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ABSTRACT: 

Knee osteoarthritis severity detection is one of the most challenging applications in computer vision due to the similarity 

between X-ray images of the adjacent stages. Handling huge number of X-ray images and the ability to detect the correct 

disease stage is based on advanced artificial intelligence technologies, like machine learning and deep learning. This 

study presents a novel deep learning-based fusion framework designed for detecting the severity of knee osteoarthritis 

and classifying its stages. The study utilizes two X-ray image datasets containing three challenges: imbalanced data, low 

contrast, and low data size. Data augmentation, adaptive histogram equalization, and limited oversampling techniques 

were used to solve these problems. Five deep learning architectures were utilized as base models (EfficientNetB0, 

EfficientNetV2B0, XceptionNet, ResNetRS101, and RegNetY032), followed by average pooling and dense layers. The 

feature-level, decision-level, score-level, and meta-based fusion technologies were also performed on the outputs of the 

best three trained models to minimize the individual models’ errors. The study registered 70% and 90.61% classification 

accuracies using both datasets. The study also found that the best models are the score-level and meta-based fusion 

models in all scenarios. 
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1. INTRODUCTION: 

        Knee osteoarthritis is one of the common diseases of 

knee joints that leads to significantly disabling human 

mobility at different levels (Han et al., 2020; Zhu et al., 

2024; Pires et al., 2024; Giannopapas et al., 2024). In this 

disease, the slippery cartilage tissues covering the bone 

joints and providing good mobility cause humans to lose 

properties and wear out the tissues (Yildirim & Mutlu, 

2024). This disease usually happens to elderly people and 

can affect the knee, the hand, the spine, etc. (Ilmi et al., 2024; 

Komalasari & Motik, 2024). The pain and limited mobility 

persist the entire day during this disease and are caused by 

any hard activity or even the long period of inactivity of the 

patient (Watso & Vondrasek, 2024). The treatment of knee 

osteoarthritis requires multiple procedures and approaches 

to reduce the disease’s symptoms and reduce its severity 

(Yildirim & Mutlu, 2024). 

        Knee osteoarthritis contains many stages according to 

the visual X-ray notice and disease symptoms: normal, 

doubtful, mild, moderate, and severe (Nasser et al., 2023; 
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Jahan et al., 2024). In the first stage, the disease does not 

exist. In the ‘doubtful’ stage, the disease occurrence is 

uncertain and cannot exist. In the third stage, mild’, the 

disease exists but is at the first stage with light symptoms 

and small joint space narrowing. In the fourth stage, 

‘moderate’, the X-ray images of the patient start to show 

obvious osteophytes and reduction in the area of the knee 

joint. In the final stage, ‘the severe’ one, there will be a 

significant osteophyte, a huge joint narrowing, and severe 

sclerosis (Rehman & Gruhn, 2024). 

        Artificial intelligence (AI), machine learning (ML) and 

deep learning (DL) capabilities have been recently utilized 

for the aim of knee osteoarthritis stage classification in order 

to help physicians in their clinical investigations (Rani et 

al.,2024; Raza et al., 2024; Zhao et al., 2024). Many studies 

were introduced in this field for either binary classification 

(Ahmed & Omran, 2024) or severity stage detection (Bose 

et al., 2024; Nurmirinta et al., 2024; Rani et al., 2024). 

The Osteoarthritis Initiative (OAI) dataset (Chen, 2018) is a 

well-known X-ray image of knee Osteoarthritis stages.       

Many studies utilized this dataset. (Du et al., 2018) utilized 
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the Kellgren-Lawrence (KL), and the Artificial Neural 

Networks (ANN) and obtained an area under curve AUC of 

0.822 to 0.903. (Chen et al., 2019) trained the VGG-19 

model in a transfer learning way using the OAI dataset and 

achieved an accuracy of 69.7%. In another study (Ahmed & 

Mstafa, 2022), they also proposed transfer learning along 

with the principal component analysis (PCA) and support 

vector machines (SVM) classifier to achieve an accuracy of 

62%, and an AUC score of 0.854. The same dataset was 

recently utilized in a study by (Apon et al., 2024). The 

researchers utilized many DL architectures, including 

InceptionV3, and Vision transformers (ViT) models, and 

registered an accuracy of 66.14% and an AUC score of 

0.835. The OsteoHRNet DL model proposed by (Jain et al., 

2024) was trained on a knee X-ray dataset. The attention 

mechanism was also utilized to improve performance. The 

obtained accuracy of their study was 71.74%.  However, 

their architecture added overhead due to the extra 

computational time. Transfer learning of many DL 

architectures (DenseNet169, VGG, InceptionV3, ResNet50, 

Inception-ResNetV2, and Xception) was utilized by (El-

Ghany et al., 2023). They Found that the DenseNet169 was 

the best model with an accuracy of 95.93% for only binary 

classification (without severity detection). (M & Goswami, 

2023) utilized an X-ray knee image dataset consisting of 

1656 images and five severity stages. They obtained an 

accuracy of 72% using a ResNet-like CNN model. In a study 

by (Ahmed & Imran, 2024), they utilized pre-trained CNN 

models (VGG, ResNet, GradCAM) using a divide-and-

conquer approach to step into the binary classification 

problem instead of severity classification mission. They 

utilized the Knee Osteoarthritis Severity Grading Dataset 

consisting of 8260 images. Although they achieved an 

accuracy of 99.13%, it dropped to 67% for multi-class 

severity detection. In another study (Jain et al., 2024), they 

utilized the high-resolution net (HRNet) and the attention 

mechanism to extract the best multi-scale features of knee x-

ray images. They achieved an accuracy of 71.74% on the 

OAI dataset. 

