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ABSTRACT: 

Identifying influential nodes in networks is a key challenge in understanding how information spreads. While numerous algorithms 

have been proposed in the literature, many struggle with either limited spreading efficiency or high computational complexity. To 

address this challenge, we present Layered Clustering Degree (LCD), an effective method for identifying a set of well-distributed 

spreaders with high spreading ability, while maintaining a computational complexity of 𝑂(𝑉 + 𝐸), making it highly suitable for large-

scale networks where both efficiency and computational complexity are essential. The LCD approach operates in three main steps: (1) 

Layering, which organizes nodes hierarchically based on their shortest distances from a designated starting node; (2) Clustering, which 

groups nodes within each layer into connected substructures to capture local connectivity patterns; and (3) Degree computation and 

ranking, where node degrees are computed within the entire network (globally) but ranked iteratively across clusters (locally) to ensure 

maximum coverage and minimal overlap among selected spreaders. The significance of layered clustering in LCD method, is iteratively 

distributing spreaders across clusters to avoid over-representation of high-degree nodes from a single region of the network. 

Experimental results using the SIR model on nine real-world networks show that LCD outperforms several popular methods, including 

VoteRank, K-shell, VoteRank++, ClusterRank, H-Index, EnRenew, and DegreeRank, in terms of spreading rate and final affected 

scale. 
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1. INTRODUCTION 

        Identification of influential nodes in complex networks is a 

very challenging task with extensive applications in numerous 

fields. In social networks, the recognition of influential 

individuals can greatly facilitate information diffusion (Lu et al., 

2011; Chen et al., 2014), more efficient conduits for the 

dissemination of ideas (Centola, 2010), trends, or advertising 

campaigns (Sheikhahmadi and Nematbakhsh, 2017). In 

epidemiology, the identification of crucial nodes in disease 

networks is of paramount importance, as it provide insights for 

controlling and preventing the spread of infectious diseases 

(Pastor-Satorras et al., 2015; Ouboter et al., 2016; Buscarino et 

al., 2008; Pastor-Satorras and Vespignani, 2001). Thus, this 

problem is a foundation for network optimization, information 

propagation, and public health strategies. 

        A wide range of algorithms has been developed in the 

literature to identify influential nodes in complex networks, each 

offering unique approaches to the challenge. Some algorithms 

consider node’s local information, such as degree centrality 

(Freeman et al., 2002) which counts the number of node’s direct 

neighbors as its influence. H-index (Lu et al., 2016) considers 

second order neighbors as node's significance. Based on degree 

centrality, LocalRank (Chen et al., 2012) takes into account 

node's 4-th order neighbors. Furthermore, Liu et al. proposed a 

neighborhood centrality measure that integrates a node's 

centrality and its neighbors' centralities in two steps (Liu et al., 

2016). They showed that a 2-step neighborhood provides the best 

balance between computational cost and ranking performance, 

and extending beyond that provides limited or negative 

improvements in accuracy. ClusterRank (Chen et al., 2013) 
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combines clustering coefficient and Degree centrality to measure 

node's importance in spreading. Kitsak et al. introduced the k-

shell decomposition method, which ranks influential nodes based 

on their structural position, rather than their direct connections 

(Kitsak et al., 2010). This method decomposes the network into 

hierarchical layers in which nodes with higher k-shell values 

occupy the core position of the network. The method suggests 

that the centrality of a node relies primarily on its position in the 

network structure, with the most central nodes being those in the 

innermost shells. The k-shell method, however, does not give a 

unique ranking because multiple nodes may share the same k-

shell values. To avoid this drawback, Bae and Kim (Bae and Kim, 

2014) suggested using coreness centrality, which takes into 

consideration the k-shell values of adjacent nodes. Zeng and 

Zhang presented algorithm for ranking nodes by decomposing 

networks in a mixed degree decomposition process (Zeng and 

Zhang, 2013). Chen et al. proposed the DegreeDiscount 

algorithm (Chen et al., 2009), which simplifies the process by 

reducing the degree of a chosen node's neighbors. 

        Local metrics, while straightforward, tend to be less 

effective due to their neglect of the broader network structure. 

Common global metrics, such as closeness centrality (Sabidussi, 

1966), betweenness centrality (Freeman, 1977), and Katz 

centrality (Katz, 1953), excel in identifying influential nodes but 

are associated with high computational costs. As a result, they are 

often considered impractical for large-scale networks. 

