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ABSTRACT: 

The main aim of the study was to identify modules, hub genes, and possible pathways linked with hypoxia adaptation in six 

types of tissues and organs (heart, kidney, liver, lung, muscle, and spleen) at altitudes ranging from 2,300 to 3,500 meters 

above sea level. On a transcription dataset from hypoxia-sensitive tissues, we performed weighted gene co-expression 

network analysis on 13,940 selected genes, and 10 transcriptional modules in total were detected (Turquoise 196 genes, 

Purple 27 genes, Blue 196, Brown 182, Yellow 108, Green 79 genes, Red 69 genes, Black 50 genes, Pink 44 genes, and 

Magenta 37 genes). Furthermore, we discovered that the majority of variable genes were screened by sub-setting 1000 

genes; samples belonging to the same tissue clearly clustered together, and the expression in the liver and lung was more 

associated than in the heart and spleen. Functional enrichment analysis of all genes in 12 selected modules revealed that 9 

KEGG pathways were considerably enriched, 13 Gene ontology terms were significantly enriched in the biological process 

and cellular component pathways, and 15 gene ontology terms were significantly enriched in the molecular function 

pathway. Through weighted gene co-expression network analysis, the results of this study expand our knowledge of the 

molecular pathway of catalytic and metabolic activity as a biomarker pathway 
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1. INTRODUCTION 

        Among the most popular and extensively dispersed highland 

breeds, Tibetan chicken is frequently utilized as a model 

organism to comprehend genetic adaptability to harsh 

environments in Tibet (Li et al., 2023). However, native chickens 

in both high and low altitude environments exhibit a remarkable 

genetic variety (Sha et al., 2020; Li et al., 2023). Currently, 

published research has identified the genes PPARA, EGLN1, and 

EPAS1 as being crucial for adaptation to both high and low 

altitude (Shen et al., 2020). Exploring the molecular pathways 

driving hypoxia adaptation has long sparked interest. It is critical 

to investigate the similarities in gene expression regulatory 

patterns related to environmental adaptability between high and 

low altitude in hypoxia. Weighted Gene Co-expression Network 

Analysis (WGCNA) is a technique for identifying patterns of 

gene expression across various samples that classifies genes with 

comparable expression profiles into modules based on their 

relationships. These modules can then be linked to certain 

characteristics or situations, allowing researchers to better 

understand the biological processes, molecular function and 

cellular component. It is extensively used in genomics to 

investigate complicated diseases, gene functions, and regulatory 

mechanisms (Langfelder et al., 2008).  WGCNA is increasingly 

being utilized in environmental research to investigate concerns 

such as adaptation to severe environments, biodiversity, and 

community ecology. It assists in connecting species or traits to 

environmental conditions, identifying ecological process 

networks, and investigating their responses to environmental 

changes. In a study in Bos species, with regard to hypoxic 

adaptation, hub genes were discovered based on connectivity by 

establishing a weighted gene co-expression network, and two 

hypoxia-related specialized modules were produced (Bao et al., 

2021). The current study aims to apply a weighted gene co-

expression network in the Tibet chicken in six types of organs 

(heart, kidney, liver, lung, muscle, and spleen) to discover the 

relevant regulatory gene modules connected to the functions of 

each tissue and examine the primary driver genes. The current 

study will provide thorough investigation and new insights into 

how genes are constantly expressed in high and low altitude 

conditions. 

2. MATERIALS AND METHODS 

 Raw data processing 

        The Normalized counts dataset (fragments per kilobase of 

transcript (FPKM) per million mapped reads) was collected from 

the National Center for Biotechnology Information. Genes 

having an FPKM greater than 0.5 in more than 80% of the 

samples were chosen for further analysis using log2-transformed 

(FPKM + 1) values. The RNA dataset is available through 

BioSample: accession experiment number SAMN06242699; in 

the archives, GEO accession (GSM2464087 to GSM2464119). 