         In the conclusion of the previous studies, we found that 

most of these studies utilized only one dataset. Some of them 

applied the binary classification or only three-stage-based 

severity classification. Some studies developed complex 

architectures, while others were stuck in low performance 

due to using weak individual models. In this study, a novel 

hybrid DL framework is utilized to improve the performance 

of the individual models by minimizing individual errors. 

The study will also utilize two datasets with various 

challenges, including data imbalance, low dataset size, and 

low gray contrast. 

        The main contributions of the current study are: 

1. This study utilizes the capabilities of the fusion techniques 

(score-level, decision-level, feature-level, and meta-based 

fusion) in improving the performance of the individual DL 

models in the field of knee osteoarthritis stage 

classification.  

2. The study utilizes two datasets with different challenges: 

one with a data imbalance problem and the other with a 

small data size. 

3. The study overcomes the challenges by introducing 

preprocessing using the CLAHE algorithm, SMOTE for 

data balance, data augmentation operations for improving 

the dataset size, and image preprocessing using adaptive 

histogram equalization. 

4. The study proposes a new DL-based individual 

framework consisting of two parts: the feature extraction 

part, in which five different robust DL architectures are 

utilized, while in the second classification part, a proposed 

classification framework is utilized to handle non-

linearity and satisfy the problem conditions. 

5. The study replaces the binary classification (disease 

occurrence detection) with the stage classification for a 

better and more reliable disease staging system. 

2. MATERIALS AND METHODS 

Knee X-ray Datasets: 

         In this research, two X-ray open-source datasets are 

utilized (Nouman, 2024; Chen, 2018) with five different 

severity stages of the knee joint for both. The first one 

consists of 1650 X-ray images of knee joints without pre-

split of training or test sets. The Second one is the 

“Osteoarthritis Initiative (OAI) dataset” (Chen, 2018), 

which includes five different stages of osteoarthritis severity 

of knee joint and 9786 X-ray images distributed on training, 

validation, and test sets. Figure 1 shows the distribution of 

samples among the five stages of both datasets, where the 

five stages are: ‘Normal: no disease’, ‘Doubtful: it may 

contain the disease and may not’,   ‘Mild: the first obvious 

stage of the disease’, ‘Moderate: the disease in the middle 

stage’, and ‘severe: the disease is in an advanced stage’. 

 

 
 

Figure 1: Distribution of the five classes of severity within 

the utilized dataset 
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        The second dataset suffers from the imbalance problem 

in which there is a category ‘Severe’ has a small number of 

samples (only 3% of the entire dataset), leading to problems 

during the training due to the problem that DL models will 

bias to the dominant classes and learn their parameters to 

memorize their samples. To address this issue, a data balance 

is suggested in order to balance the training classes and 

prevent any possible biases. Figure 2 includes samples of 

both datasets. 

 
 

Figure 2: Some representative samples of the utilized 

datasets 

3. The Proposed Methodology 

        In this study, deep learning, transfer learning, fine-

tuning, and fusion techniques are all utilized to achieve the 

best performance of the knee osteoarthritis detection and 

staging classification system. Figure 3 shows the proposed 

methodology by which the dataset is first pre-processed and 

prepared using many operations, including splitting, image 

enhancement, data augmentation, and data balance. Figure 

3-b shows an example of data preprocessing and 

augmentation.  

        In the preprocessing operations, the images are resized 

into a specific size (224*224 for the first dataset and 

128*128 for the second one since the number of images is 

higher and the current resources are limited to the COLAB 

environment resources). Then, the dataset is split to train 

80% and test 20% (only the first dataset since the second one 

is already split). The contrast-limited adaptive histogram 

equalization (CLAHE) algorithm is then applied to the 

images in order to dynamically improve the contrast of the 

images (Hu et al., 2024). The data augmentation operations 

are then applied to the training set of the first and second 

datasets, while the validation and test sets are preserved 

without changes. The proposed data augmentation 

operations are random rotation in the range 00 to 250, 

horizontal flipping to get the flipped view of the sample, 

random width, and height shifting with a range of 0-0.2, 

zooming operation in the range (0-0.2), and shearing in the 

range (0-0.2). The data augmentation steps help to improve 

the training by increasing the training size and adding some 

noise and variation to the data leading to more powerful 

robust training (Chlap et al., 2021; Shorten & Khoshgoftaar, 

2019). The data balance operation is applied only to the 

training set of the second dataset. The study proposes using 

the Synthetic Minority Oversampling Technique (SMOTE) 

(Chawla et al., 2002; Pradipta et al., 2021) to increase the 

number of the minor categories’ samples. The proposed 

technique in our study is based on increasing the minor 

classes’ samples to a specific number (and not matching the 

number of the majority class) in order to minimize the effect 

of generating outlier samples. In our workflow, we first use 

SMOTE to balance the training set of the second dataset by 

increasing the number of samples in the minority classes to 

a predetermined level. Once the training set is balanced, the 

data generator then applies augmentation on the fly during 

training. The data balance is applied as follows: First, the 

image is flattened into a 1D array. After that, the flattened 

images are standardized using ‘StandardScaler’ to centers 

data (mean=0) which is important for SMOTE algorithm 

which utilizes distance metrics. In the third step, the SMOTE 

is applied to these flattened and standardized images using 

two neighbors (k=2). After that, the images are re-

constructed again into the original 2D size. 

