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ABSTRACT:

Malaria is a major global health threat, and timely and correct diagnosis is essential for effective treatment. Traditional
diagnostic methods, such as the microscopic examination of blood smears, are time-consuming and require expert personnel.
The study presents a mix of machine learning methods for automatic diagnosis of malaria by using the feature extraction
capability of Convolutional Neural Networks (CNNs) along with the efficient classification performance of traditional
machine learning classifiers. For our study, we utilize VGG16 CNN with a weight pre-trained on ImageNet to extract the
features from non-infected and infected blood cell images from malaria. Five classical machine learning algorithms, such
as Random Forest, Logistic Regression, K-Nearest Neighbours (KNN), Support Vector Machine (SVM), & Gradient
Boosting, are used to classify the extracted features. Each classifier's performance is calculated based on accuracy, F1 score,
precision, and recall metrics. The results of our experiments showed that the hybrid model has high accuracy in
classification, where the Logistic Regression classifier could achieve above 93% accuracy. This hybrid method is a powerful
diagnostic for malaria disease, accomplishing a more satisfactory compromise between the efficacy of the deep learning
architectures such as CNNs, and the computational capabilities of more conventional classifiers. It holds promise for
deployment into resource-limited settings where fast, automated threading diagnostic systems are much needed.

KEYWORDS: Malaria classification, Convolutional Neural Networks, Feature extraction, Random Forest, Logistic

Regression.

1. INTRODUCTION

Malaria is a highly prevalent and life-threatening parasitic
disease that affects humans worldwide, especially in tropical and
subtropical areas. Caused by protozoan parasites of the genus
Plasmodium, the disease is transmitted to humans via the bites of
infected female Anopheles mosquitoes. According to the World
Health Organization (WHO), malaria is a major public health
threat and is most common in low- and middle-income countries.
In 2019 alone, there were an estimated 229 million cases of
malaria around the world, causing more than 400,000 deaths,
mostly in sub-Saharan Africa. Malaria is a leading cause of death
among children under five years of age. Despite extensive control
and elimination programs, malaria remains a global health
burden (Al-Awadhi et al., 2021).

Early and accurate diagnosis is one of the most important
components of a comprehensive approach to combat malaria.
Traditional diagnostic tools include blood smear microscopy,
rapid diagnostic tests (RDTs), and molecular diagnostic tools
such as polymerase chain reaction (PCR). The most common
approach is microscopy of stained blood smears to detect malaria
parasites by professionals who have been properly trained to
perform this task. Despite the availability of microscopy and
rapid diagnostic tests (RDTs), malaria diagnosis faces significant
challenges, including dependence on skilled personnel, potential
for human error, variability in test quality, high costs of
molecular methods, and limited access to diagnostic facilities in
rural or low-resource regions (Awosolu et al., 2022).

One way to overcome some such challenges is to automate
the diagnosis process. Using image analysis techniques and
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machine learning algorithms, computers can be trained to
recognise malaria parasites in blood smear images quickly and
accurately, helping to reduce diagnostic error and improve access
to reliable malaria diagnosis, especially in rural areas where the
availability of expertise may be limited. Deep learning has shown
impressive results in image classification problems in various
fields, particularly in medical imaging. These technologies have
the potential for solving and enhancing malaria detectability
(Grignaffini et al., 2024), yielding faster and accurate results.
Deep Learning and CNNs techniques have dominated tasks
of image classification in the last years. CNNs are a class of
artificial neural networks whose structure is inspired by the
biological structure of the animal visual cortex, which takes in
and processes structured grid data like images. Due to their nature
of learning feature representations from pixel data automatically
and hierarchically, they are very suitable for image-related tasks.
A CNN can learn different patterns like edges, textures and
shapes from an image at its lower layers are patterns to help the
network construct complex representations and objects or in the
case of medical imaging, pathological features (Gao et al., 2022).
CNNs have been successfully applied to medical imaging,
including malaria diagnosis, skin cancer detection, and breast
cancer classification in few studies. CNNs have been used in the
context of diagnosing malaria, where images of blood cells are
classified as parasitized or uninfected with significant success.
However, CNNs are very powerful, but training deep neural
networks require a lot of labeled data, computational resources,
and time. This requirement poses an additional challenge with
regard to practical implementation, particularly in low-resource
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settings where computational capability and large-scale labelled
data sets may not be available (Balasubramaniam et al., 2023).

