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ABSTRACT: 

Bleeding in the surrounding tissues of the human brain is called a brain hemorrhage. This problem can lead to stroke and 

even death. It requires fast intervention and accurate treatment to save a patient’s life. Current state-of-the-art methodologies 

to detect this issue benefit from the development in the artificial intelligence field, especially its sub-filed “deep learning”. 

This study introduces a new deep learning-based framework to detect brain hemorrhage inside CT brain images. The 

proposed model is a novel hybrid model of vision transformer models and the bidirectional long short-term memory and is 

denoted as “ViTBiLSTM”. The study utilizes two datasets, which are different in size and challenging. The first dataset 

consists of 6772 CT images, while the second one contains 2500 CT images. The study also compares the original vision 

transformer model with the proposed one. Besides that, the study utilizes different optimizers and compares the current 

research with the related work. Results show that the proposed ViTBiLSTM achieves its best performance when using the 

RMSProp optimizer with an accuracy of 100% and 96.94% on both datasets. Comparison with the current state of the art 

shows that the proposed methodology’s performance exceeds the best study by 3.7% in accuracy. 
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1. INTRODUCTION 

        When the blood vessels in the area around the brain burst, 

the surrounding tissues of the brain will bleed, leading to a critical 

case called “Brain Hemorrhage” (Grey, 2024; Rather et al., 2024; 

Sheikh et al., 2024). The increased pressure on the brain caused 

by such bleeding can cause severe damage to the brain cells and 

may even lead to death (Ahmed et al., 2024; Neethi et al., 2024; 

Schiariti et al., 2024; Zhang et al., 2024). A stroke problem that 

a brain hemorrhage can cause is considered the second leading 

cause of death around the world. However, the three main causes 

of such issues are metabolic risks, behavioural factors, and 

environmental risks (Feigin et al., 2022; Neethi et al., 2024). 

Mental changes, headaches, difficulty in speaking, weakness, 

lack of balance, and even vision issues are all symptoms of stroke 

caused by hemorrhage (Suryadi, 2024; Studer & Thompson, 

2024; Akmaljon et al., 2024). 

        Deep learning is one of the most powerful artificial 

intelligence technologies that has been recently used for the aim 

of brain hemorrhage detection and prediction to help physicians 

correctly and effectively detect this problem, and further make 

the appropriate treatment (Del Gaizo et al., 2024; Majeed et al., 

2024; Haldorai et al., 2024; Hu et al., 2024). Convolutional 

neural networks (CNN) and their newer versions, including 

VGG16, ResNets, MobileNet, DenseNet                                                                                                                                                                                                                                  

and Inception (Ibrahim & Mahmood, 2023). Deep learning-based 

classification models, especially the models that use the 

techniques of learning transfer such as, DenseNet121, have 

shown high accuracy the classification of the medical image, 

these classification models improve accuracy in diagnosis by 

utilizing pre-trained architectures which help to extract relevant 

features from the CT scans and differentiate between diseases 

and non-diseases cases. Ahmed et al. (2024) and Prasher et al. 

(2024) proposed very effective models to extract the image 

features that can be used in a classification framework to make 

an automatic brain hemorrhage detection system. On the other 

hand, results from Murad et al (2023) show that CNNs have been 
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very effective in the automatic classification of medical images, 

specifically for CT scan images where disease detection is 

crucial. By automatically extracting relevant features from these 

images, CNNs improve accuracy by ensuring appropriate 

conditions are assigned promptly. However, some recent pieces 

of research started to make a fusion of the CNN-based model and 

other sequence processing models like the recurrent neural 

networks (RNN) (Sindhura et al., 2024; Datta & Rohilla, 2024; 

Kothala & Guntur, 2024; Lafraxo et al., 2024). 

        Deep learning-based models (CNN, auto-encoder AE, and 

stacked auto-encoder SAE) were introduced by Helwan et al 

(2018) with the aim of brain hemorrhagic detection. They utilized 

the “Brain CT Hemorrhage Dataset” consisting of 6772 images 

of both normal and hemorrhagic cases. However, they utilized a 

part of the dataset consisting of 2527 images. They found that the 

SAE model was the best model with the highest accuracy. They 

registered an accuracy of 90.9%. Although the AE model is a 

good DL architecture, it still has its performance limitations. 