        Recently, many other algorithms based on various heuristics 

and ideas have been proposed (Guo et al., 2020; Liu et al., 2021; 

Wang et al., 2022; Zhao et al., 2023; Xu and Dong, 2024; Yang 

et al., 2024). Zhang et al. introduced a method called VoteRank, 

aimed at identifying influential spreaders in complex networks 

http://journals.uoz.edu.krd/
http://sjuoz.uoz.edu.krd/
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(Zhang et al., 2016). This method involves node selection 

techniques designed to minimize overlapping influence at both 

individual and group levels. Kumar and Panda developed this 

approach further with the Neighborhood Coreness approach, 

which incorporates the k-shell values of the neighbors to increase 

the resolution of VoteRank (Kumar and Panda, 2020). Despite 

improvements in these methods, overlapping influence areas 

between spreaders has remained a persistent issue. Liu et al. 

proposed the new concept of VoteRank++ to improve the 

detection of influential nodes in complex networks (Liu et al., 

2021).  VoteRank++ assigns voting weights based on whether the 

nodes have the same degree or different degrees, and the degree 

of closeness between these nodes is determined by the influence 

that a node can have on its neighbors. Guo et al. Introduced the 

EnRenew algorithm, which improves the node selection based 

on information entropy (Guo et al., 2020). Given the initial 

spreading ability as the entropy of each node, the algorithm 

selects the nodes whose entropy is maximum and iteratively 

updates the spreading capability of all reachable nodes by 

reducing their influence using an attenuation factor until the 

desired expected number of influential nodes is selected. 

        Despite the advantages of current methods, an essential 

challenge remains in balancing the effectiveness of information 

spreading with computational efficiency. Additionally, current 

methods generally exhibit a critical limitation in the potential 

redundancy of influence ranges when the identified spreaders are 

close to each other. This overlap of influence areas reduces the 

overall influence efficiency of chosen influential nodes, since 

their influence areas intersect instead of reaching out to 

unexplored regions of the network. This proximity relation 

among highly ranked nodes can drastically decrease the overall 

coverage and performance of information dissemination.  

 To address these challenges, we propose the Layered 

Clustering Degree (LCD) method, a simple yet effective 

approach to influential node identification. LCD works in three 

major steps.    Firstly, layering process positions nodes in a 

hierarchy according to their minimum distances from any given 

starting node, usually the one with the highest eccentricity from 

any random starting node. This step splits the network into layers, 

providing a structured framework for analyzing connectivity. 

Then, in the clustering phase, it groups nodes within each layer 

into connected substructures to reveal local connectivity patterns 

and to ensure balanced influence distribution. Finally, in the 

degree computation and ranking step, node degrees are computed 

globally in the whole network, but ranking is performed 

iteratively within clusters. This new approach prevents the over-

representation of high-degree nodes from one cluster and allows 

the spreading of influential nodes across the network. Iterative 

ranking is important, with maximum coverage and minimum 

redundancy, leading to effective influence propagation. We 

perform comprehensive experiments on nine real-world 

networks and show that LCD outperforms state-of-the-art 

methods, such as VoteRank, K-shell, VoteRank++, ClusterRank, 

H-Index, EnRenew, and DegreeRank, in terms spreading rate and 

final influenced scale. Moreover, our method addresses the 

computational efficiency limitations of existing algorithms. 

While methods like VoteRank++ may achieve good spreading 

results but suffer from high computational costs, LCD maintains 

better spreading performance with a more efficient time 

complexity of 𝑂(𝑉 +  𝐸), making it practical for large-scale 

network analysis. Additionally, experimental results show that 

LCD significantly outperforms traditional degree centrality, with 

the top-k influential nodes identified by LCD achieving 

substantially wider and faster spreading. The source code for 

LCD, along with documentation and experimental results, is 

publicly available at GitHub. 

 

 

 

2. PROPOSED METHOD AND MATERIALS 

Preliminaries 

        Consider a connected, undirected network 𝐺 =  (𝑉, 𝐸), 

where 𝑉 and 𝐸 denote the set of nodes and edges in the network 

respectively, 𝑛 and 𝑚 to will be used Interchangeably to denote 

the number of nodes and edges, respectively. The distance 

between nodes 𝑢 and 𝑣 , denoted as 𝑑𝐺  (𝑢, 𝑣), is the number of 

edges in the shortest path connecting them. The eccentricity of a 

node 𝑣, denoted by 𝑒𝑐𝑐(𝑣), is the largest distance from 𝑣 to any 

other node, i.e., 𝑒𝑐𝑐(𝑣) = 𝑚𝑎𝑥𝑢∈𝑉𝑑𝐺(𝑢, 𝑣). For a node 𝑣 of 𝐺, 

𝑁(𝑣)  =  {𝑢 ∈  𝑉 ∶  𝑢𝑣 ∈  𝐸} is called the neighborhood of 𝑣.  

 

        The concept of layered clustering, introduced by Chepoi and 

Dragan (Chepoi and Dragan, 2000), provides a framework for 

partitioning the nodes based on both distance and connectivity 

patterns. Given a starting node 𝑠, the nodes of 𝐺 are first divided 

into distance layers, and each layer is further partitioned into 

clusters. Two vertices 𝑢 and 𝑣 within the same layer are grouped 

into the same cluster if they are connected by a path that uses only 

nodes within the same or higher layers. More formally, a layering 

of a graph 𝐺 =  (𝑉, 𝐸) with respect to a start node 𝑠 is the 

decomposition of 𝑉 into 𝑟 +  1 layers, where 𝑟 =  𝑒𝑐𝑐(𝑠) 

 

𝐿𝑖  (𝑠) = {𝑢 ∈  𝑉: 𝑑𝐺   (𝑠, 𝑢) = 𝑖},   𝑖 = 0,1, … , 𝑟 

 

