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ABSTRACT:  

Magnetic Resonance Imaging (MRI) has rapidly advanced and established itself as an indispensable tool in both the 

detection and diagnosis of several diseases, most notably brain tumors. The interpretation of MRI scans still largely relies 

on expert radiologists, which can be time-consuming and potentially subject to variability. Transfer learning (henceforth, 

TL) approaches show potential for improving diagnostic precision in medical imaging analysis. In this literature review, the 

potential of MRI scans in classifying and detecting various medical conditions, such as glioma and Alzheimer’s, is discussed 

alongside current algorithmic limitations. Current research indicates potential challenges in adapting existing supervised 

deep learning algorithms that process MRI images to more efficient approaches. The findings suggest a notable increase in 

the quality of detecting sub-pathologies, even with a scarcity of well-annotated images. This can potentially reduce the 

training cycle duration. When transfer learning is applied to diagnostic approaches, it may act as supplemental support for 

decision-making processes for tumorous growth detection, potentially reducing the time period for treatment and increasing 

effectiveness according to preliminary research. This review examines the expansion in transfer learning in MRI for the 

assessment and treatment of brain disorders through recent algorithms from the current literature. 

KEYWORDS: Transfer Learning, Machine Learning, MRI Image, Diagnose Diseases, Training Algorithm, Deep Learning. 

1. INTRODUCTION 

        The use of MRI has helped expand the scope of identifying 

and diagnosing conditions in brain tumor patients but the 

interpretation of such images still requires high levels of skill and 

expertise to appropriately analyze the data (Azeez & Abdulazeez, 

2024). It is also important to note that the traditional methods 

involve manual analysis, which even though works, probably 

leading to potential errors due to being time consuming. In 

relation to these issues, artificial intelligence (AI), alongside with 

machine learning, is being extensively researched and 

implemented. Transfer learning has emerged as a promising 

approach among machine learning methods. Transfer learning 

reduces the need for the resource heavy pre-trained models by 

leveraging knowledge from existing datasets, so it can accurate 

and efficient in regards to analyzing and detecting tumors that lie 

within the brain ( Abdulazeez & Rebar, 2024). 

        According to Alla and Athota (2022), transfer learning 

utilizes the knowledge acquired through the use of extensive 

datasets to improve the model’s performance on tasks where the 

amount of training data available is comparatively lesser. For 

medical imaging tasks, pre-trained models on huge image 

databases can be fine-tuned to identify MRI scan features (Alla 

& Athota, 2022). This methodology allows the training of models 

with a limited quantity of labelled data while increasing the speed 

of the training process so that actionable results can be obtained 

by the medical specialists in less time. Consequently, transfer 

learning may help address the imbalance in demand for accurate 

diagnostic devices and the issues pertaining to lack of availability 

of appropriate data in medical imaging (Disci et al., 2025). 

        Besides, the use of transfer deep learning in MRI scans goes 

beyond tumor detection and includes a number of other brain 

diseases such as Alzheimer’s and other neurodegenerative 

diseases (Sorour, 2024). With the help of deep learning methods, 

models are constructed that aim to reliably distinguish healthy 

brain tissue from diseased ones, potentially adding in timely 

diagnosis and treatment. The application of transfer learning into 

clinical settings could potentially help radiologists and 

neurologists to further improve the patient’s clinical outcomes in 

such areas as healthcare delivery. As the discipline develops, it is 

likely that AI algorithms integrated with medical images will 

help in improving diagnosis and management of various brain 

disorders ( Abdulazeez & Kittani, 2024). 

        This study is organized into several sections to provide a 

comprehensive review of transfer learning. Section Two delves 

into the complexities of transfer learning, highlighting its 

significance and implications, while also examining various 

techniques associated with it. Section Three offers the 

applications of transfer learning on medical image. Section Four 

addresses limitation or challenges faced transfer learning using 

medical images Section Five offers a thorough literature review 

that succinctly summarizes key findings from prior research 

published in the recent year with algorithms that considered to be 

novel. Section Six is dedicated to discussions and the 

presentation of results. Finally, Section Seven concludes the 

study and outlines future directions for research. 

Transfer Learning: 

        Transfer learning is one of the most important aspects of 

artificial intelligence and machine learning as it enables the 

transfer of knowledge from one domain to another which is 

related. It helps in dealing with the issue of lack of data by 

utilizing already trained models, which means that features have 

been trained on a source data set to perform well on a target task 

with few labeled data (Ali & Abdulazeez, 2024).  

