised databases, the analysis 

of multimodal strategies and the study of explainable and 

interpretable deep learning models. 

        The application of deep learning methods to enhance 

emotion recognition across many modalities was covered by 

Njoku et al. (2021). The aim of the study was to compare how 

well those methods performed in identifying emotions (happy, 

sadness, surprise, disgust and neutral) from multimodel data. The 

authors of multimodal fusion and classification investigated three 

distinct deep learning models in early fusion (EF), hybrid fusion 

(HF) and multitask learning (MTL). These three models are 

applied to three distinct modalities. Speech, facial expression and 

EEG data. The authors compared the model’s performance using 

two dataset, the RAVDESS audiovisual dataset and an EEG 

dataset for a prior study. According to he study’s results, the EFG 

model performed the best in the audiovisual data, scoring 

78.33%, HF and MTL performed worse, with a score of 57.91% 

and 55.41% respectively. The MTL model had the best accuracy 

while the HF model recorded the lowest performance for all 

modalities, all things considered. 

        Zaman et al. (2023) reviewed methods and strategies for 

employing deep learning models to categorise and identify 

emotions including sorrow, happiness, neutral, disgust, and 

surprise in audio datasets. In order to outline the future paths of 

deep learning in audio classification, additional study of widely 

used audio dataset was conducted. The study however included a 

thorough overview of the most recent methods and developments 

in audio categorisation using deep learning models. To this 

effect, the findings from the study are as follows: (1) Deep 

learning models, including CNNs, RNNs, autoencoders, 

transformers, and hybrid models have greater promise for audio 

classification tasks. (2) while RNNs are suitable for tasks that 

require sequential modelling of audio data, CNNs are effective 

for audio classification tasks that involve spectrogram or mel-

spectrogram data. (3) Autoencoder can be used for unsupervised 

feature learning and dimensionality reduction in audio 

classification tasks. 4. Transformers are a relatively new deep-

learning architecture that has shown promising results in audio 

classification tasks, and more transformer-based methods are 

expected to be proposed in the future. 5. Hybrid models that 

combine different deep learning architectures can achieve better 

performance than single-models.  6. The choice of dataset is 

crucial for the performance of deep learning models in audio 

classification tasks, and there are several commonly used datasets 

in this field. The authors outlined future directions of deep 

learning in audio classification to include the use of more 

complex deep learning architectures, the development of more 

efficient training algorithms, and the exploration of new audio 

datasets and applications. 

        Several gaps remain despite the successes recorded in 

speech emotion recognition studies. The dearth of diverse 

datasets in culturally underrepresented languages like Hausa is 

the first gap. This creates biases in SER models leading to 

reduced performance a model is supposed to generalize 

(Abbaschian et al., 2021). Another gap lies in the reliance on 

attention mechanisms in a recent study (Rasheed et al., 2024); an 

approach that introduced computational costs and models 

overfitting. The need for lightweight architectures that can 

generalize well and yield high accuracy cannot be 

overemphasized. Hence, this study addressed the identified gaps 

by capturing local data on Hausa emotional speech and proposed 

a modified CNN-BiLSTM model (Rasheed et al., 2024) that 

eliminated the attention mechanisms. The captured dataset 

provided a valuable resource for studying emotional expressions 

in a different language. The proposed model offered a solution 

for real-time applications that maintain high recognition accuracy 

with reduced computational demand. 

2. METHODOLOGY 

        The approach effectively captures spatial and temporal 
dependencies within speech signals, guaranteeing accurate emotion 

classification devoid of computation complexity.  

        The methodology organized into several stages is comprised of: data 
acquisition, data preprocessing, model; design, training, and evaluation. 

Each stage is critical to the model's overall performance and is depicted 

in the methodology flow diagram in Figure 2.1. A major aspect of this 
research is comparing the proposed model with existing methods, 

particularly the work of (Rasheed et al., 2024). While Rasheed et al. 

(2024) employed an attention mechanism to enhance their model’s 
performance, this study demonstrates that similar levels of accuracy can 

be achieved without the added complexity. By simplifying the model 

architecture and eliminating the attention mechanism, the proposed 
approach reduced computational demands. It improves the model’s 

suitability for deployment in real-world scenarios, especially where 

resources are limited.
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Figure 2.1:  Proposed Methodology 

Data Acquisition : 

        The datasets used in this study consist of self-captured audio 

recordings of speech emotions in the Hausa language.  The 

development of the Hausa emotional dataset was necessary due 

to the absence of any existing emotional speech datasets specific 

to the Hausa speakers. Although prior research efforts (Ibrahim, 

2021) created Hausa speech recognition datasets, with a primary 

focus on transcribing spoken language rather than identifying 

emotional cues. Speech recognition datasets capture linguistic 

content without emphasizing the prosodic features such as pitch, 

tone, or rhythm, essential for emotion recognition.  As a result, 

existing Hausa Speech datasets (Ibrahim, 2021) are unsuitable for 

this study, which aims to explore emotional nuances through 

speech. This limitation motivated the development of a 

specialized Hausa emotional dataset. 