  
(a) 

 
(b) 

 

(c) 

Figure 3: The proposed methodology: (a) The general 

steps, (b) the data preprocessing steps on a training sample, 

(c) The proposed architecture for all DL models. 
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        After that, the deep learning architectures are loaded as 

pre-trained models. The inputs and outputs of the proposed 

models are modified to fit our data and classification labels 

(5 stages). So, the input layer is removed and replaced by the 

desired size (224*224 for the first dataset and 128*128 for 

the second one). The output layer is also modified to contain 

only 5 neurons (since we have 5 stages to be classified to 

define the knee osteoarthritis disease stage) and a ‘Softmax’ 

function is utilized as the activation function. The general 

architecture of each DL model is presented in Figure 3-C, 

where first the extracted feature vector of the DL model is 

obtained (base model), then a global average pooling layer 

is utilized to flatten the final feature matrix of the base 

model. After that, a dense layer of 512 neurons is utilized to 

minimize the dimensions, then a dropout layer is utilized to 

improve the non-linearity of the models. The final part is the 

classification layer with 5 neurons. The models are trained 

using the augmented and balanced training set, while the test 

set (without augmentation or balance) is utilized in the 

evaluation step. The next step performs the model fusion 

techniques (feature-level fusion, score-level fusion, 

decision-level fusion, and meta-fusion) on the best three 

trained DL models to reduce the individual models’ errors 

and improve the performance. The proposed later-based 

fusion techniques (score-level, decision-level, and meta-

fusion) are illustrated in Algorithms 1, 2, and 3. 

Algorithm 1: Knee osteoarthritis stage classification-based 

score-level fusion framework (KOSCSLF) 

Input: Test set (TS), trained DL models (model),  

Output: Final classification (prediction). 

Steps: 

1- Compute prediction scores of the individual models using 

Equation 1.  

propi = modeli.predict (TS)   (1) 

where i=1,2,…,N. N: number of fused models. 

2- Average the scores making one fused score as illustrated in 

Equation 2. 

average_scores = ∑ 𝑤𝑖 ∗ 𝑝𝑟𝑜𝑝𝑖
𝑁
𝑖=1  (2) 

3- Compute the highest average probabilities to derive the 

final fused score: 

Final_ prediction= max (Fused_score) (3) 

4- Output the Final prediction. 

Algorithm 2: Knee osteoarthritis stage classification-based 

decision-level fusion framework (KOSCDLF) 

Input: Test set (TS), trained DL models (modeli),  

Output: Final classification (prediction). 

Steps: 

1- Compute prediction decisions of the individual models 

using Equation 4.  

Predi = max(modeli.predict(TS))  (4) 

2- Stack the decisions of the individual models in one 

matrix (all_predictions). 

3- Compute the mode of the stacked predictions as in 

Equation 5: 

Final_prediction= mode(all_predictions) (5) 

4- Output the Final_prediction. 

Algorithm 3: Knee osteoarthritis stage classification based 

meta fusion framework (KOSCMF) 

Input: Test set (TS), trained DL models (modeli),  

Output: Final classification (prediction). 

Steps: 

1- Compute prediction decisions of the individual 

models.  

2- Stack the decisions of the individual models in one 

matrix (all_predictions). 

3- Choose a meta-classification model (Logistic 

regression) and train it in the outputs of the 

second step for 1000 epochs. 

4- Compute the prediction of the meta-model using 

the same test set. 

meta-predi = meta-model.predict(TS) (6) 

5- Output the meta-predictions as the Final_score. 

The proposed transfer learning of the DL models: 

        As mentioned earlier, the transfer learning capabilities 

will be utilized in this study using five DL models, including 

EfficientNetB0, EfficientNetV2B0, ResNetRS101, 

XceptionNet, and RegNetY032 models. The selection of 

these models is based on three factors: high performance 

(RegNetY032 and ResNetRS101), lightweight architectures 

(EfficientNetB0), and the recent new and state-of-the-art DL 

architectures (RegNetY032, XceptionNet, 

EfficientNetV2B0). 

 

        Transfer learning is a well-known technique in which 

the original knowledge of the DL model (its original trained 

parameters on a specific dataset or application) is transferred 

to a new domain (application) with a new dataset and a new 

mission. In the new mission, the main architecture is 

maintained. The feature extraction part is also maintained, 

while the classification part is retrained to produce the 

prediction (classification) according to the new mission (El 

Gannour et al., 2024; Lu et al., 2015; Niu et al., 2020). The 

comparison between the proposed DL models is shown in 

Table 1. 
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Table 1: DL models comparison.  