        Transfer learning helps the user to be able to apply the 

knowledge gained in one domain and be able to apply it in a 

completely different context which is useful in cases such as 

when it is expensive or impossible to obtain a lot of labeled data. 

For example, with regard to computer vision, a model trained on 

large scale images can be utilized to help train on recognizing a 

different but related type of images which may lead to a faster 

training and better accuracy ( Başarslan  & Khaliki, 2024).
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Figure 1: Traditional ML vs. Transfer Learning Methods 

 

        The difference between traditional and transfer learning 

methods can be described in Figure 1-a. (The traditional machine 

learning). Separate models are trained for the source and target 

datasets, and these models do not interact. In the same (i.e., 1-b), 

the model is first trained on the source dataset, and the knowledge 

gained from this training is then used to inform and improve the 

model for the target dataset (Combs et al., 2023).

 

Figure 2: Traditional ML vs. Transfer Learning Methods 

 

According to transfer learning, the prerequisite of transfer is that 

there needs to be a connection between two learning activities. In 

practice, a system that has learned training from scratch can take 

a fair amount of time to generate output. However, a system that 

has gained a knowledge based on pre-trained system can produce 

output much faster, as shown in the example mentioned in Figure 

2 (Zhuang et al., 2020). 

        Because of the growing need of adaptive learning systems, 

transfer learning has become an overreaching concept crucial for 

technological advancements in various fields including natural 

language processing and autonomous systems. By utilizing the 

concept of transfer learning, researchers may be able to create 

robust models that can help AI to address increasingly complex 

tasks. As a result, advancements in the efficiency and 

optimization of AI may take place ( Abdulazeez & Sedeeq, 

2024). 

        According to survey conducted by Ali and Abdulazeez 

(2024), transfer learning can be categorized into four primary 

methods. They can help in understanding the different strategies 

and methodologies used in transfer learning to enhance model 

performance across various applications: 

 

1. Instance-Based Transfer Learning: This method involves 

training a model for the target domain using weighted 

combinations or resampled data from the source domain. It 

focuses on selecting the most informative instances from the 

source domain to improve learning in the target domain. 

2. Feature-Based Transfer Learning: This approach maps data 

from both the source and target domains into a shared feature 

space. It utilizes specific feature representations to facilitate the 

transfer of knowledge between domains. 

3. Model-Based Transfer Learning: This method refers to 

transferring models or model parameters across the source and 
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target domains. It includes algorithms that adapt pre-trained 

models to new tasks or domains. 

4. Relation-Based Transfer Learning: This approach 

emphasizes identifying relationships between the source and 

target domains and transferring information based on these 

connections. It often employs techniques like Markov logic 

networks to facilitate the transfer. (Ali & Abdulazeez, 2024; 

Zhou et al., 2021). 

Applications of Transfer Learning: 

        Transfer learning potentially enhances the performance of 

medical imaging tasks by allowing models to leverage previously 

learned features, especially when dealing with limited data. This 

approach may not only improve accuracy but can also potentially 

reduce the time and resources required for training models from 

scratch, making it a valuable tool in the medical field (Matsoukas 

et al., 2022; Meena et al., 2024; Mohammed et al., 2024). 

1. Disease Classification: Transfer learning helps classify 

diseases (like diabetic retinopathy and skin lesions) by fine-

tuning models pre-trained on large datasets (such as ImageNet) 

to work with smaller, domain-specific datasets (Shamshad et al., 

2024). 

2. Anomaly Detection: Transfer learning aids in detecting 

anomalies, such as masses or calcifications in mammograms, 

using datasets like CBIS-DDSM (Murugesan et al., 2024). 

3. Segmentation Tasks: Transfer learning is used in 

segmentation tasks, like tumor detection in MRI scans or organ 

delineation in CT images, by adapting models to smaller datasets 

(Shchetinin, 2024). 

4. Radiology: Transfer learning improves diagnostic 

accuracy in chest X-ray analysis by classifying conditions with 

datasets like CHEXPERT (Rustom et al., 2024). 

5. Histopathology: It also enhances the classification of 

histopathological images, such as detecting cancerous tissues, 

using datasets like PATCHCAMELYON (Vajiram & Senthil, 

2024). 