A layered clustering of G, denoted as 

𝐿𝐶(𝐺, 𝑠) = {𝐿𝑖
1, … , 𝐿𝑖

𝑝𝑖  ∶ 𝑖 = 0, 1, … , 𝑟} 

 

partitions each layer 𝐿𝑖  (𝑠) into clusters 𝐿𝑖
1  , . . . , 𝐿𝑖

𝑝𝑖
 such that two 

nodes 𝑢, 𝑣 ∈ 𝐿𝑖  (𝑠) belong to the same cluster 𝐿𝑖
𝑗
 if and only if 

they can be connected by a path outside the ball 𝐵𝑖−1 (𝑠) of 

radius 𝑖 −  1 centered at 𝑠. Here, 𝑝𝑖 is the number of clusters in 

layer 𝑖. It was shown in (Chepoi and Dragan, 2000) that for a 

given graph 𝐺, a layered clustering can be found in 𝑂(𝑛 +  𝑚) 

time. See Section 3.1 for an example and further insights into 

layered clustering. 

Spreading Model 

        The Susceptible-Infected-Recovered (SIR) model (Tao et 

al., 2006) is a widely used epidemic spreading model for 

simulating and analyzing propagation dynamics in networks, 

such as disease outbreaks (Anderson and May, 1991; Hethcote, 

2000; Buscarino et al., 2008), information diffusion (Zhao et al., 

2013), and rumor spreading (Zhao et al., 2013). Recently, this 

model has been frequently used for evaluating the performance 

of influential nodes identification algorithms in complex 

networks (Kitsak et al., 2010; Zhang et al., 2016; Guo et al., 

2020; Liu et al., 2021; Yang and Xiao, 2021). Each node in the 

network can exist in one of three states: Susceptible (S), capable 

of receiving the information or infection; Infected (I), actively 

spreading the information or disease; and Recovered (R), which 

no longer participates in the spread. There are various adaptations 

of the SIR model that differ in how infected nodes interact with 

their neighbors, such as the limited contact variation (Zhang et 

al., 2016; Guo et al., 2020) and the full contact variation (Wang 

et al., 2023; Liu et al., 2021). In this study, we adopt the limited 

contact variation.  

        Initially, a selected set of nodes (seed nodes) are marked as 

infected, while all other nodes are susceptible. During each time 

step t, an infected node transmits the information or infection to 

its susceptible neighbors with a probability 𝜇 (infection 

probability) and transitions to the recovered state with a 

probability 𝛽 (recovery probability). The process terminates 

when no infected nodes remain in the network, indicating a 

steady state. The infected rate 𝜆 =   𝜇/β  plays a critical role in 

determining the spread’s speed and scale. To ensure meaningful 

https://github.com/Abdulhakeem135/lcd
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comparisons in experiments, the infection probability is typically 

set to 𝜇 =  1.5𝜇𝑐, where 𝜇𝑐   = (< 𝑘 >)/(< 𝑘2 >  −< 𝑘 >) is 

the spreading threshold calculated based on the network’s 

structural properties (Castellano and Pastor-Satorras, 2010), <
𝑘 > and < 𝑘2 > denote the average degree and the second order 

average degree, respectively. Simulations are run multiple times 

to account for randomness, and the results are averaged for robust 

evaluation of spreading efficiency. The SIR model’s simplicity 

and effectiveness make it a popular tool for evaluating the 

influence of nodes and the performance of influential nodes 

identification algorithms in complex networks. Metrics based on 

the spreading scale under the SIR model are detailed in Section 

2.2. 

LCD Algorithm 

        In this section, the Layered Clustering Degree (LCD) 

algorithm is introduced as an efficient method for identifying 

influential nodes in complex networks. The LCD algorithm is 

inspired by the layered clustering principle, as introduced in 

(Chepoi and Dragan, 2000), that emphasizes hierarchical 

network analysis by partitioning graphs into layers and clusters 

reflecting the core structure of the network (see Section 2.1 for 

more details). Building on this concept, the LCD algorithm 

combines hierarchical layering, clustering, and degree-based 

ranking to achieve balanced and effective node influence 

identification. The LCD algorithm tackles the drawbacks of 

traditional algorithms, such as redundancy in selected spreaders 

and lack of coverage across the network, in a systematic manner 

while being computationally efficient. LCD not only finds 

globally influential nodes but also spreads these nodes over 

various parts of the network. This balanced approach improves 

the efficiency of spreading processes such information diffusion, 

epidemic control, and resource optimization. 

        The algorithm starts with the layering step by dividing the 

network into hierarchical layers based on their shortest distances 

from a designated starting nod. This starting node is typically 

chosen as the one with the maximum eccentricity relative to a 

randomly selected initial node. Then the clustering step groups 

nodes within each layer into connected substructures to capture 

local connectivity patterns and guarantee balanced influence 

distribution. Lastly, in the degree calculation and ranking step, 

node degrees are calculated globally from the whole network, but 

ranking is done iteratively on a per-cluster basis. By computing 

degrees globally, the approach prevents underestimating a node's 

influence due to clustering localized effects. This iterative 

process of ranking round by round guarantees that influential 

nodes are spread out across the network while their context is 

preserved in their respective layers and clusters. By prioritizing 

the highest degree nodes in each cluster, the LCD algorithm 

mitigates the issue of multiple high-degree nodes from the same 

cluster (from the same localized area in the network) dominating 

the rankings, ensuring broader coverage. For further clarity, an 

illustrative example can be found in Section 3.1. 