Dataset Description: 

        The dataset used in this study was developed to address the 

lack of Hausa emotional speech data. It comprises 4,000 speech 

samples, each lasting approximately five seconds, collected from 

1,000 native Hausa speakers. The dataset includes four primary 

emotion categories: happiness, sadness, anger, and surprise The 

selection of four emotional categories happiness, sadness, anger, 

and surprise was guided by their universal relevance and 

applicability in emotion recognition research as shown in Table 

2.1.  Pei et al., (2024) highlighted these emotions as part of the 

"basic emotions" framework, which posits that certain emotional 

expressions are universally recognized across cultures. For this 

study, these four emotions were chosen because they represent 

distinct and easily distinguishable emotional states in speech. 

This simplifies annotation and classification tasks while ensuring 

that the dataset remains manageable for model training and 

evaluation. 

Participant Demographics: 

        Participants were selected from Hausa-speaking 

communities in Nigeria, specifically from from Hausa 

Communities in Gaya, Dala and Rano Local Governments of 

Kano State, Nigeria. The sample consisted of a diverse group of 

individuals spanning different age groups, ranging from 15 to 56 

years old. The age range of 15 to 56 years was selected to ensure 

diversity in vocal characteristics and emotional expressions 

across different life stages. This range captures both younger and 

middle-aged individuals, who often exhibit clear and dynamic 

emotional expressions. Both male and female speakers were 

included to ensure gender diversity and to avoid potential biases 

arising from gendered speech patterns. This broad demographic 

representation enhances the dataset's applicability across 

different age groups and genders. 

Recording Conditions: 

        Recordings were conducted in acoustically treated rooms to 

minimize background noise and interference. Participants were 

instructed to deliver their emotional expressions based on 

scripted scenarios and spontaneous speech using a sentence “To 

shikenan, nagode”, ensuring that the dataset contained both 

natural and acted emotional speech samples.    

 

Potential Biases in the Dataset :  

        Despite efforts to ensure diversity, certain biases may exist 

within the dataset. The dataset primarily drawn participants from 

both urban and urban areas of Kano State, potentially limiting its 

applicability to Hausa speakers in other States of Nigeria and 

Africa (Saunders, 2023), who may have different speech patterns 

or intonations. Additionally, while the dataset captures four 

primary emotions, it does not account for more nuanced 

emotional states such as fear, disgust, or neutrality. Future 

extensions of the dataset could address these gaps by 

incorporating a broader range of emotions and recruiting 

participants from a wider geographic area. 

 

Table 2.1:  Classification of Hausa Datasets 
S/N Emotion Class No. Of Audio Samples 

1 Happy 1000 

2 Angry 1000 

3 Sad 1000 

4 Surprise 1000 

 TOTAL 4000 

Data Preprocessing: 

        Data preprocessing is a fundamental step that ensures audio 

data are transformed into a clean, normalized, and structured 

form that is suitable for machine learning experiments. Speech 

data sometimes contains silent intervals, noise, and variations in 

amplitude. The presence of these imperfections can degrade a 

model's performance if not handled properly.  

        Each preprocessing activity ensures that the inputted audio 

data to the CNN-BiLSTM model is rich in emotion-relevant 

features. The preprocessing activities ensure that the raw audio 

data is cleaned, and transformed into a form that is suitable for 

feature extraction.  

Silence Detection and Removal: 

        Human speech sometimes contains pauses or silent intervals 

between words or phrases; these segments do not carry useful 

emotional information. Such intervals could lead to inaccurate 

feature extraction and increased training time (Calzone, 2022). 

To address this issue, this study employed the Praat Silence 

Detection Tool (Al-Tamimi, 2022). The technique analyzed the 

intensity contour in the audio signal to detect and remove silent 

intervals. The intensity contour 𝐼(𝑡) calculated as shown in 

equation 1 measures the short-term energy of the signal:                                             

𝐼(𝑡) = 10 𝑙𝑜𝑔10  
1

𝑁
∑(𝑥𝑖)

𝑁−1

𝑖=0

 𝑡2                                     (1) 

where N is the number of contours in each frame, and (xi) t2 

represents individual contours within the frame. If the intensity 

falls below a specified threshold (e.g., −30dB), the corresponding 

segment will be marked as silence. A minimum quiet interval of 

50ms ensures that only meaningful pauses are treated as silence, 

while a minimum sounding interval of 100ms ensures that short 

bursts of noise are not misclassified as speech. The result of this 

process is a trimmed audio signal containing only relevant speech 

segments. This step not only improves the signal-to-noise ratio 

but also reduces computational costs by eliminating non-

Model Architecture 

Design 

Model Training 
Model 

Evaluation 

Dataset 

Acquisition  
Data 

Preprocessing 
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informative data, making the training process more efficient 

(Tzirakis et al., 2017). 

Noise Reduction: 

        Environmental noise is another major factor that can 

degrade the quality of speech signals. To mitigate this, a 

combination of bandpass filtering and Wiener filtering was 

applied. The bandpass filter removes high-frequency noise H(f)  

offsets from the signal by restricting the frequency range to 100 

Hz – 8 kHz, the range most relevant to human speech (Gong et 

al., 2021). 