Model 

Total 

parameters 

according to 

our task 

Size 

(MB

) 

Number 

of layers 

Input 

size 
Layers details 

Main 

characteristics 

EfficientN

etB0 (Tan 

& Le, 

2019) 

4049571 15.93 237 224*224 

7 MB convolutional 

layers. 

Block scales with depth 

and width. 

1 Global average 

pooling (GAP) layer. 1 

Fully-connected (FC) 

layer with 1000 

neurons. 

Includes Compound 

scaling and 

MobileNet-like 

inverted bottleneck 

modules. 

EfficientN

etV2B0 

(Tan & Le, 

2021) 

5919312 23.149 218 224*224 

6 Fused-MB Conv 

Blocks stages. 

1 GAP, 1 FC (varying 

outputs) 

Enhanced scaling and 

efficient training with 

Fused-MBConv 

layers 

ResNetRS

101 

(Wightman 

et al., 

2021) 

61675296 236.33 101 224*224 

101 Conv layers 

Bottleneck layers (conv 

layers 3*3 with residual 

connection shortcut), 1 

GAP, 1 FC 

Enhanced ResNet 

with selective kernel 

besides squeeze-and-

excite layers 

XceptionN

et (Chollet, 

2017) 

20861480 79.8 71 299*299 

36 Conv layers 

(distributed among 14 

groups) 

Depthwise separable 

Conv layers 

1 GAP, 1 FC 

Contain the 

Depthwise separable 

convolutions and an 

Inception-inspired 

module 

RegNetY0

32 

(Radosavo

vic et al., 

2020) 

17989498 69.49 32 224*224 

Bottleneck layers with 

SE features 

1 GAP 

1 FC 

Organized by neural 

architecture search. It 

focuses on width and 

depth balancing. 

Utilize Squeeze-and-

Excitation (SE) 

blocks to improve 

performance. 



The classification part which contains two dense layers results 

in 658,437, 1,051,653, 1,051,653, 777,221, and 658,437 

trainable parameters for EfficientNetB0, XceptionNet, 

ResNetRS101, RegNetY032, and EfficientNetV2B0, 

respectively. Figure 4 shows the architecture of the proposed 

DL models with the proposed classification part. 

 
EfficientNet models 

 
Xception 
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RegNetY032 

 
ResNetRS101 

 

Figure 4: The proposed DL architectures with their backbones and classification parts. 

The feature-level fusion framework: 

        The feature-level fusion is based on combining the 

feature vectors of two or more deep learning architectures by 

one vector and then utilizing a single classification part. 

Figure 5 illustrates the proposed feature-level fusion 

architecture for both datasets. The architecture includes a 

combination of multiple feature vectors and then utilizing a 

concatenation layer to merge the multiple features of many 

DL models, then a dense layer of 512 neurons (with ‘Relu’ 

activation function), a dropout layer to add non-linearity by 

a rate of 50%, and finally a classification (dense) layer with 

5 neurons and a ‘Softmax’ activation function.

 

 

 

 

 

Figure 5: The proposed feature-level fusion architecture. 

Performance Evaluation Metrics: 

        After training the individual DL models, and generating 

the fusion-based architectures, all these models need an 

evaluation step in which the models are assessed using many 

classification metrics, including accuracy, precision, recall, 

F1-score, the area under the curve (AUC), confusion matrix 

and training time (Hoang et al., 2024; Khozama & Mayya, 

2022; Szabó et al., 2024). 

        Precision can be explained as the percentage of true 

positive TP samples out of all positive ones (TP and false 

positives (FP)) (Szabó et al., 2024), meaning that if a sample 

with a category ‘Mild’ is predicted as ‘Mild’ so this is called 

one TP sample, while if a ‘Doubtful’ sample is accepted as a 

‘Mild’ one, this is called FP sample. Recall, on the other 

hand, concentrates on minimizing the false negatives (FN) 

since its formula is TP/(TP+FN) (Szabó et al., 2024), so if a 

‘Mild’ sample is recognized as a ‘Moderate’ one, it will be 

considered as an FN, and this will reduce the recall 
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percentage. Accuracy is the general metric in which all true 

positives and true negatives (TN) are summed and divided 

by the total number of test samples 

(TP+TN)/(TP+TN+FP+FN) (Szabó et al., 2024). AUC score 

is computed as the area under the ROC curve (Szabó et al.,    

2024), representing the relationship between true and false 

positive rates. The confusion matrix is also one of the most 

commonly utilized performance assessment methods since it 

allows us to see the FP, FN, TP, and TN of the individual 

classes, and this can help to know exactly the performance 

degradation causes (at any specific category). All these 

metrics will be calculated for all models and all experiments. 

Ethical approval and consent: 

        All authors gave verbally informed consent for their 

participation. The study's design and procedures were 

reviewed and approved by the Ethics and Scientific 

Committee of the College of Medicine at the University of 

Zakho with the reference number (FEB2024/UOZE446). 

4. RESULTS AND DISCUSSION 

      In the experimental part, the experiments are performed 

on both datasets. Five individual DL models are trained and 

then fused using different fusion methodologies. Table 2 

includes the training parameters utilized to train the DL 

models. 