        In a study by (Hssayeni et al., 2020), they utilized the “Brain 

CT Images with Intracranial Hemorrhage Masks” dataset for 

brain hemorrhagic segmentation using a fully convolutional 

network (FCN) “U-Net”. They achieved an accuracy of 87%. 

        In another study, Altuve and Pérez (2022) utilized the well-

known ResNet18 model in a transfer learning way for the aim of 

brain hemorrhage detection. They used a small dataset of only 

100 normal and 100 hemorrhagic CT images. They got an 

accuracy of 96% and a precision of 97%. However, their 

methodology is already known and the utilized dataset is too 

small. 

        On the other hand, Kothala and Guntur (2024) proposed the 

stacked bidirectional GRU-LSTM model along with the 

traditional CNN model to detect possible hemorrhage in CT brain 

images. They utilized the “Brain CT Hemorrhage Dataset,” 

consisting of 6772 images of both normal and hemorrhagic cases, 

and achieved training and test accuracies of 96.2% and 93.4%, 

respectively. Their approach also achieved precision, recall, and 

http://journals.uoz.edu.krd/
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F1-score values of 62%, 68%, and 65%, respectively. However, 

the low values of precision and recall indicate a high percentage 

of false positive and false negative errors. They also tried many 

transfers learning methods, including LeNet, ResNet50, and 

AlexNet, and they registered a low performance compared to 

their proposed CNN-BiLSTM model.  

        The EfficientNetB0 model was utilized as a feature 

extraction and classification model for brain hemorrhage 

detection (Feng et al., 2023). They utilized a CT brain dataset 

consisting of 561 images of the normal and spontaneous 

intracerebral hemorrhage issue. Their proposed methodology 

achieved an accuracy in a range between 70% and 86.6% with an 

Area Under the Curve (AUC) value of 0.71 to 0.83. 

        Like traditional forms of feature selection, machine learning 

models used for the classification of medical data can greatly 

benefit from feature selection methods for improved predictive 

outcomes in medical diagnoses (Siddiq Hassan, 2013). 

        The American College of Neuroradiology (ASNR) 

hemorrhagic dataset was used in a study by He et al. (2024). They 

applied the multiscale feature classification supported by the 

attention fusion method and the weakly supervised localization 

model. They evaluated their model using only the AUC value. 

However, their methodology achieved AUC values of 0.89 to 

0.995. 

        In a different study, (Malik et al., 2024) compared the 

performance of many deep learning models in the field of brain 

hemorrhage detection. They utilized 2500 images of the “Brain 

CT Images with Intracranial Hemorrhage Masks” dataset. Their 

methodology achieved accuracy values of 93.29%, 90%, 

82.35%, and 39.45% using the EfficientNet, ResNet50, 

SEResNeXt, and ResNeXt models, respectively. 

        There are many problems in the current state-of-art 

methodologies, starting from the usage of small datasets, moving 

to the issue of using traditional DL architectures without any 

modifications, struggling with high computational time or low 

accuracy, and ending with the problem of a bad evaluation 

process. However, in this study, the key contributions are listed 

as follows: 

1- This is the first study that introduces a hybrid model of 

vision transformer models (ViT) and the bidirectional long-short-

term memory (LSTM) architectures to enhance the performance 

of the current brain hemorrhage detection systems. The proposed 

model is denoted as “ViTBiLSTM”. The ability of the 

ViTBiLSTM model to capture a better feature representation of 

the images based on its self-attention mechanism will improve 

the accuracy and solve the low performance of the traditional 

CNNs. 

2- Since the ViT is considered a lightweight model, the 

computational time required for the training and validation steps 

will be low compared to other more complex architectures (solve 

the high computational time problem). 

3- This study takes into consideration the problem of 

generalization of the proposed model by evaluating it using two 

different CT brain datasets. 

4- The study introduces a comprehensive analysis of the 

performance of the proposed ViTBiLSTM model using different 

optimizers. It compares the proposed methodology with the 

original ViT model to show its efficiency. 

5- The study utilizes all possible performance evaluation 

metrics in order to make a comprehensive assessment of the 

proposed model. 

        The next paragraphs will be organized as follows. First, the 

materials and proposed methodologies with the detailed 

architecture of the ViTBiLSTM model will be introduced. Next, 

the main results and findings of the adopted model will be listed 

(for both utilized datasets). Then, a comprehensive discussion 

and ablation study will be presented. Finally, the conclusion, 

limitations, and future work will be given. 