 

A detailed step-by-step explanation of the LCD algorithm is 

presented below. 

1. Layering: The LCD algorithm begins by organizing the 

network into hierarchical layers. To do that, randomly select 

an initial node 𝑤 from the graph and then a starting node 𝑠 with 

the maximum eccentricity from 𝑤 is identified to ensure that 

the layering process captures the global structure of the 

network. 

▪ Using Breadth-First Search (BFS) algorithm from 𝑠, the 

shortest paths from this node to all other nodes are computed. 

▪ Nodes are then grouped into layers based on their distance 

from the starting node s. The 𝑖𝑡ℎ layer contains nodes whose 

distance from the 𝑠 is exactly 𝑖. 
2. Clustering: Once the layers are established, the algorithm 

creates clusters within each layer to group nodes with strong 

local connectivity. Divide each layer into clusters such that two 

nodes 𝑢 and 𝑣 belong to the same cluster if they are connected 

by a path using only nodes in the same or higher layers. 

▪ For each layer, a subgraph is constructed consisting of the 

nodes in the layer and the edges between them. 

▪ BFS traversal is performed within each subgraph to identify 

connected components, which serve as the clusters for the 

layer. 

3. Degree computation and ranking: Within each cluster, 

compute the degrees of its nodes across the entire network 

(globally), then sort the nodes in descending order of their 

degrees to generate a sorted list of key-value pairs (node, 

degree) for each cluster. The ranking process operates in 

iterative rounds as follows: 

▪ For each cluster, the node with the highest degree is selected, 

appended to a temporary list, and removed from the cluster. 

▪ Nodes in the temporary list are sorted in descending order of 

their degrees. 

▪ This sorted list is appended to the overall ranking list 𝑅. 

▪ The process repeats until all nodes are ranked, ensuring that 

nodes with high degrees in the same cluster are given turns to 

be included in 𝑅 over successive rounds. 

Complexity Analysis 

        The time complexity of the LCD algorithm is mainly 

dominated by three parts: the computation of layers, clustering, 

and degree computation. Layer computation requires computing 

shortest paths from a given starting node which has a complexity 

of 𝑂(𝑛 +  𝑚) using BFS for a graph with 𝑛 nodes and 𝑚 edges.  

The starting node can be discovered in O(𝑛 +  𝑚) time. 

Clustering involves creating subgraphs and performing BFS 

traversal per layers. This step’s complexity depends on the 

number of nodes and edges in each layer. If the number of layers 

is 𝛼, which is bounded by the graph’s diameter, and each layer 

contains an average of 𝑛𝐿 nodes, the clustering can be computed 

in 𝑂(𝛼(𝑛𝐿   +  𝑚𝐿)), where 𝑚𝐿 represents the edges within each 

layer’s subgraph. Finally, computing the degree of every node in 

every cluster requires no more than 𝑂(𝑚) in the worst case, since 

a node cannot simultaneously belong to multiple different 

clusters. Putting these steps together, the total complexity of the 

LCD algorithm is 𝑂(𝑛 +  𝑚). 

Performance Metrics 

        To evaluate the effectiveness of the proposed approach and 

compare it with existing methods for identifying influential 

nodes, we utilize three key metrics proposed in (Zhang et al., 

2016). The first metric, referred to as the infection scale 𝐹(𝑡), is 

used to measure the propagation of information diffusion within 

a network based on the SIR model. At any given time 𝑡, the 

infection scale is the total number of infected and recovered 

nodes in the system. This metric is considered an important 

indicator of the effectiveness of the spreader of selection 

algorithm. Mathematically, it is expressed as 

 

𝐹(𝑡)  = (𝑛𝐼(𝑡)    +  𝑛𝑅(𝑡) )/𝑛   

  

        Where 𝑛𝐼(𝑡)  𝑎𝑛𝑑 𝑛𝑅(𝑡)   denote the number of infected and 

recovered nodes at time 𝑡, respectively. A larger 𝐹(𝑡) means 

more nodes have been affected by the initial influential nodes, 

while a shorter t indicates that these nodes propagate influence 

more quickly throughout the network. The second metric, called 

the final infected scale 𝐹(𝑡𝑐) which is used to measure the total 

number of nodes that have been affected when the system is 

stabilized. This metric considers all nodes that were infected and 

had recovered by the time 𝑡𝑐, at which there no infected nodes 

left in the network. It is calculated as 
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𝐹(𝑡𝑐)  = 𝑛𝑅(𝑡𝑐 ) /𝑛   

 

        Where 𝑛𝑅(𝑡𝑐 )  denotes the number of recovered nodes at 

time 𝑡𝑐. A higher 𝐹(𝑡𝑐) value indicates a stronger spreading 

capacity of the initial nodes.  