However, deep learning architectures such as CNNs do have
their shortcomings. A major problem lies in the computational
expense of training and deploying such models. While designing
a CNN from scratch to solve unique data problems, is often time-
consuming and hardware-intensive (GPUs and TPUs), making it
a challenge in resource-limited settings. More importantly, the
implementation of these complex models in real-time diagnosis
systems can be a challenging task due to speed and resource cost.
Also, deep learning models typically demand a lot of annotated
training data, which can be quite challenging to obtain in the
healthcare domain, given privacy concerns, expenses, and the
necessity for expert labels (Salehi ez al., 2023).

DL methods may involve complex architectures, which can
limit their performance on small datasets. Hybrid models can
work for leveraging the benefits of CNNs in feature extraction
and overcoming computational complexity due to deep learning
(by utilizing simpler and cheaper classifiers in the final
stages)(Wen et al., 2023)Here, CNN is used to extract more
higher-level representative features from image inputs and pass
them through classical machine learning classifiers such as
Random Forest, SVM, KNN, Logistic Regression, etc. Our
hybrid method achieves high diagnostic accuracy while
employing less processing power than other CNN-based systems,
making it well-suited to real-time clinical applications.

Most recent work has adopted using CNNs for feature
extraction combined with a traditional machine learning
classifier. Because of this, CNNs can learn representations of
edges, textures, and higher-order relationships that are almost
impossible to hand-engineer on images, from the pixel values of
raw images themselves. After extracting those features, typical
classifiers like Random Forest or SVM, which are less time-
consuming and computationally expensive compared to deep
neural networks, can be applied to classify the images based on
their features (Sothe et al., 2020).

A key advantage of this hybrid method is the ability to train
and deploy the model with much lower computational costs. The
CNN is only employed as a feature extractor rather than going
through an entire CNN process with deep classification layers,
which reduces the amount of time spent training and applying the
model to learn new parameters. The subsequent conventional
classifiers can also be trained faster, using the CNN-extracted
features, and require less memory space. Also, since CNN in this
case acts as a feature extractor, the model can still leverage
transfer learning with pre-trained CNNs such as VGG16, ResNet
or Inception, pre-trained on large datasets like ImageNet. Even if
the dataset is small for the specific domain (for instance, the
domain of malaria diagnosis), the CNN still draws on features
that were learned from general-purpose image classification tasks
(Das et al., 2021).

(Rosnelly et al., 2023) Compared CNN and SVM classifiers
for the classification of malaria parasites. An algorithm was used
to extract features from images; that is, PEMA and KEHE
algorithms were used to extract characteristics such as
eccentricity and area. (Sonawane & Telang, 2020) made use of
Bins Approach Algorithm and other feature extraction methods
like color moments, texture features (GLCM). In this study, after
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preprocessing the blood smear images, SVM, RF and KNN based
machine learning algorithms were used for classification. For
malaria detection from blood smear images, a hybrid approach of
CNN and SVM was used by (Vijayalakshmi, 2020). The
satisfactory classification accuracy was obtained when VGG19
architecture was combined with SVM as even it was found to
meet the threshold criteria thus it holds importance.