        The response of the bandpass filter is defined as (equation 

2): 

𝐻(𝑓) =
𝑓

𝑓 + 𝑓𝑐𝑢𝑡𝑜𝑓𝑓
   𝑓𝑜𝑟  𝑓 ∈ [𝑓𝑙𝑜𝑤 𝑓ℎ𝑖𝑔ℎ]                   (2) 

where flow = 100Hz and fhigh = 8kHz. This step eliminates 

frequencies outside the range of normal speech, preserving only 

the meaningful portions of the signal (Gong et al., 2021). 

Next, the Wiener filter is applied to further suppress background 

noise by modeling it from silent segments identified earlier. The 

Wiener filter estimates the noise spectrum 𝑁(𝑓) and subtracts it 

from the signal spectrum 𝑆(𝑓) in (equation 3) as follows: 

𝐻(𝑓) =
𝑆(𝑓)

𝑆(𝑓) + 𝑁(𝑓)
                                                      (3) 

Normalization: 

        This adaptive filtering technique ensures that only relevant 

speech information is retained while minimizing distortions 

(equation 4). 

𝑌𝑛𝑜𝑟𝑚(𝑡) =
max(𝑌) − min (𝑌)

𝑌(𝑡) − min (𝑌)
                                      (4) 

where Y(t)  is the original signal amplitude, and min(Y) and 

max(Y)  are the minimum and maximum amplitude values, 

respectively. This step guarantees that the dynamic range of the 

input signal is uniform across all recordings Gong et al. (2021). 

Frame Segmentation and Hamming Windowing: 

        Since Speech Is A Non-Stationary Signal, Its properties 

change over time. To capture these temporal variations, the audio 

was divided into overlapping frames. Each frame is 50ms long 

with a 10ms overlap to ensure that transitions between frames are 

preserved, avoiding the loss of emotional cues at the frame 

boundaries. 

        A Hamming window function is applied to each frame to 

reduce spectral leakage and improve feature extraction. The 

Hamming window is defined in equation 5 as: 

𝑤(𝑛)  =  0.54 –  0.46 (
2𝜋𝑛

2𝑁−1
)                     (5) 

where N is the frame length, and (𝑛) is the sample index within 

the frame. The windowed signal is then computed as (equation 

6): 

Ywindowed (n)  =   Yframe (n)  . 𝑤(𝑛)              (6) 

This step ensures that the features extracted from each frame are 

representative of the underlying emotional content (Gong et al., 

2021). 

        This detailed and structured preprocessing ensured that the 

subsequent CNN-BiLSTM model focused on meaningful 

features, ultimately improving the performance of the emotion 

recognition system. 

Proposed Model Architecture: 

        The core of the model architecture adapted from Rasheed et 

al. (2024) is the integration of cnns with bilstm networks without 

attention mechanism (as depicted in Figure 2.2 & Table 2.2). The 

model is designed to reduce complexity and computational 

overhead, thereby making the model more suitable for real-time 

applications and deployment on resource-constrained devices. 

The exclusion of the attention mechanism also simplified the 

training process and reduced the risk of overfitting, particularly 

on smaller datasets.

 

Figure 2.2: Proposed Model Architecture 

 

Table 2.2:  Network Architecture of the Model 
S/N Layer Type Layer Name No. Of Neurons Activation Function  

1 Convolutional Layer 2D 32 x 3 Relu 

2 Convolutional Layer 2D 64 x 3 Relu 

3 Pooling Layer Maxpooling2D - - 

4 Dropout  Dropout 07 - 

5 Flattening Layer Flatten - - 

6 Fully Connected Layer Dense 128 Relu 

7 Dropout Dropout 0.5 - 

8 Reshaping Layer Reshape 128 x 1 - 

9 Bi – Directional LSTM 

Layer 

Bidirectional 

LSTM 

64 - 

10 Bi – Directional LSTM 

Layer 

Bidirectional 

LSTM 

64 - 

11 Output Layer Dense - Softmax 
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CNN Model For Feature Extraction: 

        The CNN plays a pivotal role in this study by extracting 

emotion-relevant features from mel-spectrograms and MFCCs 

2D representations of speech signals. These features capture both 

spectral and temporal variations that correlate with different 

emotions. For example, happiness may manifest as a higher pitch 

and energy, while sadness is typically associated with a lower 

pitch and slower rhythm (Ristea et al., 2022). CNNs excel at 

detecting such localized patterns from structured data like 

spectrograms, making them an ideal choice for automated feature 

extraction in SER (Ristea & Ionescu, 2021). In this study, mel-

spectrograms serve as input to the CNN model. The spectrograms 

translate the voice signal to time-frequency domain, where the 

frequency is on the vertical axis while time is on the horizontal 

axis. The energy is reflected by the spectrogram pixel, providing 

a rich input data that records tones, rhythm, and prosody;  

essential indicators for identifying emotions. (Khalil et al., 2018). 

CNN scans the spectrogram using convolutional filters to find 

significant patterns, like format shifts, pitch variations or energy 

changes, which are the signs of a particular emotion. The CNN 

structure guarantees that low-level characteristics are recorded in 

the network's early layers while higher-level patterns appear at a 

deeper level. (Dixit & Satapathy, 2023). 

        The CNN model used in this study consists of two 

convolutional layers, followed by ReLU activation, batch 

normalization, and max-pooling layers. Each layer learns 

features from the spectrogram input, ensuring the model detects 

patterns that contribute to emotional expression. 