2. MATERIALS AND METHODS 

CT Brain Datasets: 

        In this study, two datasets of both normal and hemorrhagic 

brain images are utilized. The first dataset, “Brain CT 

Hemorrhage Dataset,” consists of 6772 CT scans (4105 normal 

and 2667 hemorrhagic), which were originally collected from the 

Near East Hospital (Helwan et al., 2018). The second dataset is 

the “Brain CT Images with Intracranial Hemorrhage Masks” 

(Hssayeni et al., 2020), which consists of CT scans of both bones 

and the brain. However, in this study, the brain CT images (82 

subjects: 2500 images; 2182 normal, and 318 hemorrhagic) will 

be utilized. Figure 1 shows some samples of these utilized 

datasets (the third row corresponds to the second dataset). Table 

1 summarizes the characteristics of both utilized datasets.

 

Table 1: Datasets characteristics 

Name Num. of subjects Num. of images Class distribution Source 

Brain CT 

Hemorrhage Dataset 
45 subjects 6772 

4105 normal and 2667 

hemorrhagic 

(Helwan et al., 

2018) 

Brain CT Images 

with Intracranial 

Hemorrhage Masks 

82 subjects 2500 
2182 normal, and 318 

hemorrhagic 

(Hssayeni et al., 

2020) 
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Figure 1: Examples of normal and hemorrhagic cases of the utilized datasets 

 

The Adopted Methodology: 

        The proposed methodology is illustrated in Figure 2. In the 

first step of this study, the dataset is pre-processed using the 

following operations. First, the images and labels are read; then, 

the images are resized to a fixed size (224*224) to minimize 

computational time and memory-GPU-storage requirements, 

which are required during the training phase. Besides that, most 

pre-trained architectures require such input size. Then, the 

images are split into a training set (80%), a validation set (10%), 

and a test set (10%) to allow the model to learn as much as 

possible and ensure sufficient validation and test samples for 

robustness and effectiveness. Then, all sets’ images are rescaled 

to the range [0-1] as a normalization operation. After that, the 

data augmentation operations are applied to the training set. The 

data augmentation includes the following processes: random 

rotation (by the angle of 100), zooming (percentage of 0.1), and 

horizontal flipping. The data augmentation operations help to 

avoid overfitting or overfitting and make the model more robust 

against changes in images; besides this, they increase the training 

size. The data augmentation that changes the structure of the 

image like zooming, is applied with a small percentage to avoid 

eliminating important parts that may include hemorrhagic parts.

 

 

Figure 2: The general brain hemorrhagic detection system steps 

 

        After that, the training and validation sets are utilized to 

train and validate the  utilized  DL model. This study introduces 

a novel hybrid DL model consisting of two main architectures, 

which are the vision transformer model (ViT) and the bi-

directional long-short term memory (Bi-LSTM), so the 

developed new model is  called “ViTBiLSTM” (Figure 3).
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(a) 

 

(b) 

 
(c) 

Figure 3: The proposed ViTBiLSTM model: (a) The general architecture, (b) ViTBiLSMT architecture, (c) BiLSTM 

 

        While ViT models are powerful in capturing global spatial 

dependencies based on their self-attention mechanisms, they may 

lack the ability to model sequential dependencies across feature 

representations. For this reason, utilization of the BiLSTM model 

can guarantee capturing the sequential patterns in the input data 

(The input image of the ViT model is split into adjacent blocks 

that are spatially relevant). From another point of view, using ViT 

against traditional CNN improves the ability of the model to 

understand the spatial structure of the input image, leading to a 

better feature representation compared to CNN.  

        The vision transformer model (ViT) was mainly introduced 

in a study by Dosovitskiy et al. (2020). The input image of the 

ViT model (in our case CT brain image) is divided into SxS 

patches (not overlapped). These PxP boxes (patches) are then 

linearly embedded using an embedding layer that transforms 

them into a sequence of tokens. Position-embedding information 
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is also added to each image patch to provide it with spatial 

information.  

        Let X∈RH×W×C represent the input image, where H, W, and 

C are the height, width, and number of channels, respectively. 

Patch emedding of the ViT model divided input image into PxP 

patches with a total number of patches (N=H*W/P2). 

Each patch is flattened and linearly projected into a D-

dimensional embedding space: 

𝑍0
𝑖 = 𝐸. 𝐹𝑎𝑙𝑡𝑡𝑒𝑛(𝑝𝑎𝑡𝑐ℎ𝑖) +  𝑝𝑖  𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … 𝑁 

 (1) 

Where E𝜖 𝑅(𝑃2.𝐶)𝑥𝐷 is the position matrix, while Pi is the 

positional encoding of the patch i, and z0
i is the embedded 

representation of the patch i. 