6. Multi-modal Imaging: Transfer learning can integrate 

information from different imaging modalities (e.g., MRI and CT 

scans), improving diagnosis by combining knowledge from 

diverse datasets (Gottipati & Thumbur, 2024). 

7. Real-time Applications: In time-sensitive scenarios 

like emergency medicine, transfer learning enables faster training 

and deployment of models, aiding quick decision-making 

(Dhakshnamurthy et al., 2024). 

8. Personalized Medicine: By adapting models to 

individual patient data, transfer learning can personalize 

diagnostic and treatment plans based on unique medical image 

characteristics ( Al-Azzwi, 2024 ; Matsoukas et al., 2022; 

Shamshad et al., 2024;) .  

Challenges of TL on Medical Images: 

        Transfer learning in medical imaging also faces notable 

challenges that include: 

1- Challenges of Data: Large volumes of data are necessary if 

transfer learning models are to reach their optimal performance. 

There are however many instances where enough data is not 

provided, thus, having an effect on the performance of such 

models (Gu, 2024).  

2- Retroactive Images: Enabling the usage of retroactive images 

in MRI may prove to be difficult to ML and DL models due to 

interference noise that these images may carry. Attempts to 

minimize such noise interference and improve image quality 

through the use of pre data processing steps lacks uniformity thus 

resulting in differing image quality standards (Muthuraj, 2024).  

3- Feature Demand: Although features may be automatically 

extracted by deep learning models, feature selection may remain 

an area lacking understanding. This could have an impact on the 

model performance due to attributing inclusion of many 

parameters and exclusion of a few (Salehi et al., 2023). 

4- Adequate Computing Resources: Ownership of high memory 

GPU based systems and large bandwidths has remained an 

obstacle to the masses. These provisions are not amenable to 

every researcher which in turn dampens the quality of their 

research (Al-Azzwi, 2024).  

5- Generation Problems: Possessing advanced data augmentation 

techniques that assist in improving smaller data sets in a bid to 

make generalized models is essential. 

        Nonetheless, several approaches in the literature emphasize 

only on increasing the amount of images, neglecting any 

relationships of space or texture, which may present issues during 

analysis (Kaifi, 2023). Such issues would make it apparent that 

transfer learning as a solution to classifying brain tumors is 

complex and these issues do require a research-based approach 

to be solved. 

Literature Review:  

        Machine learning methods typically require a significant 

quantity of labeled data for training, rendering them less feasible 

in situations where data is scarce or costly to get. Transfer 

learning overcomes this difficulty by enabling models to apply 

information acquired from a source domain with ample data to a 

target domain with little data, consequently improving 

performance and generalization. The following table presents a 

comprehensive analysis of novel transfer learning algorithms 

applied to medical MRI images for brain disease or tumor 

detection from recent literature. These studies were identified 

through systematic searches of major research platforms 

including Springer Nature, MDPI, ResearchGate, and Google 

Scholar. 

 

Table 1: Summary of the work performed by most of the research reviewed in this paper 

References Algorithm Database Advantage Limitation 

Z. Ullah et al. 

(2024) 

CNN, VGG-16, 

VGG-19, LeNet-5 

MRI images, synthetic 

data augmentation 

High accuracy (99.24%), 

effective feature learning, 

CAD system support 

Limited real patient data, 

reliance on synthetic 

datasets 

Nag et al. (2024) 

TumorGANet 

(Transfer Learning 

with GANs) 

7023 MRI images 

(gliomas, meningiomas, 

non-tumorous cases, 

pituitary tumors) 

High accuracy (99.53%), 

precision and recall 

(100%), robust data 

augmentation 

May not generalize well 

across all data types, 

potential for synthetic 

artifacts, high resource 

demand 

Bibi et al. (2024) 
Inception v4 model 

(Transfer Learning) 

figshare, SARTAJ 

dataset, and Br35H 

 

High accuracy (98.7%), 

effective feature 

extraction 

Limited dataset size (253 

images), potential 

misclassification risks 

Zubair Rahman et 

al. (2024) 
EfficientNetB2 BD-BrainTumor 

High accuracy, robust 

performance 99.83% 
Needs real-world validation 

Gopinadhan (2024) 

AD-TL method, 

MLP, CNN, DCNN, 

ResNet50, AlexNet 

Alzheimer's Disease 

Neuroimaging Initiative 

(ADNI) dataset 

High accuracy (98.99%), 

early detection, non-

invasive 

Requires extensive training 

data, potential overfitting 
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Pal et al. (2024) 

Convolutional Neural 

Networks (CNN), 

Inception V3, VGG-

19, Ensemble 

Learning 

Brain Tumor Image 

Segmentation Challenge 

dataset (3000 MRI 

images) 

High accuracy, improved 

performance with limited 

data, 98% accuracy 

achieved 

Requires extensive training 

data, potential overfitting on 

small datasets 

Mahmud et al. 