        The convolution layer applies a filter (or kernel) over small 

regions of the inputted spectrogram, producing a feature map that 

represents the important local features as defined in equation 7: 

𝑌 (𝑖, 𝑗)   =  ∑ ∑ I (i + p, j + q)  .  𝐾(𝑝, 𝑞)              (7)

𝑛−1

𝑞=0

𝑚−1

𝑝=0

  

where: I is the inputted spectrogram, 𝐾 is the filter of size  3×3, 
(𝑖, 𝑗) are the coordinate positive on the output feature map. 

Equation 7 describes how the 3×3 filter slides over the inputted 

spectrogram, performing element-wise multiplication. The filter 

is designed to detect specific patterns like energy bursts across 

frequency bands or pitch changes, where high activation values 

indicate the presence of the pattern (Dixit & Satapathy, 2023). In 

this study, the first convolutional layer captures the basic 

frequency peaks and energy shifts within the short time frames; 

on the other hand, the deeper layers detect and capture temporal 

patterns such as the rise and fall in pitch over a longer period. 

After the convolutional operations, the output is passed through 

a Rectified Linear Unit (ReLU) activation function. ReLU allows 

the CNN to learn more complex relationships between input 

features (Njoku  et al., 2021). The ReLU function is defined as: 

(equation 8) 

𝑅𝑒𝐿𝑈(𝑥)  =  𝑚𝑎𝑥(0, 𝑥)  (8) 
The function in equation 8 ensures that only positive activations 

are passed to the next layer, allowing the network to focus on 

important patterns ignoring irrelevant noise. 

        The next step is batch normalization. This is applied to 

standardize the extracted feature map by ensuring zero mean and 

unit variance across the mini-batch. The normalization helps to 

stabilize the training process and prevents overfitting. This 

process ensures that the model generalizes well on unseen data 

(Dixit & Satapathy, 2023). 

The max-pooling follows the activation and normalization steps 

to reduce its spatial dimensions. The max-pooling layer selects 

the maximum value within a region of 2×2 within the feature map 

as shown in equation 9: 

𝑃(𝑖, 𝑗) = 𝑚𝑎𝑥{𝑌(𝑖 + 𝑝, 𝑗 + 𝑞)|𝑝, 𝑞 ∈ [0,1]}                  (9) 

Max-pooling achieve two objectives: (1) Dimensionality 

reduction: It reduces the size of the feature map, making the 

model more computationally efficient.  (2) Salient feature 

retention: It preserves the most important activations, ensuring 

that critical patterns (such as prominent pitch or energy shifts) are 

not lost.  The combination of convolution, activation, and pooling 

ensures that the CNN can capture localized emotional cues across 

both time and frequency (Dixit & Satapathy, 2023). 

After max-pooling, the reduced feature maps are flattened into a 

1D vector to prepare them for the (dense) layers. Flattening 

converts the multidimensional feature maps into a single vector: 

The flattening operation converts the 2D feature map Y3  into a 

1D vector z (equation 10): 

z  = Flatten (Y3)    (10) 

This vector z serves as the input to the dense layers, which map 

the extracted features to the corresponding emotion classes. The 

dense layer assigns weights to each feature, learning how 

different patterns in the audio spectrogram correlate with specific 

emotions (Rasheed et al., 2024).  

BILSTM For Sequence Modeling and Classification: 

        While CNNs extract local acoustic features from individual 

frames of the input spectrogram, these features alone are 

insufficient for accurate emotion recognition. Emotional 

meaning is conveyed over time, requiring a model that can learn 

and retain sequential patterns (Li et al., 2020). The BiLSTM 

captures both forward and backward dependencies, making it 

ideal for tasks where context evolves across time like speech 

emotion recognition. For instance, emotional tone might change 

across a sentence (“To shikenan, nagode”), and BiLSTMs can 

interpret both past and future cues to determine the overall 

emotion accurately.  

        The BiLSTM network builds on the feature representations 

extracted by the CNN, treating these features as a sequence of 

input vectors. Each vector corresponds to a temporal frame in the 

speech signal, and the task of the BiLSTM is to model how these 

frames evolve and predict the underlying emotion at the sequence 

level. Unlike standard LSTMs, which only process sequences in 

one direction (past to present), BiLSTM networks process 

sequences in both directions from start to end and from end to 

start. This bidirectional processing ensures that the network 

captures context from both preceding and succeeding frames, 

improving classification accuracy. The output from the BiLSTM 

layers is fed into fully connected layers, before the final 

classification of the emotional states. The layer employed a 

softmax function with Relu activation that translates the 

integrated features into a probability distribution over the 

possible emotions, which provided the basis for the model's 

predictions.  A Dense Unit of size 128 and Relu activation are 

connected to the degree of freedom to synchronize the data and 

adapt to the model.   

Model Training: 

        The model was trained using the backpropagation 

algorithm, with the Adam optimizer selected for its efficiency in 

handling sparse gradients and its adaptive learning rate 

properties. During training, the model learned to map the 

preprocessed audio data to the correct emotional labels using a 

loss function that measured prediction accuracy. The process was 

iterated for 60 epochs with a large number of training examples 

from the self-captured Hausa audio dataset as well as the 

RAVDESS datasets to ensure that the model generalize well on 

new, unseen data. The training set was split into the ratio of 

60:20:20 for training, validation, and testing respectively.  