 Finally, the average distance between spreaders, denoted 

as 𝐿𝑠, which is introduced to ensure that the selected spreaders 

are distributed across the network. If spreaders are too close 

together in certain areas, other parts of the network might be left 

undiscovered and so limiting the overall coverage. To prevent 

this, 𝐿𝑠  is computed as the average shortest path length among 

the chosen spreaders, ensuring they are spread out as much as 

possible to improve information dissemination. It is formally 

defined as  

 

𝐿𝑠 =
1

|𝑆|(|𝑆| − 1)
∑ 𝑑(𝑢, 𝑣)

𝑢,𝑣∈𝑆,   𝑢≠𝑣

 

        Where 𝑑(𝑢, 𝑣) denotes the shortest path distance between 

nodes 𝑢 and 𝑣, and |𝑆| is the number of selected spreaders. 

Together, these metrics provide a comprehensive assessment of 

both the dynamic and structural aspects of the spreader selection 

process. 

 

 
 

3.  EXPERIMENTAL RESULTS AND EVALUATION 

        To evaluate the performance of our proposed LCD method, 

we conducted a comparative analysis against several state-of-the-

art approaches, including VoteRank (VR) (Zhang et al., 2016), 

VoteRank++ (VRP) (Liu et al., 2021), DegreeRank (DR) 

(Freeman et al., 2002), K-shell (KS) (Kitsak et al., 2010), H-

index (HI) (Lu et al., 2016), ClusterRank (CR) (Chen et al., 

2013), and EnRenew (En) (Guo et al., 2020).  This comparison 

highlights the effectiveness of LCD in identifying influential 

spreaders and maximizing network influence under various 

conditions. A step-by-step demonstration of LCD is first 

presented using the Karate network to illustrate its functionality, 

providing a clear and structured example. This is followed by the 

introduction of the dataset and a presentation of the evaluation 

results. 

An Example Network: Karate 

 In this section, we use the Karate Network as an example 

to explain the LCD method in detail. Figure 1 (a) depicts the 

Karate Network, which consists of 34 nodes and 78 edges, 

representing the relationships and interactions within a karate 

club. Each node corresponds to a member of the club, and edges 

indicate friendships or connections between members. Nodes 

highlighted in orange represent those with maximum 

eccentricity, where LCD method will select one of them as the 

starting node one. In this example, node 17 is chosen as the 

starting node.  

        From this starting point, we build layers in the network 

based on the shortest-path distances from node 17. Nodes directly 

connected to the starting node form the first layer, nodes 

connected to the first layer form the second layer, and so on. This 

approach creates a hierarchical structure, with nodes organized 

into layers that represent their relative distances from the starting 

point. Furthermore, nodes with the same color in Figure 1 (a) 

belong to the same layer, visually emphasizing the layered 

structure.  

        Within each layer, nodes are further grouped into clusters 

based on their connectivity patterns. Specifically, two nodes 𝑢 

and 𝑣 belong to the same cluster if they are connected by a path 

using only nodes in the same layer or upper layers. Figure 1 (b) 

shows the identified clusters and their corresponding nodes. To 

enhance clarity, we show the identified clusters in layering tree 

in Figure 1 (b), a concept that has been introduce in (Chepoi and 

Dragan, 2000), which provides an abstract representation of these 

clusters and their hierarchical relationships. A layering tree, 

𝑇(𝐺, 𝑠), of a graph G with respect to a layering partition is a graph 

whose nodes represent the clusters of the layering partition. Two 

nodes (clusters) 𝐶1 and 𝐶2 in the layering tree are connected by 

an edge if there exists a node 𝑢 ∈ 𝐶1 and a node 𝑣 ∈  𝐶2 such that 

(𝑢, 𝑣) is an edge in the original graph 𝐺. Colors in the layering 

tree correspond to clusters belonging to the same layer, 

illustrating the layered organization of the network. For instance, 

in layer three, node 12 is placed in cluster 𝐶5 because there is no 

path connecting it to other nodes within the same layer (nodes in 

pink in Figure 1 (a)). It is important to note that the layering tree 

is not inherently part of the LCD method. However, we include 

it here to provide additional insight and clarity into the layered 

and clustered structure of the network. 

        In the final step of the LCD algorithm, the degree of each 

node is computed across the entire network to ensure a global 

perspective on node influence. From each cluster, the node with 

the highest degree is selected and compiled into a temporary list 

𝑆. The nodes in 𝑆 are then sorted by their degrees in descending 

order and appended to the ranking list 𝑅. For instance, after the 

first round, 𝑅 contains the top-ranked nodes [34, 1, 3, 24, 6, 17, 

15, 16, 19, 21, 23, 12], representing the highest-degree nodes 

from the 12 clusters. This process iterates through subsequent 

rounds, selecting the highest-degree nodes from the remaining 

clusters. The final ranking list produced by the LCD method for 

the Karate Network is as follows: [34, 1, 3, 24, 6, 17, 15, 16, 19, 

21, 23, 12, 33, 2, 7, 30, 11, 32, 31, 5, 27, 4, 28, 9, 26, 14, 25, 8, 

29, 20, 10, 22, 18, 13]. This iterative ranking ensures 

comprehensive network coverage and minimizes redundancy, 

showcasing the significance of layered clustering. For instance, 

nodes 34 and 33 share 11 neighbors, that is 𝑁 (34) ∩  𝑁 (33)  =
 11, meaning the influence of node 33 can largely be covered by 
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node 34. Consequently, discarding node 33 and selecting another 

node with a moderate degree from another cluster ensures 

broader network impact.  