        These positional-encoded embedding sequences are then 

fed into the main ViT backbone, which is a Transformer-based 

architecture. The main module in this architecture is the multi-

head attention layers (Du et al., 2024) that are responsible for 

extracting features based on the attention mechanism (i.e., the 

model updates its weights to concentrate on the most essential 

parts of the image). Each head is defined by Equation II. 

ℎ𝑒𝑎𝑑𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑖.𝐾𝑖

𝑇

√𝑑𝑘
) . 𝑉𝑖  (2) 

Where Q,k, and V are the Query, Key, and Value, which are the 

three different representations of the multi-head attention layer.  

The outputs of the transformer encoder model will be the final 

feature vector which will be delivered to the classification part. 

However, the original classification part of the ViT model is a 

multi-layer perceptron and a classification with a softmax layer. 

In this study, we removed this part and replaced it with a more 

powerful classification model consisting of Bi-LSTM 

architecture which fits the idea of a transformer model since the 

input image is decomposed into patches and the Bi-LSTM 

module can be very suitable to retain the local information of the 

gray levels of the adjacent patches in the original image, leading 

to a better classification task. To make the output of the 

transformer model suitable for the input of the Bi-LSTM model, 

the study suggests using a reshape layer, which is responsible for 

changing the output feature vector of the transformer model into 

a (1,768) shape, which is suitable to the input shape of the Bi-

LSTM model. Moreover, a batch normalization layer is added to 

the output of the Bi-LSTM model to improve training stability 

and make a faster convergence (Rivoir et al., 2024; Tin et al., 

2024; Fei et al., 2024). Finally, two dense layers are added as a 

hidden fully connected layer with a softmax activation function 

in the final layer. A dropout layer is also inserted before the last 

layer with a drop percentage of 35% to regularize the model and 

prevent overfitting. Moreover, in the present study, the B32 

version of the ViT model is utilized (Liu & Aldrich, 2024), which 

means that the input image is divided into 49 patches (so if the 

input image size is 224*224, then the image will be divided into 

7*7 patches). The output of the transformer model and the 

reshaped version is given in equations III and IV. 

𝑍𝑟𝑒𝑠ℎ𝑎𝑝𝑒𝑑 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒 (𝑧𝑣𝑖𝑡)   (3) 

Where, Zvit is the output of the encoder part of the ViT model and 

is given as follows: 
𝑍𝑣𝑖𝑡 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐸𝑛𝑐𝑜𝑑𝑒𝑟([ 𝑧0

1, 𝑧0
2, … , 𝑧0

49 ])  (4) 

BiLSTM (Graves et al., 2005) or Bidirectional LSTMs (see 

Figure 3-c) are a type of recurrent neural network (RNN) that 

maintains both past and future contexts in sequence data. In 

BiLSTMs, two LSTMs are utilized: one processes the sequence 

from start to end (called forward LSTM), while the other 

processes it from end to start (called backward LSTM). The final 

output of the proposed ViTBiLSTM model is given in Equation 

(V). 

𝑦 =

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊2. 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (∅ (𝑊1. 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 (
1

𝑁
 ∑ 𝐵𝑖𝐿𝑆𝑇𝑀(𝑍𝑡)𝑁

𝑡=1 ) +

𝑏1)) + 𝑏2) (5) 

Where, N is the number of patches, Z is the ViT output, W1 is 

the weight matrix of the first dense layer, W2 is the weight matrix 

of the second dense layer, ∅ is the ReLU activation function, b1 

and b2 are the bias vectors. 

Performance Evaluation Metrics:   

        The final step in this study is the evaluation process in which 

the trained ViTBiLSTM model will be evaluated to judge its 

performance and select the best parameters that achieve the best 

performance. For this reason, the main utilized computations, 

which are True Positives (TP), True Negatives (TN), False 

Positives (FP), and False Negatives (FN), are computed. Using 

these raw computations, the precision, recall, F1-score, and 

accuracy metrics are also computed for the individual classes, 

and then both macro and weighted average calculations are 

derived. The weighted average is computed by assigning a weight 

for each class based on the number of samples, making the 

average score correspond to the class’s percentage. On the other 

hand, macro average applies no weighting on the individual score 

and it’s more suitable for performance calculations in case of 

unbalanced datasets to check any possible individual class’s 

errors. The confusion matrix (CM) that shows the TP, TN, FP, 

and FN of each class is also drawn. CM shows how well the 

trained model is performing since it compares the original classes 

with the predicted ones. It gives detailed calculations of the 

individual classes’ true and false predictions allowing to 

precisely define the classes with the best and worst performance.   