The training parameters:  

        Hyperparameter tuning is a critical step in optimizing the 

performance of deep learning models. In this study, the 

hyperparameters was selected based on a combination of 

empirical testing and established best practices from prior 

research in Speech Emotion Recognition (SER) Hussain et al., 

(2021). The learning rate was set to 0.001, as it provides a balance 

between convergence speed and model stability. A dropout rate 
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of 0.3 was introduced to mitigate overfitting, ensuring that the 

model generalizes well to unseen data (Sandugash & Anargul, 

2023). A batch size of 32 was selected based on empirical studies 

and practical considerations. Prior research, including that of 

Tarunika et al., (2018) has shown that batch sizes in the range of 

32-64 strike an optimal balance between computational 

efficiency and model performance. A smaller batch size (e.g., 16) 

could lead to slower convergence due to high variance in gradient 

updates, whereas a larger batch size (e.g., 128) could require 

excessive memory and potentially lead to less effective 

generalization. The batch size of 32 ensures a steady learning 

process, smooth convergence, and reduced risk of overfitting.  

Evaluation Metrics: 

        The evaluation metrics of accuracy, precision, recall, and 

F1-score are selected to evaluate the performance of the proposed 

model. The selected metrics offer a thorough evaluation to 

accurately categorize emotions, especially when there are class 

disparities. (Singh et al., 2021). The definitions and equations 

used to calculate the metrics for performance evaluation are 

explained accordingly. 

Accuracy is the ratio of correctly predicted classes to the total 

number of classes (Elbanna et al., 2021) (see equation 10). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
         (10) 

where;  

TP are the True Positives, TN are the True Negatives, FP are the 

False Positives, FN are the False Negatives  

Precision (Positive Predictive Value) is the precision that 

measures the proportion of correctly predicted positive instances 

among all instances predicted as positive (equation 11). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                          (11) 

High precision yields fewer false positives, a situation that is 

desirable in applications. 

Recall (Sensitivity or True Positive Rate) which is known as 

sensitivity, measures the proportion of the actual positive 

instances that were correctly classified. (equation 12). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                   (12) 

High recall means that the model is effective in recognising the 

true positive classes. 

F1-Score is the harmonic mean of precision and recall. It offers 

a balanced measure when there is an unbalanced class 

distribution. It considers both precision and recall, especially 

when one metric is lower than the other (Jeong et al., 2023) 

(equation 13). 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                (13) 

The F1-score is useful when false positives and false negatives 

are critical since it balances both aspects of classification 

performance. A high F1-score means strong performance in 

precision and recall (Zhou & Beigi, 2020). 

3. RESULTS AND DISCUSSION 

        Local Hausa and RAVDESS emotional datasets were 

implemented and used in the training of the suggested speech 

emotion recognition model. The model equipped with 

Tensoflow, Sklearn, Numpy, Matpotlib, searbon, and librosa 

libraries was implemented in the Jupyter Notebook Python 

Anaconda 3.0 environment.  

Experimental Results with the Self-Captured Hausa Dataset: 

        The proposed model was trained on the self-captured local 

Hausa dataset achieving an overall accuracy of 100%. The 

dataset which included 4,000 audio samples was divided into four 

emotional classes of joy, anger, sad, and surprise. To maximise 

the performance, the model was trained using 60 epochs. The 

training duration lasted for about 28 minutes, and 37 seconds. 

Similarly, the technique in (Rasheed et al., 2024) which included 

an attention mechanism was evaluated using the self-captured 

Hausa dataset. The model was also trained using 60 epochs to 

compare the effectiveness against the proposed model that 

removed the attention mechanism. The training duration of 

(Rasheed et al., 2024) lasted for about 45 minutes, 53 seconds 

achieving an accuracy value of 90%. While the attention 

mechanism in the benchmark model added sophistication and 

allowed for more focused learning, it increased the risk of 

overfitting, especially when working with locally sourced 

datasets like that of the Hausa speakers. This might mean that the 

simpler architecture proposed, offered a more balanced approach, 

providing strong performance with a reduced risk of overfitting. 

The training and validation accuracy curve shown in Figure 3.1 

(a) provides evidence that the proposed model is robust. The 

alignment of the two accuracy curves means that the model did 

not overfit. When compared with the Rasheed et al. (2024) model 

Figure 3.1 (b), results show that the training and validation 

accuracies of the model increased rapidly, indicating that the 

model quickly learns the key features necessary for the 

recognition. However, as training progresses, a gap begins to 

form between the training and validation curves. The training 

accuracy continues to rise, while the validation accuracy starts to 

plateau and even slightly declines. This pattern suggests that the 

benchmark model is overfitting to the training data, becoming too 

tailored to the specific patterns within the training set, which may 

not generalize well to unseen data when compared with the 

proposed model.

  

.  