        In table 1, we present the top 5 nodes of the Karate network 

identified by each method tested in this paper, along with their 

corresponding 𝐹(𝑡) value, where 𝜆 =  1.5 and the source 

spreaders constitute 15% of the nodes (i.e., 5 nodes). The results 

are averaged over 100 independent runs. The methods included 

are DegreeRank (DR), ClusterRank (CR), VoteRank (VR), 

VoteRank++ (VRP), EnRenew (EN), K-shell (KS), H-Index 

(HI), and the LCD method. 

 

 

 

 

 

Dataset Description 

 

        To show the performance of our algorithms, we have 

investigated nine networks with different sizes (small, medium, 

large) and different structural properties coming from different 

domains. For this analysis, all networks were treated as 

undirected and unweighted, and we considered only the largest 

connected component of each. Table 2 shows topological 

features of each network. Douban and Hamster networks are 

collected from the KONECT library (Kunegis, 2013) and Email, 

Router and CEnew are collected from the DIMACS (DIMACS). 

All other networks are available as part of the Stanford Large 

Network Dataset Collection (Stanford Large Network Dataset 

Collection (SNAP)).

 
 

a) Karate Network b) Layering Tree 

 

Figure 1: Example Network: Karate. 

 

Table 1: Top 5 nodes of the Karate network identified by each method and their corresponding F(t) 

 

Rank DR CR VR VRP EN KS HI LCD 

1 34 8 34 34 1 34 1 34 

2 1 14 1 1 34 1 3 1 

3 33 4 33 33 33 33 14 3 

4 3 9 3 2 3 3 33 24 

5 2 16 2 6 2 2 34 6 

𝑭(𝒕) 0.340 0.378 0.349 0.374 0.347 0.346 0.343 0.383 

Table 2: Topological features of networks, where 𝑛 and 𝑚 are the total number of nodes and edges, respectively. < 𝑘 > is the 

average degree and 𝑘𝑚𝑎𝑥    is the maximum degree. Clusters denote the number of clusters generated by LCD method. 𝜇𝑐 =
<𝑘>

<𝑘2> −<𝑘>
 is the spreading threshold and 𝜇 = 1.5 ∗ 𝜇𝑐 is the infection probability. 

 

Network 𝒏 𝒎 < 𝒌 >  𝒌𝒎𝒂𝒙 clusters 𝝁𝒄 𝝁 

CEnew       453 2025 8.94  237 66 0.0256 0.0384 

Email       1133 5451 9.622  71 254 0.0565 0.0848 

Hamster     2000 16098 16.098  237 391 0.0234 0.0351 

Router      5022 6258 2.492  106 4557 0.0786 0.118 

AstroPh     17903 196972 22.004  504 2774 0.0155 0.0232 

CondMat     21363 91286 8.546  279 4740 0.0466 0.0699 

Facebook    22470 170823 15.204  709 5448 0.0166 0.025 

BrightKite  56739 212945 7.506  1134 29671 0.0159 0.0238 

Douban      154908 327162 4.223  287 119779 0.0279 0.0418 

Evaluation 
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         Figure 2 illustrates the evolution of the infection scale 𝐹(𝑡) 

over time 𝑡 using the SIR model, with results averaged across 100 

independent runs at 𝜆 =  1.5. The experiments employ varying 

source spreader fractions p based on network size: 3% for smaller 

networks (CEnew, Email, Hamster, and Router), 0.5% for 

medium-sized networks (AstroPh, CondMat, and Facebook), and 

0.3% for larger networks (BrightKite and Douban). Across most 

networks, the LCD method initiates faster information diffusion 

and achieves a larger final infection scale compared to other 

methods, as visually evident in the steeper initial slopes and 

higher plateaus of the LCD curves. While LCD generally exhibits 

greater variability in 𝐹(𝑡) compared to other methods, 

VoteRank++ is a notable exception, demonstrating consistently 

low variance in most networks. However, in the large Douban 

network, LCD surpasses VoteRank++ by 22% in the final 

affected scale (𝐹(𝑡) of 0.0288 for LCD vs. 0.0236 for 

VoteRank++). It is worth noting that the VoteRank method is 

computationally expensive in large networks due to its high time 

complexity compared to all other methods tested. In the Router 

network, both VoteRank and VoteRank++ exhibit faster 

spreading rates and achieve larger final scales than LCD. 

Similarly, in the CondMat network, VoteRank++ and EnRenew 

initially spread information more rapidly than LCD, although all 

three methods ultimately reach comparable final infection scales 

(𝐹(𝑡) values of 0.0660, 0.0655, and 0.0653 for VoteRank++, 

LCD, and EnRenew, respectively). Overall, Figure 2 

demonstrates that LCD generally promotes both faster diffusion 

and a larger final infection scale compared to the other methods 

tested, highlighting its effectiveness in information spreading 

scenarios. 