(2024) 

VGG16, VGG19, 

DenseNet169, 

DenseNet201 

(transfer learning) 

MRI OASIS scans 

High accuracy (96%), 

enhanced interpretability 

with XAI techniques 

Requires large datasets for 

training, and potential 

overfitting issues 

Ren et al. (2024) 

3D U-Net, 

Compound Loss 

Function 

BraTS 2023 

Improved accuracy, 

lesion-wise evaluation, 

Average Dice score: 

79%, 72%, 74% 

False positives in small 

connected components 

Ashraf et al. (2024) 
CNN, Transfer 

Learning 

ABIDE I, ABIDE II, 

ABIDE I+II 

Improved accuracy, less 

data required, 

79.09% accuracy, 

80.71% sensitivity, 

78.71% specificity 

Limited dataset size, data 

collection challenges 

Panigrahi et al. 

(2024) 

Modified 

DenseNet121, 

Transfer Learning 

Br35H: Brain Tumor 

Detection 2020 

High accuracy, 

computational efficiency, 

99.14% 

Limited dataset size, 

potential overfitting 

Srikrishna et al. 

(2024) 

Deep learning models 

(U-Net) 

Gothenburg H70 Birth 

Cohort, Uppsala 

University Hospital 

datasets 

Automated extraction of 

volumetric metrics, 

reduced manual analysis 

time, high accuracy (93% 

pre-shunt, 92% post-

shunt) 

Reliance on initial manual 

and automated labelling, 

potential variability in 

training data 

Natha et al. (2024) 

SETL_BMRI 

(ensemble of 

AlexNet and 

VGG19) 

Kaggle Brain Tumor 

MRI Dataset 

High accuracy, improved 

generalization, reduced 

overfitting, 97.02% 

accuracy, 97.30% recall, 

95.70% precision, 97.20 

F1-Score 

Requires significant 

computational power, may 

not generalize well to 

unseen data 

Vajiram and 

Senthil (2024) 

VGG-16, ResNet50, 

ResU-net 

TCIA Archives (MRI 

images) 

Effective feature 

extraction, high accuracy, 

ResNet50: 95.06% 

Requires large datasets, 

sensitive to noise 

M. S. Ullah et al. 

(2024) 

Hybrid deep learning 

model, Bayesian 

optimization, 

Quantum Theory-

based Marine 

Predator Algorithm 

Figshare dataset 

High accuracy, improved 

feature selection, 

addresses class 

imbalance, achieved 

accuracy of 99.67% 

Complexity of model, 

potential overfitting, 

reliance on data 

augmentation 

Raza et al. (2024) 

Deep Convolutional 

Neural Networks 

(CNNs), Principal 

Component Analysis 

(PCA), Stacking 

BTS (small dataset), BTL 

(large dataset) 

Enhanced classification 

accuracy, robust feature 

extraction, reduced 

dimensionality, accuracy 

of 94.34% on the BTS 

dataset and 99.89% on 

the BTL dataset. 

Difficulty in acquiring large 

datasets, potential 

overfitting on small datasets 

Reddy et al. (2024) 

Convolutional Neural 

Networks (CNN), 

Transfer Learning 

(VGG16, ResNet-50) 

Kaggle (MRI images 

dataset) 

Improved detection 

speed, accuracy, and 

efficiency in diagnosis, 

precision of 93.3%, 

Limited dataset size, 

potential bias in the testing 

set 

Dhakshnamurthy et 

al. (2024) 

Hybrid VGG16–

ResNet50, AlexNet, 

VGG16, ResNet-50 

Kaggle (3264 MRI 

images) 

High accuracy (99.98%), 

improved early detection, 

effective classification. 

Lack of empirical 

investigations, absence of 

elucidation tools 

Wageh et al. 