    (a)       (b) 

Figure 3.1:  Training and Validation Accuracies of Proposed Model (a) vs that of Benchmark (Rasheed et al., 2024) Model (b) on 

Self-captured Hausa Dataset 

Figure 3.1 underscores the effectiveness of the hybrid CNN-

BLSTM model architecture without attention mechanism in 

recognizing emotions from speech data, particularly when using 

a culturally specific dataset. The high accuracy achieved 

demonstrates the potential of leveraging culturally relevant 

datasets to improve the performance and applicability of emotion 

recognition systems in diverse linguistic contexts. 
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Classification Report of the Models With Hausa Datasets: 

        The classification report as illustrated in Figure 3.2, shows 

that the Proposed model Figure 3.2 (a) achieved exceptionally 

high precision, recall, and F1-scores across all four emotion 

classes—happy, angry, sad, and surprise. In all cases, the 

precision, recall, and F1-score recorded 1.00, when compared 

with the benchmark model that recorded lower accuracy as seen 

in Figure 3.2 (b), Similarly, the model was able to correctly 

classify each emotion without any record of misclassifications. 

This is also reflected in the F1-scores, which further confirm the 

model's accuracy and reliability.

 

 
    (a)       (b) 

Figure 3.2:  Classification Reports of the Proposed Model (a) vs that of Benchmark (Rasheed et al., 2024) Model (b) on the Self-

captured Hausa Datasets 

Figure 3.2 results underscore the effectiveness of the proposed 

model in categorizing emotions from the Hausa speech emotion 

data. The precision, recall, and F1-scores across all emotion 

classes show that the simplified model did not compromise the 

model’s strength.  

Confusion Matrix Report on the Self-Captured Hausa 

Datasets: 

        The confusion matrix provides a visualization of the 

performance of the proposed model. As shown in Figure 3.3 (a), 

the confusion matrix for the proposed model revealed that all 

predictions fall perfectly on the diagonal, indicating that the 

model correctly classified every instance of each emotion without 

any misclassifications. There are no off-diagonal elements in the 

matrix, meaning there were no instances where the model 

confused one emotion with another. However, benchmark 

(Rasheed et al., 2024) model results Figure 3.3 (b) shows that 

there are some off-diagonal elements where "happy" instances 

was misclassified as "surprise", “sad” and vice versa. For 

example, the model incorrectly classified (21) instances of “sad” 

class as “happy”, and misclassified (59) instances of “happy” 

emotions as “sad” (28), “surprise” (26) and “angry” (5) 

categories respectively. These misclassifications suggest that the 

model struggled to distinguish between these emotions, possibly 

due to the complexities introduced by the attention mechanism in 

the model's structure.

 

 
   (a)      (b) 

Figure 3.3:  Confusion Matrix of Proposed Model (a) vs Confusion Matrix of Benchmark (Rasheed et al., 2024) Model (b) on Self-

captured Hausa Dataset 

Figure 3.3 results indicate that the proposed model is not only 

accurate but also consistent in its predictions across all emotion 

classes unlike that of the benchmark (Rasheed et al., 2024) model 

that misclassified some classes. This level of performance is 

particularly impressive given the model’s simplified architecture, 

which omits the attention mechanism found in benchmark 

(Rasheed et al., 2024)  model. The results also demonstrated that 

the proposed model’s design integrating CNNs and BiLSTM 

without attention mechanism can provide a robust framework for 

emotion recognition. 

Experimental Results of  the Models on RAVDESS Datasets: 

        The training and validation process of the proposed model 

Figure 3.4 (a) was also carried out using the RAVDESS dataset.    

This dataset provided a robust test of the model’s ability to 

generalize to different linguistic and cultural contexts beyond the 

Hausa dataset. The training duration stood at 18 minutes, and 23 

seconds.
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   (a)       (b) 

Figure 3.4:  Training and Validation Accuracies of Proposed Model (a) vs that of Benchmark (Rasheed et al., 2024) Model (b) on 

Self-captured Hausa Dataset 

Figure 3.4 shows that the proposed model achieved a final 

accuracy of 96% while Rasheed et al., (2024) Model reached 

94%, indicating strong generalization to the RAVDESS data. The 

training duration for the benchmark model lasted 31 minutes, 

and 26 seconds. The accuracy curves of both models 

demonstrated high performance, there are noticeable differences 

in their behavior during training, particularly in the validation 

curves. The Rasheed et al., (2024) model's validation curve 

(Figure 3.4 (b)) exhibits a slight divergence from the training 

curve, with the validation accuracy plateauing early in the 

process and continue to plateau as the training progresses. This 

suggests that the model is overfitting, meaning it is learning 

patterns that are too specific to the training data and less effective 

on unseen validation data. Overfitting often may occur when 

model is too complex or rely heavily on mechanisms like 

attention, which introduced unnecessary parameters (Sandugash 

& Anargul, 2023). The proposed model's validation curve on the 

other hand, followed the training curve with slight deviation, 

indicating that the model generalized well without significant 

overfitting. 

Classification Reports of the Models on Ravdess Datasets: 

        The classification report for the proposed model trained on 

the RAVDESS dataset was also provided. Figure 3.5 (a) shows 

that the proposed model achieved an overall accuracy of 96%. 