Figure 4  states the CM according to the probled addressed in this 

study. The receiver operating characteristics (ROC) curve, which 

represents the relationship between true positive rate (TPR) and 

false positive rate (FPR), is also drawn. The area under the curve 

metric is also computed using the ROC curve. The training time 

of all proposed scenarios is also computed. Equations 6. 7, 8, and 

9 show the formula of precision, recall, score, and accuracy, 

respectively (Khozama & Mayya, 2022; Szabó et al., 2024; 

Hoang et al., 2024). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (7) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (8) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (9) 

 

Figure 4: CM description according to the brain hemorrhage 

prediction problem 

Ethical Approval and Consent: 

        The study's design and procedures were reviewed and 

approved by the Ethics and Scientific Committee of the College 

of Medicine at the University of Zakho with the reference number 

(FEB2024/UOZE440). 
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3. RESULTS 

        The experiments in this study are applied to the utilized 

dataset using the training parameters illustrated in Table 2. In all 

training scenarios, the number of epochs is 50, the utilized batch 

size is 64, the loss function is the categorical cross entropy (two 

classes in the classification layer), learning rate is 0.0001, image 

size is 224*224, and the early stop condition is enabled with a 

patience value of 5 (if the validation loss isn’t improved for 5 

epochs, the training will be stopped to prevent possible 

overfitting or redundant training time).

 

Table 2: Training parameters 

Parameter Description 

Image Size 224*224*3 

Batch size 64 

Optimizer Adam/ RMSProp/ NADAM/ ADAMX 

Learning Rate 1e-4 

Loss function Categorical cross-entropy 

Metrics Accuracy 

Epochs 50 

Early stop condition Patience=5 

Save best only Yes 

Resources 

Training resources: The model was trained using the COLAB environment [NVIDIA 

Tesla T4 GPU (16 GB VRAM) and 12 GB RAM]  

Required implementation resources: CPU with 4 to 8 GB of RAM (no need for GPU) 

since the test or evaluation will be on a single image. 

 

First Dataset’s Results: 

        The training and validation accuracy and loss curves of the 

trained ViTBiLSTM are illustrated in Figure 5. The model 

training is stopped at the 13th epoch due to the early stop 

condition. The curves have no overfitting and the convergence 

between the training and validation curves is noticed. The 

confusion matrix (Figure 6) shows that the trained model 

achieves one false positive and one false negative error and an 

AUC value of 1

 

  
  (a) (b) 

Figure 5. Training and validation metrics of the ViT model: (a) Accuracy, (B) Loss. 

 

  
(a) (b) 

Figure 6: Confusion matrix and ROC plot of the proposed ViTBiLSTM model: (a) Confusion matrix, (B) ROC. 
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        Table 3 includes the precision, recall, F1-score, and support 

(number of samples) for the normal and hemorrhagic classes. 

Besides that, the macro and weighted average metrics are also 

shown in Table 3. The average precision, recall, and F1-score of 

the proposed ViTBiLSTM model are 99.86% for all metrics, 

indicating a high performance. Results indicate that the model 

not only achieves high accuracy but also maintains balanced and 

consistent predictions across both normal and hemorrhagic 

classes. 

        Figure 7 shows some test examples of the CT brain (of the 

test set) and their corresponding predictions.

 

Table 3: Assessment of the trained ViT model in terms of precision, recall, and F1-score using the test set. 

 Precision (%) Recall (%) F1-score (%) Support 

Hemorrhagic 99.62 99.62 99.62 267 

NORMAL 99.75 99.75 99.75 411 

Macro avg 99.685 99.685 99.685 678 

Weighted avg 99.698 99.698 99.698 678 

 

(a) 

 

(b) 

Figure 7: Results of predicting some samples using the trained ViTBiLSTM model: (a) Validation images, (b) Test images 
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Second Dataset’s Results: 

        In this section, a new dataset with different specifications 

will be utilized to generalize the results. In this dataset, the 

number of normal cases is 2183, while the number of hemorrhage 

samples is only 318, revealing a problem of data imbalance. To 

address this issue, the dataset is split into training, validation, and 

test sets (with the same criteria as in the first dataset), and then 

the small class is oversampled to match the number of the 

majority class. The same data augmentation operations and the 

same training parameters are also utilized to preprocess the 

dataset and prepare the training operation. Figure 8 shows the 

training and validation accuracy and loss curves of the trained 

ViTBiLSTM model using the second dataset (before and after the 

data balance).  