(2024) 

SVM, Random 

Forest, Decision 

Tree, XGB, Genetic 

Algorithm 

MRI brain images dataset 

Enhanced feature 

representation, improved 

accuracy, effective 

detection, achieved 

accuracy rates up to 

98.12% 

Requires extensive training 

data, computational 

complexity 

Nayak et al. (2024) EfficientNetB0, CNN 

3264 2-D MRI scans (4 

classes: no tumor, 

glioma, meningioma, 

pituitary) 

High accuracy (97.61%), 

effective tumor 

classification 

Potential information loss in 

deeper networks (e.g., 

VGG16) 

PANDIYAN et al. 

(2024) 

Deep Transfer 

Learning (CNN) 
3000 MRI scan images 

High accuracy, detailed 

tumor visualization, 

Overall accuracy: 96%, 

False negatives in some 

cases 
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Precision: 99%, Recall: 

99% 

Mehmood and 

Bajwa (2024) 

ConvNext 

architecture 
BraTS 2019 dataset 

High accuracy, effective 

feature extraction, 99.5% 

Limited to MRI sequences, 

requires pre-training 

Hsu et al. (2024) 
Transfer learning 

with MobileNetV2 

OCT volumes from 

patients diagnosed with 

glioma 

Fast classification, 

improved diagnostic 

accuracy, user-friendly 

interface, and the 

accuracy reported to be 

86.4% 

Limited dataset size, 

exclusion of certain image 

frames, and the need for 

model generalization 

Shchetinin (2024) 

TL-U-Net 

(DenseNet121 as 

encoder) 

Brain Tumor 

Segmentation (BraTS) 

dataset 

High accuracy, 

flexibility, low 

computational cost, Mean 

IoU: 91.14%, Mean Dice: 

94.26%, Accuracy: 

94.22% 

Unbalanced classes in 

image sets may affect 

accuracy metrics. 

Zia-ur-Rehman et 

al. (2024) 
DenseNet-201 AD5C dataset 

High accuracy, improved 

classification, 98.24% 

Requires large, high-quality 

data; overfitting risk; lack 

of interpretability 

Sorour et al. (2024) 

CNNs, LSTM, SVM, 

Transfer Learning 

(VGG16-SVM) 

MRI datasets for 

Alzheimer’s Disease 

classification 

High accuracy (99.92%), 

precision (100%), recall 

(99.50%) 

Relatively small data size; 

requires high accuracy in 

medical data 

Raina et al. (2024) VGG-16 (CNN) 
Brain MRIs for Tumor 

Classification 

High accuracy, efficient 

transfer learning, 

Validation accuracy 

~96.92% 

Requires large datasets, 

may not generalize well 

Rustom et al. 

(2024) 

Convolutional Neural 

Networks (CNNs) 

The Cancer Imaging 

Archive (TCIA) 

High accuracy in tumor 

detection; mimics 

radiologist analysis. The 

accuracy output was 

reported as 86.14% 

Limited demographic data; 

reliance on available MRI 

datasets 

Zhou (2024) 

Multi-scale CNN, U-

Net, Cascaded CNN, 

Heuristic methods, k-

Space deep learning, 

ML-KCNN 

BraTS (Brain Tumor 

Segmentation) dataset 

Improved accuracy (e.g., 

97.3%), tailored 

treatment plans, 

enhanced diagnostic 

precision. 

Computational complexity 

(high), potential for false 

positives (variable), 

challenges with missing 

modalities (variable) 

Shedbalkar and 

Prabhushetty 

(2024) 

UNet, Chopped 

VGGNet 

MRI images of Glioma, 

Meningioma, Pituitary 

tumors (3064 images 

total) 

High accuracy, non-

invasive classification 

aids radiologists. Overall 

accuracy: 98.4%, highest 

accuracy for Pituitary: 

99.45% 

Dependency on the quality 

of input images, potential 

overfitting 

Bhardwaj et al. 

(2024) 
Fine-tuned VGG16 

Publicly available brain 

MRI dataset 

Automated diagnosis, 

high accuracy, 97% 

Requires large datasets for 

training 

Ravikumar et al. 

(2024) 

Convolutional Neural 

Network (CNN) 

TCGA-LGG and TCIA 

Datasets 

Early detection, high 

accuracy (over 95%) 

Time-consuming 

preprocessing, potential for 

human error in manual 

analysis 

Murugesan et al. 