The report indicated that the proposed model achieved high 

precision, recall, and F1-scores, with most metrics at or close to 

100%, indicating that the model was highly effective in 

identifying emotions. A slight drop was noted in the "happy" 

class, where the F1-score was 0.87, and scored the highest 

Precision, Recall, and F1 Score of 1.0 in the “sad”, “calm”, 

“angry”, and “disgust” classes respectively. On the other hand, 

Rasheed et al., (2024) model performed slightly lower, with 94% 

accuracy, and precision, recall, and F1-scores ranging from 0.85 

to 1.00. The most significant drop was again observed in the 

"disgust" class, which had the lowest F1-score (0.86), 

demonstrating that the proposed model outperformed the 

benchmark model.

 

 
   (a)       (b) 

Figure 3.5:  Classification Report of the Proposed Model (a) vs the benchmark (Rasheed et al., 2024) Model (b) on RAVDESS 

Dataset

Confusion Matrix of the Models on RAVDESS Datasets: 

        Figure 3.6 displays the confusion matrix for the proposed 

model when tested on the RAVDESS dataset. The confusion 

matrix illustrates how well the model performed in classifying 

the eight (8) emotion classes. The diagonal elements of the matrix 

represent the instances where the model correctly classified the 

emotions. The matrix revealed that the model accurately 

predicted 4 emotions; “angry”, “calm”, and “neural” and also 

made a few misclassifications, particularly between the "fear", 

“happy”, "sad", and “surprise” classes. A small number of "fear" 

(1) instance were incorrectly classified as "sad", (5) instances of 

“happy” class were incorrectly predicted as “surprise” and (4) 

instances as “neutral” class, and (2) instances of “sad” category 

was misclassified as “neutral” emotion, indicating that the model 

modestly struggles to differentiate between these emotions.
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Figure 3.6:  Confusion Matrix Report of the Proposed Model (a) vs benchmark (Rasheed et al., 2024) Model (b) on RAVDESS 

Dataset 

 

        The misclassifications reported in Figure 3.6 suggest that 

while the model is highly accurate overall, it finds certain 

emotions modestly challenging to distinguish, possibly due to 

similarities in their expression within the RAVDESS dataset; 

however, performed a little better when compared with the 

benchmark (Rasheed et al., 2024) model. This suggests that 

enhancing the model's ability to accurately classify more nuanced 

emotional expressions, particularly those that are easily 

confused, could improve its performance even further, making it 

more reliable in diverse applications. 

Analysis of Results: 

        The results from the experiments carried out on both the 

self-captured Hausa dataset and the RAVDESS dataset showed 

the effectiveness of the prepared model. This proposed model 

achieved an accuracy of 100% on the self-captured Hausa dataset 

and 96% on the RAVDESS dataset, with results suggesting that 

the model is highly capable of capturing and classifying 

emotional cues in speech data across different cultural contexts 

even without the attention mechanism. 

Comparative Analysis of Models' Performance with Hausa 

and RAVDESS Datasets: 

        The proposed model consistently outperformed the 

benchmark Rasheed et al., (2024) technique. The proposed 

model recorded a perfect accuracy of 100% with the locally 

sourced Hausa dataset, while the benchmark model recorded 

90% accuracy. The proposed model maintained a high accuracy 

of 96% for the RAVDESS dataset, compared to 94% achieved by 

the benchmark model. 

        Evident in the Hausa dataset, are the differences 

highlighting the efficiency and robustness of the proposed 

model’s simple architecture which did not only achieve higher 

performance but avoided overfitting as well. While its validation 

accuracy plateaued and slightly declined, the benchmark model 

with the attention mechanism shared signs of overfitting as its 

training accuracy continued to increase. This differences shows 

that the benchmark model became too focused to the training 

data, thereby losing its ability to generalise effectively to new, 

unseen data. In addition, the training time and computational 

resources required for both models further underscore the 

efficiency of the proposed approach. On the Hausa dataset, the 

proposed model had a shorter training time of approximately 28 

minutes and 37 seconds and 18 minutes and 23 seconds on the 

RAVDESS data contrary to the Rasheed et al., (2024) model 

which took about 45 minutes and 53 seconds and 31 minutes, 26 

seconds on both datasets, showing that the attention mechanism 

added a computational burden. This indicates that the proposed 

model achieved better performance while maintaining 

computational efficiency which in turn, makes it more suitable 

for applications with limited resources. 

        The comparative analysis across both datasets shows that 

the suggested CNN-BiLSTM model with the attention 

mechanism not only achieved higher accuracy but did so with 

better efficiency and generalisability. This relates with the wider 

trend in deep learning towards optimising model efficiency 

without losing performance (Harár et al., 2016). These 

discoveries suggest that, when properly designed, simpler 

architectures can effectively record complex/complicated 

patterns in speech emotion recognition, outperforming more 

complicated models that are prone to overfitting. 

        One potential concern is overfitting, particularly observed 

in Training and Validation Curve of the Proposed Model with 

RAVDESS dataset. While techniques such as dropout 

regularization and early stopping were employed to mitigate this 

risk, future work should explore further generalization 

techniques, such as data augmentation or adversarial training, to 

ensure robustness against unseen data. Additionally, expanding 

the dataset to include a more diverse range of dialects and 

speakers from different cultural backgrounds would enhance the 

model's applicability. 