The details of the experiment, library preparation, and analysis 

were previously disclosed (Tang et al., 2017). In brief, total RNA 

was isolated from six tissues (heart, kidney, liver, lung, muscle, 

and spleen) obtained from a semi-wild maintained field at an 

altitude of 2,300-3,500 meters in the Drung and Nujiang river 

basins. Raw data were aligned with the chicken maternal broiler 

reference genome (bGalGal1.mat.broiler.GR-Cg7b (GCA 

016699485.1). 

Construction of Gene Co-Expression Network 

        WGCNA (Langfelder et al., 2008), iDEP.96  (Ge et al., 

2018) packages were used to reveal patterns of gene expression  

in six types of tissues and organ Tibetan chicken in a hypoxic 

environment. The topological overlap matrix was analyzed using 

average linkage hierarchical clustering. Genes that were 
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functionally connected were visualized using MF (Molecular 

Function), BP (Biological Process), CC (Cellular Component), 

and KEGG pathway (Kyoto Encyclopedia of Genes and 

Genomes). Furthermore, the most variable genes were identified 

by sub-setting 1000 genes, and their expression was examined 

and shown in a heatmap tree. All of these analyses were 

performed utilizing tools inside the Rstudio program (Team, 

2014). 

3. RESULTS 

Weighted Gene Co-expression Analysis 

        In WGCNA analysis, 15,496 genes from the transcription 

dataset were processed for co-expression analysis. The soft-

power threshold of 14 (scale-free R2 of 0.85) was chosen for 

further analysis (Fig. 1 A), after which 13,940 genes passed the 

filter, the expression pattern across all samples and conditions 

was normalized, and no artifact genes remained in the dataset 

(Fig. 1 B). We created branches of strongly related genes and 

assigned each one a unique color. Finally, ten transcriptional 

modules (Turquoise 196 genes, Purple 27 genes, Blue 196, 

Brown 182, Yellow 108, Green 79 genes, Red 69 genes, Black 

50 genes, Pink 44 genes, and Magenta 37 genes) were discovered 

(Fig. 1c). According to regulatory network analysis, SLC27AS 

and SLC22A1B genes are required to express other highest 

cluster module genes (transcriptional modules of Turquoise 196 

genes) (Fig. 1d).   

 

Figure 1: WGCNA analysis of 13,940 genes from the transcription dataset. (A) A plot of scale-free topology and mean connectivity 

in terms of soft-thresholding power for samples. (B) Expression pattern across all samples of processed data. (C) A hierarchical 

clustering tree (dendrogram) of genes created using co-expression network analysis. (D) Regulatory network analysis of the top 15 

genes subset from 192 genes. 

 

        The most variable genes for 1000 genes were selected, and 

samples from the same tissue were clearly clustered together; 

expression in the liver and lung was more closely related than in 

the heart and spleen. As demonstrated in Figure 2, over 250 genes 

in the liver (in both low and high-altitude environments) are 

significantly up-regulated in gene expression when compared to 

other organs. In addition, muscular tissues express a subset of 

genes differently than other types of tissues. 

 Figure 2: Expression Heatmap tree showing 1000 genes. The sample and the expression count are columns and rows, respectively. The 

color bar on the bottom indicates the scaled expressions of these genes in each sample. The red means high level of gene expression 

while blue shows reduced relative gene expression.  

Gene enrichment analysis  

        The functional enrichment analysis of all genes in 12 

selected modules revealed that 15 GO terms were considerably 

enriched in the MF pathway, 13 GO terms were significantly 

enriched in the BP and CC pathways, and 9 KEGG pathways 

were significantly enriched at adj.Pval less than 0.001 (Fig. 2). 

Catalytic activity was the most important pathway at the MF, 
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with over 70 genes involved, dramatically increasing the p.adj 

value to 0.00017. Serine activity is also considerably enriched 

(p.adj value 0.000000056) by 13 genes in the MF pathway, as is 

peptidase activity, and endopeptidase inhibitor activity is 

significantly enriched (p.adj value < 0.00001) in more than 15 

genes. BP pathways investigation revealed numerous intriguing 

pathways that were enriched, such as immunity and defense 

response in over 30 genes with a p.adj value less than 0.00001. 