Table 2. Training parameters for both datasets. 

Training parameter Value or option 

Initial Learning rate 0.001 

Optimizer Adam 

Loss Function 
Sparse categorical cross-

entropy 

Number of epochs 30 

Early stopping 

Monitor validation 

accuracy for 7 epochs; if 

no enhancement, stop the 

training. 

Input Image size 

For the first dataset, the 

utilized input size is 

224*224 

 

For the second dataset, the 

utilized input size is 

128*128 

Batch size 32 

Results of the first dataset: 

       Figure 6 includes the model accuracy of the trained 

individual DL models (Orange color for validation curves 

and blue color for training curves). Figure 6 shows that the 

model with the best training and validation accuracy is 

EfficientNetB0, while other models include unstable 

training. The difference in the number of epochs among 

models is due to the utilization of the early stop condition to 

avoid potential overfitting or redundant training. 

(a)                                                      (b) 

 
EfficicentNetB0 

(a)                                                      (b) 

 
XceptionNet 

(a)                                                      (b) 

 
ResNetRS101 

(a)                                              (b) 

 

                                                RegNetY032 

(a)                                                   (b) 
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EfficicentNetV2B0 

Figure 6: Performance evaluation metrics: (a) Training and 

validation accuracy, (b) Training and validation loss. 

 

Table 3 includes the detailed performance metrics of the 

trained DL models using the first dataset. The performance 

metrics include precision, recall, and F1-score of the five 

classes of knee osteoarthritis. Besides this, the macro 

average and weighted average of the individual scores are 

also computed to get an overall assessment of the individual 

models. Table 3 proves that the best model with the best 

precision (89.86%), the best recall (86.98%), and the best 

F1-score (88.14%) is the EfficientNetB0. Table 3 also proves 

that the best performance of the five categories corresponds 

to the ‘Moderate’ category with 97.56%, 90.91%, and 

94.14% for precision, recall, and F1-score. However, the 

worst performance of the categories is registered for the 

‘Doubtful’ and the ‘Mild’ categories with 85.58% and 

78.57% for F1-score, respectively. Figure 7 also includes 

snapshots from the results obtained from program output

Table 3:Individual model performance metrics were trained using the first dataset. 

 

 EfficientNetB0 Xception ResNetRS101 RegNetY032 EfficientNetV2B0 

 P R F P R F P R F P R F P R F 

N* 0.92

93 

0.893

2 

0.91

09 

0.8

557 

0.8

058 

0.830

0 

0.934

8 

0.835

0 

0.882

1 

0.83

78 

0.902

9 

0.8

692 

0.96

70 

0.8

544 

0.9

072 

D 
0.79

46 

0.927

1 

0.85

58 

0.6

881 

0.7

812 

0.731

7 

0.686

0 

0.864

6 

0.765

0 

0.74

51 

0.791

7 

0.7

677 

0.76

64 

0.8

542 

0.8

079 

Mi 
0.86

84 

0.717

4 

0.78

57 

0.6

250 

0.6

522 

0.638

3 

0.543

9 

0.673

9 

0.601

9 

0.72

50 

0.630

4 

0.6

744 

0.72

73 

0.6

957 

0.7

111 

Mo 
0.97

56 

0.909

1 

0.94

12 

0.9

459 

0.7

955 

0.864

2 

0.947

4 

0.818

2 

0.878

0 

0.91

89 

0.772

7 

0.8

395 

0.97

56 

0.9

091 

0.9

412 

S 
0.92

50 

0.902

4 

0.91

36 

0.8

462 

0.8

049 

0.825

0 

1.000

0 

0.536

6 

0.698

4 

0.85

00 

0.829

3 

0.8

395 

0.85

11 

0.9

756 

0.9

091 

MA 
0.89

86 

0.869

8 

0.88

14 

0.7

922 

0.7

679 

0.777

8 

0.822

4 

0.745

6 

0.765

1 

0.81

54 

0.785

4 

0.7

981 

0.85

75 

0.8

578 

0.8

553 

WA 
0.88

73 

0.881

8 

0.88

18 

0.7

856 

0.7

758 

0.778

6 

0.817

7 

0.781

8 

0.785

6 

0.80

75 

0.806

1 

0.8

049 

0.86

20 

0.8

545 

0.8

557 

*N: Normal, D: Doubtful, Mi: Mild, Mo: Moderate, S: Severe, MA: Macro average, WA: Weighted average, P: precision, 

R: Recall, F: F1-score. 
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EfficientNetV2B0 

 

Figure 7: Snapshots from the results obtained from program output. 

        The fusion step is performed on the best three models. 

The accuracy, AUC score, and training time of all fusion 

models using the first dataset are illustrated in Table 4 

(where there is no training time for score-level and decision-

level fusion models since we applied the fusion after the 

training operation). Table 4 illustrates that the best scores 

correspond to the score-level fusion scenario in which the 

precision, recall, and F1-score register 91.23%, 90.47%, and 

90.66%, respectively. Table 4 also proves that the score-level 

fusion model outperforms all individual models’ 

performance. 

Table 4: Fusion models performance metrics trained using the first dataset. 