Comparative Analysis with Existing Literature: 

        To evaluate the effectiveness of the proposed model, its 

performance is also compared with recent studies on Speech 

Emotion Recognition. 

        Rasheed et al., (2024) utilized a CNN-BiLSTM model with 

attention mechanisms and achieved an accuracy of 94% on the 

RAVDESS dataset. However, their model had increased 

computational overhead due to attention layers. 

Hussain et al., (2021) employed a hybrid CNN-LSTM approach 

and obtained 89.5% accuracy. Their study highlighted the impact 

of Bag of Acoustic Words (BoAW) in improving feature 

representation on the RAVDESS dataset. 

        Zhou & Beigi (2020) proposed a Time-Delay Neural 

Network (TDNN) for SER, leveraging transfer learning 

techniques, and achieved a competitive accuracy of 92.3% on the 

IEMOCAP dataset.

 

Table 4.2:  Comparative Analysis with Existing Literature 
Study Model Used Dataset Accuracy 

Rasheed et al., (2024) CNN-BiLSTM with Attention RAVDESS 94% 

Hussain et al., (2021) Hybrid CNN-RNN RAVDESS 89.5% 

Zhou & Beigi (2020) TDNN with Transfer Learning IEMOCAP 92.3% 

Proposed Model CNN-BiLSTM (No Attention) Hausa Emotional Speech Dataset 100% 

Proposed Model RAVDESS RAVDESS 96% 
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        The Proposed model, which integrates CNN with BiLSTM 

without attention mechanisms, achieved a comparable accuracy 

of 100% on Hausa Emotional Speech Datasets and 96% on 

RAVDESS Datasets, demonstrating a balance between 

computational efficiency and accuracy. Unlike models relying on 

attention mechanisms, the proposed approach reduces 

complexity, making it more suitable for real-time applications, 

particularly on resource-constrained devices. Additionally, the 

inclusion of the Hausa Emotional Speech Dataset enhances the 

cultural adaptability of SER models, addressing linguistic biases 

present in prior works. 

        The comparative analysis suggests that our model offers an 

optimal trade-off between accuracy and computational efficiency 

while expanding the applicability of SER systems to 

underrepresented languages. 

CONCLUSION 

        In conclusion, an improved model comprising of CNN 

BiLSTM without attention mechanism was proposed for speech 

emotion recognition task. The technique demonstrated excellent 

recognition accuracies of 100% and 96% on the locally sourced 

Hausa dataset and the RAVDESS dataset respectively. The 

proposed model, which extracted spatial and temporal 

information from audio data without the attention mechanism 

helped reduce time complexity. The model was made simpler 

compared to the base model. The results show that the proposed 

method worked very well in cross-cultural settings. It also 

demonstrated how crucial it is to use culturally inclusive speech 

datasets to increase the generalisability and resilience of emotion 

identification systems. The proposed improved technique 

provides an answer for practical uses, in settings with limited 

resources. 

Future Work: 

        Building on the findings of this study, several areas of future 

research can further enhance the effectiveness and applicability 

of SER models for underrepresented languages. 

Expansion To Other Languages: 

        One key direction for future research is expanding this 

approach to other African and underrepresented languages. 

Developing emotional speech datasets for languages such as 

Yoruba, Igbo, Kanuri, Bura, and other African Languages would 

increase linguistic diversity and improve SER models' ability to 

generalize across different cultural contexts. Cross-linguistic 

adaptation techniques, including transfer learning and zero-shot 

learning, could be explored to make SER models more robust 

across multiple languages. 

Enhancing Emotion Categories: 

        Future research should incorporate additional emotional 

states such as fear, disgust, neutrality, and contempt to provide a 

more comprehensive emotional spectrum. This expansion would 

enhance model accuracy and ensure the recognition of more 

nuanced emotional expressions in speech. 

Exploring Advanced Model Architectures: 

        To further improve the performance of SER systems, future 

studies could explore advanced deep learning architectures such 

as transformer-based models and self-supervised learning 

approaches. Transformer models, such as Wav2Vec and 

SpeechT5, have demonstrated strong capabilities in speech 

processing and could offer improved feature extraction and 

classification for emotion recognition tasks. Additionally, hybrid 

models combining CNN, BiLSTM, and attention mechanisms 

could be evaluated to determine their trade-offs in accuracy and 

computational efficiency. 

 

 

Increasing Dataset Diversity: 

        Future research should focus on collecting a more diverse 

dataset with greater representation of dialectal variations and 

socio-demographic diversity. Including speakers from different 

age groups, educational backgrounds, and geographic regions 

would enhance the generalizability of SER models. Furthermore, 

expanding the dataset size beyond 4,000 samples would 

strengthen model robustness and reduce the risk of overfitting. 

Real-World Deployment and Applications: 

        To ensure practical applications of SER models, future work 

should explore deployment on real-world systems, such as virtual 

assistants, call centers, and mental health monitoring platforms. 

Evaluating the model’s effectiveness in natural, noisy 

environments will help assess its viability in real-world 

interactions. Additionally, developing lightweight, energy-

efficient models for mobile and embedded systems would further 

enhance the accessibility of SER technologies. 
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