(2024) 

Ensemble deep 

learning models (e.g., 

BTGC, 

InceptionResNetV2) 

Six clinical datasets for 

brain tumor detection and 

classification 

High accuracy, improved 

diagnostic precision, 

user-friendly integration, 

Up to 99.92% for tumor 

classification 

Potential overfitting, need 

for extensive clinical 

validation 

Kumar et al. (2024) 

AlexNet, VGG19, 

ResNet152, 

DenseNet169, 

MobileNetv3 

Dataset of 3604 MRI 

images (meningiomas, 

gliomas, pituitary tumors) 

High accuracy, efficient 

with limited labelled 

data, improved diagnostic 

speed, up to 99.75% with 

MobileNetv3 

Potential biases in training 

data, generalization issues 

to external datasets 

Ali et al. (2024) 
26-layer CNN model 

with transfer learning 

Alzheimer’s dataset, 

ADNI_Extracted_Axial 

High accuracy, automatic 

feature extraction, 

minimal training time, 

99.70% for dementia 

sub-classification, 

97.45% for MRI 

classification 

Potential confounding 

variables, reliance on 

dataset quality 

Naveen and 

Nagaraj (2024) 

VGG-19, ResNet-50, 

Inception V3 

(transfer learning) 

ADNI (Alzheimer's 

Disease Neuroimaging 

Initiative) 

Improved classification 

accuracy, effective early 

detection, Inception V3: 

97.54%, VGG-19: 7.16% 

Class imbalance, potential 

overfitting, dependency on 

the quality of MRI data 
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ResNet-50: 98.70% 

Shah (2024) 
CNN-based 

DenseNet with PCA 

Kaggle Brain Tumor 

Detection Dataset 

Reduces dimensionality, 

improves accuracy up to 

97% 

Limited dataset size may 

require larger datasets 

Albalawi et al. 

(2024) 

Convolutional Neural 

Networks (CNNs) 

Kaggle Brain Tumor 

MRI Dataset 

High precision and recall; 

effective tumor type 

classification; 

generalization capability, 

Accuracy 98% 

Data privacy concerns, 

limited annotated datasets, 

and challenges in 

generalization 

Khaw and 

Abdullah (2024) 

Convolutional Neural 

Networks (CNN), 

VGG16 

Open Access Series of 

Imaging Studies (OASIS) 

Quick and accurate 

diagnosis; 98.56% 

accuracy 

Challenges in classifying 

MCI; need for multimodal 

approaches 

Rao et al. (2024) 
ResNet50v2, 

InceptionResNetV2 

3256 MRI images from 

various sources 

High accuracy, 

automated detection, 

minimizes human error, 

92.15% training 

accuracy, 91.25% testing 

accuracy. 

Potential overfitting, 

reliance on the quality of 

input data 

Kako et al. (2024) 
U-Net and transfer 

learning 

High-Resolution Fundus 

(HRF) Image Database 

Enhanced segmentation 

accuracy; interpretable 

saliency maps, 97.90% 

on DRIVE dataset 

Small dataset, 

generalizability concerns, 

complexity in clinical use 

Gottipati and 

Thumbur (2024) 

VGG16, Inception 

V3, ResNet 50 
Meme-CEUS dataset 

Improved accuracy, 

enhanced feature 

extraction, effective 

tumor classification, 

98.80% accuracy, 

92.96% sensitivity, 

93.60% precision 

Potential dependency on 

data quality and complexity, 

need for further 

optimization 

Alotaibi et al. 

(2024) 

CVG-Net (2D-CNN, 

VGG16) 

Multi-class MRI image 

dataset (21,672 images) 

Enhanced diagnostic 

accuracy, automated 

feature extraction, High 

accuracy of 96% 

Computationally expensive, 

requires hyperparameter 

tuning 

Kilani et al. (2024) 

Convolutional Neural 

Network, 

Discriminative 

Restricted Boltzmann 

Machine 

BCI Competition III 

Dataset II, RSVP Dataset 

Reduces training samples 

needed, efficient transfer 

learning, Achieved 97% 

average accuracy 

Calibration time-

consuming, subject-specific 

ERP variability 

Neamah et al. 