 Feature-level fusion Score-level fusion Decision-level fusion 

 P R F P R F P R F 

N* 0.8889 0.8544 0.8713 0.9789 0.9029 0.9394 0.9286 0.8835 0.9055 

D 0.8119 0.8542 0.8325 0.8241 0.9271 0.8725 0.7818 0.8958 0.8350 

Mi 0.8095 0.7391 0.7727 0.8500 0.7391 0.7907 0.7500 0.7174 0.7333 

Mo 0.9773 0.9773 0.9773 0.9767 0.9545 0.9655 0.9756 0.9091 0.9412 

S 0.9091 0.9756 0.9412 0.9318 1.0000 0.9647 0.9730 0.8780 0.9231 

MA 0.8793 0.8801 0.8790 0.9123 0.9047 0.9066 0.8818 0.8568 0.8676 

WA 0.8697 0.8697 0.8691 0.9098 0.9061 0.9058 0.8728 0.8667 0.8679 

 

Table 5 includes the accuracy comparison between different 

models and the fusion models using the first dataset. Table 5 

proves the same conclusion of previous tables and figures by 

which the score-level fusion achieves the best accuracy score 

of 90.61%.

 

Table 5. Fusion models accuracy scores using the first dataset. 

 
Efficient

NetB0 

Exception 

Net 
ResNet

RS101 

RegNet

Y032 

Efficient

NetV2B0 

Feature-

level fusion 

Score 

-level fusion 

Decision-

level fusion 

Accuracy 

(%) 88.18 77.58 78.18 80.61 85.45 86.97 90.61 86.67 
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Discussion of the results of the first dataset: 

        The best individual model in terms of accuracy is the 

EfficientNetB0, with an accuracy of 88.18%. The second-

best one is the EfficientNetV2B0 with an 85.45% score, and 

the third-best accuracy corresponds to the RegNetY032 with 

an 80.61% score. However, the score-level fusion improves 

the best individual accuracy by 5.16%. 

       The confusion matrix and ROC plots of the individual 

DL models trained using the first dataset are illustrated in 

Figure 8. Figure 8 proves that the EfficientNetB0 model 

performs best with the least number of false positive and 

false negative errors. Moreover, the EfficientNetB0 model 

has the best AUC score of 0.9824, while the worst 

performance corresponds to the ResNetRS101 with only 

0.9408. Besides this, the category with the largest number of 

errors (according to the confusion matrixes) is the ‘Mild’ 

category, with 13 false negatives among 46 total samples and 

5 false positives among 38 total samples (these calculations 

correspond to the best model EfficientNetB0). On the other 

hand, the category with the lowest error percentage is the 

‘Moderate’ category, with 4 false negative errors out of 44 

samples, and only one false positive error out of 41 samples.    

The fact that the errors are mostly located in the first three 

categories is caused by the similarity in X-ray images within 

the first three types of knee osteoarthritis disease (i.e. during 

the first three stages of knee osteoarthritis, the disease is 

either not exist (normal case), not obvious (Doubtful), or is 

at the first appearance in images (mild)). 

 

(a) (b) 

 
 

EfficientNetB0 

  

ExceptionNet 

  

ResnetRS101 

  

RegNetY032 

 
 

EfficientNetV2B0 

Figure 8. Individual models confusion matrixes and ROC 

plot: (a) Confusion matrix, (b) ROC plot. 

        It can be noticed that the score-level fusion model 

achieves the best performance with a 0.9859 AUC score and 

31 false negative and positive errors out of 330 test samples. 

Figure 9 also shows that the errors of the ‘Doubtful’ and 

‘Mild’ categories (which were the categories with the highest 

number of errors in individual models) are minimized 

significantly. The ‘Doubtful’ category registers 7 false 

negative errors out of 96 samples compared to 7 false 

negative errors, and 19 false positive errors compared to 23 

false positive errors of the best individual model. The ‘Mild’ 

category includes 12 false negative and 6 false positive 

errors compared to 13 false negative and 6 false positive 

errors of the best individual model. The most enhanced 

category is the ‘Mild’ category which has 41 true positives 

compared to only 37 true positives of the best individual 

model. 
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(a) 

  

(b) 

  

(c) 

  

(d) 

Figure 9:Confusion matrixes and ROC plot of the fusion 

models: (a) Feature-level fusion, (b) Score-level fusion, (c) 

Decision-level fusion (d) meta-fusion. 

 

        Table 6 presents a comparison between the individual 

and fusion models for the knee osteoarthritis stage 

classification aim. The comparison includes time, accuracy, 

AUC, precision, recall, and F1-score comparison. In all 

metrics except the AUC score, the score-level fusion model 

achieves the best results (90.61%, 91.23%, 90.47%, and 

90.66% for accuracy, precision, recall, and F1-score). The 

model with the best AUC score is the meta-fusion model 

(this model is considered the second-best model after the 

score-level fusion model with 89.7% accuracy, which is 

better than all other fusion and individual models except the 

score-level fusion model). However, the AUC score of the 

meta-fusion model slightly outperformed the AUC score of 

the score-level fusion because the false positive and false 

negative errors are distributed among categories and not 

concentrated on specific categories (See confusion matrix of 

Figure 9). Regarding training time, the EfficientNetV2B0 

outperforms all other models, and the next least 

computational time is the EfficientNetB0 model. 