        The proposed balancing method includes three main steps: 

duplicating samples from the minority class (oversampling), 

balancing the class distribution, and shuffling the dataset to 

prevent order bias. These operations are applied to the training 

set only. Curves are more stable and have better convergence in 

the case of using data balance. These findings are also proved by 

the confusion matrix and AUC values, where the data-balance-

based ViTBiLSTM model registered only 4 false negatives and 

0.99 as the AUC value, while in the case of training ViTBiLSTM 

without data balance, the AUC value is only 0.84.

 

 
 

(a) (b) 

  
(c) (d) 

Figure 8: Performance curves of the trained ViTBiLSTM model: (a, b) before balance, (c, d) after balance 

 

        Table 4 states a performance comparison between two 

scenarios of the second dataset; one case is the training results of 

the ViTBLSM model without balance, while the other one is the 

same evaluation metrics after the data balance. Table 4 proves 

also shows that the data balance has improved the performance 

by 10.29% in terms of test accuracy. Generally, the proposed 

ViTBiLSTM achieved a high accuracy using a new dataset with 

different specifications. These results indicate the possibility of 

generalizing the results and the robustness of the proposed 

ViTBiLSTM model. 
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Table 4: Training, validation, and test metrics of the second dataset. 

 
Training 

Accuracy % 

Validation 

Accuracy % 

Test 

Accuracy % 

Test 

Precision 

Test 

Recall 

Test 

F1-

score 

Training 

Time 

(s/epoch) 

AUC 

Without 

Balance 
78.15 88.94 86.25 81 61 64 35.16 0.84 

With 

Balance 
95.47 97.44 96.94 97 97 97 58.73 0.99 

4. DISCUSSION 

Overall Discussion: 

        The proposed ViTBiLSTM model achieves high 

performance in terms of precision, recall, F1 score, and accuracy. 

The test samples also showed that the proposed model can detect 

the right class with a high confidence level. However, some test 

and validation samples failed to be predicted, as shown in Figure 

9-a (misclassified test sample) and Figure 9-b. There are three 

misclassified samples as shown in Figure 9, where two of them 

are of class ‘Hemorrhagic’ but are misclassified as ‘Normal’.  

This may be due to the additional areas in the brain CT image, 

which is similar to the normal tissues. In contrast, the ‘normal’ 

case, which is misclassified as ‘Hemorrhagic’, contains gray 

levels that have a similar distribution to the hemorrhagic levels.

 

  
(a) (b) 

Figure 9: Misclassified samples (a) Validation, (b) Test 

Ablation Study: 

        For a deeper discussion, the “Adam” optimizer of the 

ViTBiLSTM model will be changed, and new results will be 

derived and compared with the original ones. The comparison 

between the performance of these different scenarios is shown in 

Table 5 and Figure I0. Table 5 summarizes the macro average 

metrics of the trained ViTBiLSTM model under different 

optimizers and proves that the best case is the ‘RMSProp’ 

optimizer, and the second best one is the ‘ADAM’ optimizer. 

This finding is normal since the ADAM and RMProps optimizers 

both utilize the concept of adaptive learning rate, which is 

changed during the training, leading to a better convergence. 

Using RMSProp optimizer instead of ADAM optimizer enhances 

the performance by almost 0.3% for all metrics, while the 

utilization of other optimizers like ADAMX or NADAM leads to 

a lower performance.

 

Table 5: Comparison experiment of different optimizers with the same ViTBiLSTM model. 