Deep learning techniques for automatic malaria detection
have been further explored in recent work. Research conducted
by (Ramos-Bricefio et al., 2025) utilized a CNN derived model
for identification of parasitized and uninfected cells with a
remarkable accuracy, using images of thick blood smear to
generalise the model in both P. falciparum and P. vivax species.
Their model focused on the superior performance of deep
architectures for medical imaging problems. (Ahamed et al.,
2025) study introduced a group of tailored CNN structures
(PCNN, SPCNN and SFPCNN), which were found to enhance
malaria parasite classification. The SPCNN model, especially,
improved robustness and interpretability by incorporating the
spatial feature extracting network into the convolution process.
These recent works validate the applicability of CNN-based
methods to malaria diagnosis and also demonstrate the
capabilities of architecture adaptation in improving the accuracy
of diagnosis which closely relates with the motivations of our
proposed hybrid model.

In this paper, we propose a hybrid scheme using the VGG16
CNN for feature extraction, and traditional multi-class classifiers
for classification. In this paper, we specifically try five classifiers,
namely: Random Forest, Logistic Regression, K-Nearest
Neighbors, Support Vector Machine, and Gradient Boosting. The
accuracy, precision, recall and Fl-score metrics are the most
common metrics used to quantify classifier performance in a
classification problem, and therefore are reported for each one.
We seek to explore whether this hybrid functional approach can
provide excellent diagnostic performance while being
computationally tractable for real-world applications in low-
resource environments.

The remainder of this paper is organized as follows: In
Section 2 we review related work in the area of automated
malaria detection and hybrid machine learning models. In
Section 3, we explain the methodology, covering the dataset,
preprocessing steps, CNN-based feature extraction, and
classifiers applied. In Section 4, we show the experiment results
and discuss the performance of the hybrid model using various
classifiers. Section 5 wraps up the paper by proposing future
work.

2. METHODOLOGY

The Methodology includes several phases beginning from
Dataset and Image Acquisition, Data Preprocessing where the
images are resized and normalized. In Hybrid Model Design,
CNN (VGGI16) extracts features, which classified using
traditional machine learning algorithms like Random Forest,
Logistic Regression, SVM. Finally, Performance Evaluation
calculates models using accuracy, precision, recall and f1 score
for an efficient and accurate approach towards malaria diagnosis.
As shown in figure 1.
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Figure 1: Data flow of the proposed model

Dataset and Image Acquisition:

The dataset used in this study is the NIH Malaria Dataset,
which is publicly available through the TensorFlow Datasets
(TFDS) repository. This dataset is widely considered a standard
benchmark for malaria image classification tasks because it
contains a large number of labeled, high-quality blood smear
images, is balanced between infected and uninfected samples,
and is captured under realistic microscopy settings, reflecting
practical diagnostic challenges. While the dataset is balanced
between classes, it primarily focuses on a specific imaging
protocol and may not cover the full diversity of real-world
variations such as differences in microscope brands, slide
preparation techniques, or patient demographics across regions.
This dataset containing 27,558 blood smear slide images. The
dataset consists of two classes: parasitized (infected) and
uninfected of the cells. The data is appropriately labeled, and the
dataset is moderately balanced with almost the same amount of
parasitized and uninfected images. Images are obtained under a
regular light microscope and they have three color channels
(RGB) and pixels dimensions vary from 100x100 pixels to
200x200 pixels.

It is one of the image-based malaria diagnosis datasets, and
hence a good choice for our research. And because it is available
via TFDS, it can be used in the TensorFlow framework for simple
data processing, training and evaluation.

Data Preprocessing:

Processing image data is an important step of ensuring a
successful machine learning pipeline, and that process takes
preprocessing of the data. Since the images in malaria dataset do
not have the same dimensions, we standardized the input size to
be 224x224 pixels by resizing all images to this size. This
dimension was selected, as it is a common input size for CNNs,
e.g., VGG16 used for feature extraction. It helps in normalizing
the input size, and also decreases computational cost which helps
the model to concentrate on the essential parts of the image.

Image Normalization:

After resizing, we normalized the pixel values of all the
images. Normalization is transforming the pixel value originally
in range [0, 255] into a new range [0, 1]. This is an important step
since, in general, CNNs benefit from having input data scaled to
a smaller normalized range. So Normalized images helps in
keeping the process of learning stable and enables the model to
converge faster during training Without normalization, it can lead
to worse performance or divergence due to high variance in the
pixel values while making gradient updates.