Figure 3 presents the final infected scale 𝐹(𝑡𝑐) of each method 

across all datasets with varying ratios p of source spreaders under 

the SIR model. The results clearly demonstrate the superior 

performance of our proposed method, LCD, across a diverse 

range of networks, including small, medium-sized, and large-

scale graphs. The ratio of the source spreaders 𝑝 is varied 

depending on the network size. It ranges from 0.010 to 0.045 in 

four small networks: CEnew, Email, Hamster, and Router. In 

mid-sized networks such as AstroPh, CondMat, and Facebook, 𝑝 

ranges from 0.0025 to 0.0055. For large-scale networks, 

including BrightKite and Douban, 𝑝 ranges from 0.0005 to 

0.0035. The results are averaged over 100 independent runs with 

infected rate 𝜆 =  1.5. Notably, LCD surpasses all other methods 

on seven out of nine networks across nearly all values of p, 

particularly excelling when the number of source spreaders is 

large. In networks such as CEnew, Email, Hamster, AstroPh, 

Facebook, BrightKite, and Douban, LCD consistently 

outperforms state-of-the-art methods like EnRenew, VoteRank, 

VoteRank++, k-Shell, and ClusterRank, achieving higher final 

affected scale 𝐹(𝑡𝑐) values across different source spreader ratios 

𝑝. In the CondMat network, while EnRenew and VoteRank++ 

exhibit slightly better performance overall, LCD remains highly 

competitive. Similarly, in the Router network, VoteRank and 

VoteRank++ demonstrate superior results; however, LCD 

achieves comparable performance, nearly matching them at 

certain spreader ratios. These findings highlight LCD’s 

robustness and adaptability to diverse network structures, 

ranging from sparse graphs to densely connected networks, 

further underscoring its effectiveness in identifying influential 

nodes and maximizing information spread. 

 

 

   

a)  CEnew b) Email c) Hamster 

   
d) Router e) AstroPh f) Condmat 

   
g) Facebook 

 

h) BrightKite 

 

i) Douban 

 

Figure 2: The infected scale F(t) with the time 𝑡, where 𝜆 =  1.5 and the ratio p of source spreaders is 3% for CEnew, Email, 

Hamster and Router, 0.5% for AstropPh, Condmat, and Facebook, and 0.3% for BrightKite and Douban. The results are an average 

of 100 independent runs. 
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a)  CEnew b) Email c) Hamster 

   
d) Router e) AstroPh f) Condmat 

   
g) Facebook 

 

h) BrightKite 

 

i) Douban 

 

Figure 3: The final affected scale 𝐹(𝑡𝑐) with different ratio p of source spreaders. The results are obtained by averaging 100 

independent runs with spread rate 𝜆 = 1.5 in SIR model. 

 

        The infected rate λ plays a critical role in the propagation 

process, influencing how effectively information or viruses 

spread through networks. Therefore, Figure 4 illustrates the 

𝐹(𝑡𝑐) values with varying 𝜆 across different methods on all 

networks, where the ratio p of source spreaders is 3% for CEnew, 

Email, Hamster, and Router, 0.5% for AstroPh, CondMat, and 

Facebook, and 0.3% for BrightKite and Douban. Results are 

averaged over 100 independent runs. It is evident that LCD 

consistently achieves broader spread scales across all networks, 

except for the Router network, which performs competitively 

with VoteRank and VoteRank++. When  𝜆 is too small, 

information fails to spread effectively, regardless of the chosen 

source spreaders. Conversely, if 𝜆 is too large, information 

spreads uncontrollably throughout the network. For this reason,  

𝜆 is constrained between 0.5 and 2.0 to allow for a clear 

comparison of method performance (Zhang et al., 2016). This 

highlights LCD’s superior generalization ability, particularly in 

scenarios with strong spreading conditions and higher 𝜆 values. 

        Distances between spreaders are pivotal in maximizing 

influence within a network, as spreaders that are more widely 

dispersed can impact a larger portion of the network (Hu et al., 

2014). To confirm that the source spreaders identified by LCD 

are more broadly distributed compared to other methods, the 

average shortest path length (𝐿𝑠) of spreaders detected by various 

approaches is examined. Figure 4 presents the 𝐿𝑠 values across 

nine networks, revealing that LCD consistently achieves the 

highest 𝐿𝑠 values across all networks, regardless of the ratio of 

source spreaders (𝑝). This outcome demonstrates that LCD 

selects more dispersed spreaders, thereby maximizing network 

coverage. Furthermore, the gap between the 𝐿𝑠 values of LCD 

and other methods is substantial, underscoring LCD’s superiority 

in identifying well-scattered spreaders across diverse network 

structures. For instance, in the Email, Hamster, AstroPh, 

CondMat, Facebook, and BrightKite networks, the Ls value of 

LCD exceeds 1.5 times that of the best-performing method, 

VoteRank, signifying a remarkable improvement. In the CEnew 

and Router networks, LCD also outperforms other methods by a 

significant margin, particularly when 𝑝 is small, highlighting its 

effectiveness in selecting well-distributed spreaders under 

limited conditions. This consistent performance across various 

networks and spreading scenarios underscores LCD’s robustness 

and its ability to maximize influence by identifying source 

spreaders that are optimally distributed throughout the network. 
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a)  CEnew b) Email c) Hamster 

   
d) Router e) AstroPh f) Condmat 

   
g) Facebook 

 

h) BrightKite 

 

i) Douban 

 

Figure 4: The final affected scale 𝐹(𝑡𝑐) with different infected rate 𝜆  where the ratio 𝑝 of source spreaders is 3% for CEnew, Email, 

Hamster and Router, 0.5% for AstropPh, Condmat, and Facebook, and 0.3% for BrightKite and Douban. The results are an average 

of 100 independent runs. 