Model Precision (%) Recall (%) F1-score (%) Accuracy (%) 

ViTBiLSTM (ADAM) 99.685 99.685 99.685 99.7 

ViTBiLSTM (RMSProp) 100 100 100 100 

ViTBiLSTM (NADAM) 99 99 99 98.96 

ViTBiLSTM (ADAMX) 91 89 90 90.56 

 

        Confusion matrixes and ROC plots of the three models are 

shown in Figure 10. However, NADAM combines two 

optimizers, ADAM and Nesterov moments, making it more 

complex and may not align well with the utilized dataset. For 

ADAMX, the gradient (loss), as shown in Figure 10-C, is not 

stable, and this is due to the complexity of the learning process, 

which doesnot fit the current problem. The confusion matrix of 

the RMSProp shows zeros false positives and false negative 

errors, while the NADAM and ADAMX optimizers show too 

many false positive and false negative errors.
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 10: Confusion matrix and ROC plot of different optimizers (same ViTBiLSTM model): (a, b) CM and ROC of RMSProp, (c, 

d) CM and ROC of NADAM, (e,f ) CM and ROC of ADAMX 

        The training, validation, and test evaluation metrics of 

different optimizer experiments are also shown in Table 6. The 

findings shown in Table 6 indicate that the Adam and RMSProp 

optimizers give the best performance with the ViTBiLSMT 

model. ViTBiLSTM with RMSProp achieves a validation 

accuracy of 99.85% (similar to ADAM optimizer), a test 

accuracy of 100%, and an AUC score of 1. For training time, the 

RMSProp consumed the least computational time.

 

Table 6: Training, validation, and test metrics of different optimizers. 

 
Training 

Accuracy % 

Training 

Loss 

Validation 

Accuracy % 

Validation 

Loss 

Test 

Accuracy % 

Test 

Loss 

Training 

Time 

(s/epoch) 

AUC 

(Test) 

ViTBiLSTM 

(ADAM) 
98.19 0.2468 99.85 0.1923 99.7 0.19 99.85 1.0 

ViTBiLSTM 

(RMSProp) 
98.95 0.2208 99.85 0.1799 100 0.169 98.22 1.0 

ViTBiLSTM 

(NADAM) 
96.2 0.3413 99.7 0.3111 98.96 0.313 108.33 1.0 

ViTBiLSTM 

(ADAMX) 
87.39 0.3451 93.06 0.2232 90.56 0.257 103.96 0.97 

 



Abd Alnabi / Science Journal of the University of Zakho, 13(3), 320-332 July-September, 2025 

 

330 

 

 

External Validation: 

        In order to evaluate the trained model on a different dataset, 

we utilized the validation and test sections of the second dataset 

as an external validation set (without training the train set) of the 

trained ViTBiLSTM model of the first dataset. Table 7 illustrates 

the results of external validation. The proposed ViTBiLSTM 

model revealed a test accuracy of 93%, which proves the ability 

of the model to present correct predictions even under different 

conditions.

 

Table 7: External validation of the ViTBiLSTM model using the validation and test set of the second dataset. 

Precision % Recall % F1-score % Accuracy % 

92 93 92 93 

 

Comparison with CNN and Other Vit-Based Architectures 

        To show the main benefit of the proposed ViTBiLSTM 

model, a comparison of the performance between this model and 

other architectures (CNN, ViT (original), and ViT with LSTM) 

is shown in Table 8. The comparison shows that the ViT model 

registered 5 false negatives and one false positive, compared with 

an accuracy of 99%, while the proposed ViTBiLSTM model 

achieved an accuracy of 99.7%. Table 8 states that the 

ViTBiLSTM model outperforms the original ViT model (with an 

MLP classification layer) by almost 0.7% for all metrics.  

Similarly, ViT with LSTM achieved the closest scores to the 

proposed methodology, while the CNN model has a lower 

performance by almost 5.6%.

 

Table 8: Comparison of the original ViT and the proposed ViTBiLSTM model. 

 Precision (%) Recall (%) F1-score (%) Accuracy (%) 

ViTBiLSTM 99.685 99.685 99.685 99.7 

ViTLSTM 99.35 99.35 99.35 99 

ViT 99 99 99 99 

CNN 94 94 94 94 

 

Error Analysis Study: 

        The proposed ViTBiLSTM model misclassified only a few 

samples (an estimated ~2–3 in total) out of 678 test images using 

the first dataset. These errors were nearly balanced across the two 

classes: Hemorrhagic and NORMAL, as both achieved almost 

identical precision and recall (99.62% vs. 99.75%). For the 

second dataset, and without balancing, the model’s recall 

dropped significantly to 61%, while precision remained at 81%, 

suggesting a tendency to under-predict the positive class (likely 

hemorrhagic). After applying data balancing, performance 

improved to 97% across all metrics. These findings indicate  that 

class imbalance was a major cause of misclassification, and 

addressing it during training was crucial for reliable predictions. 