ResNetRS101 has the highest training time, with 39.16 

seconds per step. Table 6 also proves that the best fusion 

model (score-level fusion model) outperforms the best 

individual model (EfficientNetB0) by 2.43%, 1.37%, 3.49%, 

and 2.52% for accuracy, precision, recall, and F1-score, 

respectively. 

Table 6: Comparison between individual and fusion models in terms of accuracy, AUC, and training time using the first dataset. 

 

 EB0 XN RRS101 RNY032 EV2 FF SF DF MF 

Accuracy 0.8818 0.7758 0.7818 0.8061 0.8545 0.8697 0.9061 0.8667 0.897 

AUC 0.9852 0.9423 0.9408 0.9639 0.9751 0.9780 0.9858 0.9859 0.988 

Precision 0.8986 0.7922 0.8224 0.8154 0.8575 0.8793 0.9123 0.8818 0.907 

Recall 0.8698 0.7679 0.7456 0.7854 0.8578 0.8801 0.9047 0.8568 0.893 

F1-score 0.8814 0.7778 0.7651 0.7981 0.8553 0.8790 0.9066 0.8676 0.899 

TT (S/Step) 13.75 24.85 39.16 23.8 10.95 23.46 - - - 

EB0: EfficientNetB0, XN: XceptionNet, RRS101: ResNetRS101, RNY032: RegNetY032, EV2: EfficientNetB0V2, FF: 

Feature-level fusion model, SF: Score-level fusion model, DF: Decision-level fusion model. 

Figure 10 contains a visual experiment of testing the trained 

and fusion models using some test samples of the test set. In 

these test samples, the fusion model (score-level fusion) 

correctly classified all test samples to the correct stage 
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(severe, moderate, normal, doubtful, or mild), which proves 

the ability of the fusion model to define not only the 

occurrence of the disease but also its precise stage. On the 

other hand, some of the individual models misclassified the 

test samples.  The ResNetRS101 model misclassifies 

samples 1, 3, 5, and 6. The EfficientNetB0 model 

misclassifies only sample number 3. EfficientV2B0 

misclassifies samples 3 and 6. 

   

   
 

Figure 10: Visual test of some individual models and the score-level fusion model using some test samples of the first dataset. 

 

Figure 11 proves that the utilization of the CLAHE 

preprocessing step improves the performance of the fusion 

model compared to the original case without the utilization 

of such a preprocessing step. 

Figure 11 also shows that the utilization of the CLAHE 

preprocessing step enhanced the ability of the model to 

recognize the true positive and true negative samples since 

precision, recall, F1-score, and AUC scores are all improved 

by such modification. 

 
Figure 11: Effect of using CLAHE on the performance of the score-level Fusion Model. 

Generalization study (Results on the second dataset):  

        In this part, another different dataset is utilized with a 

new challenge (unbalanced dataset) in which there are 

categories with a small number of samples, while others 

contain a large number of samples, leading to the unbalanced 

dataset. Table 7 includes details of the experiments applied 
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to the second dataset, including all performance metrics 

(precision, recall,  

F1-score, AUC, accuracy, and training time). Table 7 proves 

that the best two models with the highest scores are the 

score-level fusion and the meta-fusion models with 

accuracies of 69.14% and 70%, respectively. In terms of the 

training time, again, the EfficientNetB0 model has the least 

training time

 

Table 7: Comparison between individual and fusion models in terms of accuracy, AUC, and training time using the second dataset. 

* EB0 XN RRS101 RNY032 EV2 FF SF DF MF 

Accuracy 0.6594 0.6727 0.6763 0.6407 0.6310 0.4463 0.6914 0.6842 0.70 

AUC 0.9122 0.9220 0.9240 0.9079 0.8988 0.7760 0.9280 0.9280 0.923 

Precision 0.6614 0.6469 0.6481 0.6444 0.5952 0.4246 0.6838 0.6868 0.69 

Recall 0.6382 0.6326 0.6195 0.5684 0.5668 0.3276 0.6474 0.6300 0.65 

F1-score 0.6389 0.6197 0.6095 0.5635 0.5583 0.2894 0.6375 0.6265 0.64 

TT (S/Step) 39.93 46.68 78.15 53 38.47 39.36 - - - 

Discussion of the second dataset results: 

        Figure 12 shows the confusion matrixes of the best 

models. The meta-based fusion enhanced the number of true 

positives of the ‘Doubtful’ category from 20 (in score-level 

fusion model) to 23 TPs. It also improves the true positives 

of the third category,  ‘Mild,’ by 19 samples and the true 

positives of the ‘Moderate’ class by 6 samples. While the 

‘Normal’ category true positives are reduced from 597 to 

578, and the ‘Severe’ category is reduced by 2 samples. 

However, the fusion models reduced the individual models’ 

errors and improved their performance significantly. The 

meta-fusion model, for example, improves the performance 

of the best individual model (EfficientNetB0) by 4%, 2.8%, 

1.18%, and 1.1% for accuracy, precision, recall, and F1-

score, respectively. 

 
 

(a) (b) 

 

Figure 12: Confusion matrixes of the fusion models of the second dataset: (a) Score-level fusion, (b) meta-fusion. 