 

   
a)  CEnew b) Email c) Hamster 

   
d) Router e) AstroPh f) Condmat 

   
g) Facebook 

 

h) BrightKite 

 

i) Douban 

 

Figure 5: Average shortest path length 𝐿𝑠 with different ratio p of source spreaders. 
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Table 3: The running time for each method in seconds. For VoteRank ++ (VRP), the reported time corresponds to processing only 

2% of the nodes in the Douban network and 10% of the nodes in other networks. 

 

Network DR CR VR VRP En KS HI LCD 

CEnew 0.01 0.04 0.07 0.42 0.03 0.01 0.01 0.07 

Email 0.01 0.12 0.15 1.95 0.12 0.15 0.15 0.14 

Hamster 0.01 0.31 0.61 10.03 0.32 0.031 0.06 0.43 

Router 0.01 0.07 1.71 47.85 1.18 0.031 0.82 1.03 

AstroPh 0.03 4.96 46.48 3560.84 49.42 0.56 0.53 13.41 

CondMat 0.03 0.98 28.89 3407.59 22.17 0.2 0.17 6.79 

Facebook 0.03 2.45 27.87 4353.51 24.5 0.37 0.29 10.17 

BrightKite 0.04 3.11 179.31 16765.61 174.84 0.7 0.45 34.64 

Douban 0.17 6.17 1649.15 57834.37 1213.25 1.34 0.79 275.14 

Running Time 

        Table 3 compares the computational efficiency of several 

methods, including our proposed LCD algorithm, in terms of 

execution time (in seconds). DegreeRank (DR) consistently 

outperforms all methods in speed, requiring as little as 0.01 

seconds for the smallest networks and a maximum of 0.17 

seconds for the largest. This exceptional efficiency comes at the 

cost of lower accuracy and influence distribution. On the other 

hand, VoteRank, VoteRank++ (VRP) and EnRenew (En), while 

effective for certain tasks, exhibit significantly higher 

computational costs compared to our LCD method, particularly 

in larger networks. For instance, VoteRank++ requires an 

extensive 16,765.61 seconds to process just 10% of the 

BrightKite network nodes, and even more prohibitive 57,834.37 

seconds to process only 2% of the Douban network nodes, 

underscoring its limited practicality for large-scale applications. 

Our LCD method demonstrates a balance between computational 

efficiency and effectiveness. It achieves moderate execution 

times, ranging from 0.07 seconds for smaller networks like 

CEnew to 275.14 seconds for larger networks such as Douban. 

While LCD is slightly slower than simpler methods such as 

DegreeRank (DR), K-shell (KS), and H-index (HI), it 

consistently outperforms them in identifying influential nodes. 

More importantly, LCD remains significantly faster than 

computationally intensive methods such as VoteRank (VR), 

VoteRank++ (VRP), and EnRenew, making it a scalable and 

practical option for real-world networks. All computations were 

performed on a system with an Intel Core i7 (2.60 GHz) 

processor and 16 GB of RAM. 

CONCLUSION: 

        In this paper, we introduced the Layered Clustering Degree 

(LCD) method, an efficient approach for identifying influential 

nodes in complex networks. LCD integrates layering, clustering, 

and degree centrality to ensure maximum network coverage and 

balanced influence distribution. Through extensive experiments 

on nine real-world networks, LCD demonstrated better 

performance than several state-of-the-art algorithms, including 

VoteRank, K-shell, VoteRank++, ClusterRank, H-Index, 

EnRenew, and DegreeRank, in terms of computational 

complexity and spreading efficiency. The top-k influential nodes 

identified by LCD enable information to be propagated much 

more widely and faster than traditional degree centrality 

methods. While methods such as VoteRank++ demonstrate good 

spreading performance but suffer from high computational costs, 

LCD maintains better results with a computational complexity of 

𝑂(𝑉 +  𝐸), making it effective for large-scale networks. By 

addressing the trade-off between computational complexity and 

spreading efficiency, LCD offers a practical and scalable solution 

for identifying influential nodes in complex networks. One of the 

main limitations of the LCD algorithm is that it was designed for 

undirected networks and does not extend to weighted or directed 

networks. As many real-world networks, such as transportation 

or citation networks, have directions and edge weights, so 

extending LCD to such networks is open for future research. 

Additionally, future work cloud also explores optimizing the 

layering process and improving the clustering step to enhance 

LCD’s performance. Furthermore, extending LCD’s application 

to dynamic networks, where connections and node attributes 

evolve over time, could enable more adaptive and real-time 

analysis.  
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