Moreover, the ADAMX optimizer showed the lowest 

performance, with a test Accuracy of 90.56% and an F1-score of 

90%. Misclassifications were more frequent here, possibly due to 

slower convergence or instability during training (as seen from 

its higher loss) and incomplete optimization of deeper layers in 

the ViTBiLSTM model. However, the ADAM and RMSProp 

optimizers achieved the best performance and lowest error rates. 

Comparison with Related Work: 

        The comparison with the state-of-the-art studies is essential 

to focus on the contribution of this study (Table 9).  The studies 

that utilized the same datasets achieved a lower performance 

compared to the current study. (Helwan et al., 2018) registered 

an accuracy of 90.0%, while Kothala and Guntur( 2024) achieved 

an accuracy of 93.4% on the same dataset. The current study 

outperforms all previous studies that utilized the same dataset. 

Using another dataset (Brain CT Images with Intracranial 

Hemorrhage Masks (2500 images)), the current study also 

outperformed Hssayeni et al.(2020), which utilized the same 

dataset, in terms of accuracy by 9.94%. Similarly, the current 

study outperforms Malik et al.(2024)  by 3.65% in terms of 

accuracy. The proposed hybrid model of ViT and BiLSTM 

unified the high accuracy and low computational time of both 

architectures to build a robust model that achieves state-of-the-

art performance.

Table 9: Comparison with related work 
Study Methodology Dataset Dataset size Results & Notes 

(Helwan et al., 
2018) 

SAE 
Brain CT Hemorrhage 

Dataset 
6772 images Accuracy=90.9% 

(Hssayeni et al., 

2020) 
FCN-U-Net 

Brain CT Images with 
Intracranial Hemorrhage 

Masks 

2500 images Accuracy=87% 

(Altuve & Pérez, 

2022) 
ResNet18 (Transfer Learning) A small dataset 200 images Accuracy=96% 

(Kothala & Guntur, 
2024) 

Stacked bidirectional GRU-
LSTM and CNN 

Brain CT Hemorrhage 
Dataset 

6772 images Accuracy=93.4% 

(Feng et al., 2023) EfficientNetB0 CT brain dataset 561 images Accuracy=70%-86.6% 

(He et al., 2024) 
Multiscale feature 

classification supported by the 

attention 

American College of 

Neuroradiology (ASNR) 
- AUC = 0.89-0.995 

(Malik et al., 2024) EfficientNet 

Brain CT Images with 

Intracranial Hemorrhage 
Masks (2500 images) 

2500 images Best Accuracy=93.29% 

Current Study Novel ViTBiLSTM model 
Brain CT Hemorrhage 

Dataset 
6772 images 

Accuracy: 99.7% (ADAM), 

100% (RMSProp) 
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Brain CT Images with 

Intracranial Hemorrhage 

Masks 

2500 images Accuracy: 96.94% 

CONCLUSION 

        In this study, a novel deep learning framework called the 

ViTBiLSTM model consists of two main parts; the feature 

extraction part which is the ViT model responsible for extracting 

features of the images, while the second part is the classification 

part in which the BiLSTM model is utilized to make the 

classification instead of the original transformer classification 

part. The BiLSTM is chosen since it fits the idea of decomposing 

input images into patches and maintaining the information of the 

adjacent pixels of the patches to improve the ability to extract 

better information. The study utilizes two different CT image 

datasets; one contains the problem of data balance, and the other 

one contains a higher number of samples. Both datasets are pre-

processed and data augmentation operations are applied for a 

better training process. Many experiments are applied: one with 

the original ViT model and other experiments with the 

ViTBiLSTM model with different optimizers (ADAM, 

NADAM, ADAMX, and RMSProp). Results showed that the 

best case is the usage of the ViTBiLSTM model with RMSProp 

optimizer with an accuracy of 100% of the first dataset. The 

second dataset got the best performance using the data balance 

operation and the ViTBiLSTM model with an accuracy of 

96.94%. A comparison of the current study with the previous 

studies in the same field was also performed and proved the 

robustness and high performance of the proposed ViTBiLSTM 

against the traditional ViT models, CNN, transfer learning-based, 

and CNN-LSTM models. Future studies can focus on the 

utilization of other different datasets and the fusion of some 

feature extraction and classification DL-based architectures for 

better enhancement. Moreover, the current research focused on 

the binary classification of brain hemorrhage; however, future  

studies can focus on the multi-class classification problem. 
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