Figure 13 includes three examples of predicting three test 

samples using the individual and fusion models. As seen in 

Figure 12, the fusion model successes to classify all three 

samples. On the other hand, individual models failed to 

predict them all correctly. 
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Figure 13: Visual test of some individuals and the score-level fusion model using some test samples of the second dataset 

Comparison with related work: 

        In this section, the comparison with related work will 

be concentrated on the studies that utilize the same dataset 

to unify the comparison. Table 8 includes this detailed 

comparison taking into account the methodologies, the 

outcomes and the main consideration and limitations. 

 

Table 8: Comparison with related work 

Study Methodology Dataset Results & Notes 

(Du et al., 2018) 
Kellgren-Lawrence (KL), 

(ANN) 

Osteoarthritis Initiative 

(OAI) dataset 
AUC=0.822 to 0.903 

(Chen et al., 2019) VGG-19 
Osteoarthritis Initiative 

(OAI) dataset 
Accuracy= 69.7% 

(Ahmed & Mstafa, 2022) 
CNN, Transfer learning, PCA, 

and SVM 

Osteoarthritis Initiative 

(OAI) dataset 

AUC=0.854 

Precision=63.2% 

Recall=58.6% 

F1-score=59.6% 

Accuracy=62% 

(Mohammed et al., 

2023) 

VGG16, VGG19, ResNet101, 

MobileNetV2, 

InceptionResNetV2, and 

DenseNet121 

Osteoarthritis Initiative 

(OAI) dataset (five classes, 

three classes and two 

classes) 

For five classes: 

Accuracy=69%. 

(Bhateja et al., 2024) CNN-based ensemble method 
Osteoarthritis Initiative 

(OAI) dataset 

Accuracy=68% 

 

(Apon et al., 2024) 
VGG-19, Inception-V3, Da-VIT, 

GCViT and MaxViT 

Osteoarthritis Initiative 

(OAI) dataset 

Accuracy=66.14% 

AUC=0.835 

Current research 

Hybrid fusion DL models 

(Score-level, feature-level, and 

meta-fusion), CLAHE, SMOTE 

Balance 

Osteoarthritis Initiative 

(OAI) dataset 

Accuracy=70% 

Precision=69% 

Recall=65% 

F1-score=64 

AUC=0.923 

Kaggle OA dataset (1650) 

images 

Accuracy=90.61% 

Precision=91.23% 

Recall=90.47% 

F1-score=90.66% 

AUC=0.9858 

        Table 8 explores the studies that worked on the same 

dataset and proves that the current study outperforms all of 

them due to the following causes:1. In our study, the fusion 

of the best DL model is performed by reducing the individual 

errors and improving the performance, 2. In our study, the 

CLAHE preprocessing operation is applied to improve the 

contrast of the images, 3. The data balance applied to the 
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training set of the second dataset helps to prevent biasing to 

the dominant classes as much as possible. 

        It must be denoted that some pieces of research like a 

study by (Messaoudene & Harrar, 2024) utilized the same 

dataset but used only Grade0 and Grade1 of all datasets (only 

two stages) and achieved an accuracy of 94.59% which is 

normal since the main problem if the OAI dataset is the 

multi-level (grades) that makes the mission harder to be 

processed by best DL models. Another thesis master by 

(Rifat, 2024) utilized semi-supervised learning and deep 

learning on the same dataset but used only ‘healthy’, 

‘moderate’, and ‘severe’ categories, which facilitated the 

training process and registered an accuracy of 82%. 

CONCLUSION 

         In this study, a novel fusion framework of five robust 

deep learning models (EfficientNetB0, EfficientNetV2B0, 

ResNetRS101, RegNetY032, XceptionNet) was developed 

for the aim of knee osteoarthritis severity detection and 

stages classification. Five different severity stages were 

considered: normal, doubtful, mild, moderate, and severe. 

Two different open-access X-ray image datasets were 

utilized; the first one contains low data size, while the second 

one is imbalanced, and both datasets suffer from low 

contrast. To address such problems, the study suggested 

using specific data augmentation operations, CLAHE 

enhancement, and SMOTE-limited techniques. The feature-

level fusion, score-level fusion, decision-level fusion, and 

meta-based fusion of the best-trained DL models were also 

developed. As a result, many training and evaluation 

scenarios were derived. The results showed that the best two 

models were score-level fusion and meta-based fusion. The        

results also revealed that the severity classification accuracy 

among the five classes was 70% and 90.61% on both 

datasets, respectively. The categories with the best detection 

accuracy of the first dataset were the ‘severe’ and ‘moderate’ 

categories with 96.47% and 96.55% F1-score; while for the 

second dataset, the ‘normal’ and ‘moderate’ categories were 

the best ones with 80% and 83% F2-score, respectively. The 

main issue is that the second and third severity stages were 

very similar, and this limited the performance of the DL 

individual models. Although the proposed fusion framework 

enhanced the performance, it only partially solved this issue. 

Future studies must work on the issue of similarity between 

these two stages by developing hybrid symptoms and image-

based detection models. The study was also compared to the 

related work, and the comparison illustrated that the study 

outperforms all studies except those that developed binary 

classification or three-stage severity detection models. 
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