Metabolic pathways were also strongly and significantly 

enriched in more than 50 genes, as demonstrated by KEGG 

pathway analysis (p.adj value < 0.000012). 

Figure 3: GO term enrichment pathway analysis with P adj value < 0.001. The X-axis depicts gene numbers, whereas the Y-axis 

represents GO terms. Red dot (BP), pink dot (MF), green dot (CC), and blue dot (KEGG) represent pathways. 

 

4. DISCUSSION 

        As was pointed out in the introduction, WGCNA is 

increasingly being utilized in exploring adaptation of organisms 

to the environment. This study found that SLC27AS and 

SLC22A1B genes are required to be on the highest cluster 

module genes in Tibetan chickens in a hypoxic environment. The 

SLC27A5 gene produces the amino acid coding of fatty acid 

transport protein 5 (FATP5), which has a dual role as an acyl-

CoA synthetase and a fatty acid transporter (essential for 

activating fatty acids for metabolism) (Wang et al., 2012). 

FATP5 is abundantly expressed in most organs, and the 

SLC27AS gene affects bile acid conjugation and lipid 

metabolism (Anderson et al., 2013). This study implies that at 

both high and low altitudes, adaptation to hypoxia by the heart, 

kidney, liver, lung, muscle, and spleen may stabilize FATP5 

activity, so supporting overall metabolic balance. Another 

important finding is that many important GO terms were enriched 

in level BP, MF, CC, and KEGG pathways. Most interesting and 

highly enriched pathways are stability of catalytic and serine 

activity. The gene expression of these pathways across tissue 

types and altitudes can be attributed mostly to changes in air 

pressure, oxygen availability, and temperature. These results 

support data from prior studies suggesting catalytic and serine 

activity play a role in adaptation to atmospheric pressure, reduced 

oxygen levels, and temperature changes (Cheviron et al., 2012; 

Fu et al., 2022). Immunity and defense response were enriched in 

over 30 genes. These findings imply that chickens in high and 

low altitudes have evolved distinct adaptations to help preserve 

immunity during hypoxia stress. According to these findings, we 

can conclude that these 30 genes serve as biomarkers in the 

chicken immune system. However, this finding has not been 

previously reported. Several other investigations have detected 

these genes (Mx1, CCL5, TLR3, IL-8, IRF1, and STAT1) in the 

chicken, notably in response to bacterial and viral infections 

Heidari et al., 2010; Rue et al., 2011; Matulova et al., 2013; 

Cheng et al., 2014; Kang et al., 2016; Ranaware et al., 2016; S. 

et al., 2017; Schilling et al., 2018).  These findings may suggest 

that adaptation to high altitude entails a number of metabolic 

processes and physiological challenges that allow individuals to 

adapt to harsh environments. All of these could be through 

oxygen transport and use, mitochondrial and cellular respiration, 

glycolysis and glucose, lipid and protein metabolism, decreased 

fat oxidation, and enhanced proteolysis (Papandreou et al., 2006; 

O’Brien et al., 2020).  

CONCLUSIONS 

        We provide a comprehensive comparative transcriptome 

landscape of co-expression between low- and high-altitude 

chicken populations across multiple organs. This study revealed 

ten transcriptional modules in the Tibetan genome, including 196 

genes in one module and 37 cluster genes in another. The second 

key finding was that the gene family SLC27AS regulates the 

expression of 196 genes in all organ types, with the gene's 

primary function supporting systemic metabolic balance through 

ATP5 action. Another significant discovery from this study was 

that 30 genes were continually expressed in immune system 

control. Finally, we discovered metabolic pathways; adaptation 

to high altitude entails a number of metabolic pathways and 

physiological challenges. 
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