(2024) 

Improved ResNet50 

with Spatial Pyramid 

Pooling (SPP) 

MRI images for brain 

tumor classification 

High accuracy, effective 

feature extraction, 

enhanced generalization, 

99.02% accuracy, 

precision 0.996, recall 

0.991 

Dependency on quality of 

training data, potential 

overfitting 

 

2. DISCUSSION 

        The analysis of the reviewed research papers indicates 

patterns in the deployment of deep learning algorithms for 

biomarker identification for brain disorders with the help of 

medical MRI images. There is a notable emphasis on the 

convolutional neural networks and their accuracy in feature 

extraction. Moreover, transfer learning has become an essential 

strategy to improve performance metrics while working with a 

limited number of samples by allowing customization of multiple 

pre-trained models with extensive datasets. The most frequently 

reported algorithms include VGG-16, ResNet-50, DenseNet and 

Inception, models with accuracy exceeding 95% in controlled 

research setting, while several studies reported extremely high 

accuracy values. It is important to note that these results are often 

achieved in specific research contexts and may not directly 

translate to clinical performance 

There are also other noteworthy results including CNNs with 

transfer learning, for Alzheimer’s disease 99.92% of the 99% was 

attributed to the classification, while ResNet-50 99.93% of the 

accuracy for brain tumor percent was attributed to its inception. 

        A recurring theme across the studies is that the primary 

infrastructure of these algorithms is high accuracy and their 

ability to robustly learn relevant features and augment data. In 

distinguishing between healthy and diseased tissues many 

models demonstrate strong performance in research settings, 

implying that they may be effective tools to support clinical 

decision-making, through further validation is needed. The 

strength of CNNs is the ability to eliminate the necessity for 

manual feature engineering by learning relevant features from 

MRI images, autonomously augmenting the diagnostic process. 

        Synthetic data generation can boost the training datasets and 

thus potentially increase the robustness and generalization of a 

model. However, several important restrictions still exist such as 

the issue of small size datasets which can contribute to overfitting 

and generalizing problems. Inception v4 was constrained in its 

use by such a limited number of images, 253 to be exact.         

Moreover, while synthetic datasets can act as compensatory data, 

there is danger of including outliers that do not fit well in 

practical situations. The cost of training very sophisticated 

models is also significant, especially in the clinical area with 

relatively low computational resources. 

        Transfer learning is a promising method as it allows 

researchers to use models that have been trained on large 

datasets. This may not only speed up the training processes but 

also potentially improve the accuracy in instances where there are 

limited large annotated datasets available. The combined use of 

transfer learning with DenseNet and EfficientNet models has 
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shown improvements in the accuracy of functional MRI image 

diagnosis of the brain making them popular in modern research.     

Recent research demonstrates that transfer learning approaches 

can enable more efficient algorithm development for brain 

disease detection compared to training models from scratch. 

        Preliminary work in medicine is quite encouraging so far 

with respect to algorithmic performance. However, it will be 

important to deal with the bottlenecks associated with the 

availability of datasets as well as computing facilities for these 

technologies to be operational in clinical settings. Additionally, 

more robust clinical validation studies are needed to bridge the 

gap between research performance throughout theoretical and 

computational studies when compared to real-world clinical 

utilities. 

CONCLUSION 

        This review has examined how transfer learning approaches 

can potentially enhance the diagnosis of neurological conditions 

through MRI image analysis. Due to the fact that MRI images are 

utilized for diagnosing various ailments, transfer learning can aid 

in tackling the shortage of labeled data. It appears that this 

approach can help meet future needs of the medical diagnosis 

field, given the constant shortage of medical data availability due 

to fragmented healthcare systems.  

        Additionally, transfer learning does not restrict itself to 

tumor detection, but it is equally adaptable in diagnosing various 

types of Alzheimer’s and other neurological conditions as well.                 

Several applications have already been developed that can 

compare tissues of healthy individuals against those of patients 

developing differential models aimed towards assisting in 

accurate diagnosis alongside timely treatment. 

         Finally, the novel algorithms reviewed in this paper 

demonstrate potential for supporting medical practitioners in 

their diagnostic word, where clinical validation remains a crucial 

next stage. Nonetheless, the review also recognizes the 

drawbacks and difficulties of transfer learning such as 

dependence on simulated datasets, and a shortage of data on real 

patients.  

        As AI continues to develop in conjunction with the realm of 

medical imaging, the partnership between these two sectors will 

be critical in furthering the goal of understanding and treating 

disorders affecting the brain. In the future, studies ought to take 

up the challenge of overcoming those barriers while also looking 

into the possibility of transfer learning models on medical images 

without losing out on the potential advantages, where this 

technology holds in a clinical setting. This will require 

interdisciplinary collaboration between AI researchers, medical 

imaging specialists, clinicians, and ethicists to ensure that 

technological advancements translate to improved patient care. 
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