Hybrid Model Design:

We use two components from different empirical paradigms
of machine learning: Deep Learning (in the form of CNNs for
feature extraction and traditional machine learning classifiers for
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classification. This utilizes the best of both worlds: CNN helps to
extract the features from the images while a traditional classifier
does the classification of the extracted features.

CNN for Feature Extraction:

In our pipeline, the CNN will serve the primary purpose of
extracting features. Given the effectiveness of CNNs for
automatically learning hierarchical feature representations
directly from raw pixel data, they have emerged as the gold
standard for image classification problems (Litjens ef al., 2017,
Shen et al., 2017). To extract features, we used pretrained
VGG16 networks, and this model was one of the well-known
CNN architectures, which has been pretrained on the ImageNet
dataset that is a comprehensive dataset of around millions of
labeled images across thousands of categories.

VGG16 Architecture: VGG16 has 16 layers, 13
convolutional and 3 fully connected. It uses a simple, yet
effective, design pattern where a number of small 3x3 filters from
a number of convolutional layers are stacked on top of each other
followed by a max-pooling layer to reduce the size of the spatial
dimension of the image. This architecture enables the network to
learn progressively intricate features as information propagates
through the layers, ranging from basic edge types in the lower
layers to advanced object features in the higher layers.

Specifically, we will be using the VGG16 model's top
classification layers (a.k.a the "head" of the model) in our hybrid
approach. With this change, the network is only being used as a
feature extractor and is not directly making classification.
Concretely, we only removed the last fully connected layers and
added a Global Average Pooling (GAP) layer. The GAP layer
finds the average of each feature map, reducing the
dimensionality of the output feature maps and providing a fixed
length feature vector for each input image.

Moreover, VGG16 was chosen due to its elegant structure
that has proven to be effective and widely accepted in the domain
of computer vision. VGG16 is pretrained on ImageNet, so it has
already learned a lot of features that are able to recognize objects.
One observation is that while malaria is a specialized domain,
their features transfer to our malaria classification task.
Therefore, by employing transfer learning technique, we used the
Pre-trained weights of VGG16 to Extract higher order features
from malaria dataset instead of training the network from scratch.
This allows for a large reduction in the computational cost and
time for training.

Traditional Machine Learning Classifiers:

After the CNN extracts features from images, classical
machine learning classifiers are used to perform the actual
classification task. We tried out five non-neural network
classifiers: Random Forest, Logistic Regression, KNN, SVM,
and Gradient Boosting. Table 1 summarizes the key
hyperparameters used for each classifier in our experiments to
enhance reproducibility.
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Random Forest: Random Forest is combined multiple decision
trees to obtain a final prediction Individual trees are trained
separately on random subsets of the data, and the overall
prediction is determined by the majority vote among all trees.
Random Forests are well-known for their robustness and
handling high-dimensional feature spaces, which made it a good
candidate for our feature-rich data.

Logistic Regression: Logistic Regression is a simple yet
powerful linear classifier commonly wused for binary
classification tasks. Logistic Regression is a classification
algorithm that estimates the probability of a binary outcome
based on one or more predictor variables. Logistic Regression is
very simple, but works good on separable data which could be
the case with features extracted from CNN.

KNN: The KNN algorithm is a non-parametric method that
classifies the image based on the majority class of the k-nearest
neighbors in the feature space. Despite its simplicity and
interpretability, KNN's performance might be sensitive to the

value of k and the distance metric employed. Since prediction
includes distance computations from all points in the training set,
KNN can be slow on larger datasets.

SVM: SVM is a great classifier, works by choosing the
hyperplane that best classifies the data by two. It finds the
hyperplane that best separates the data points on either side and
maximizes the distance between the support vectors (the data
points that are closest to the hyperplane), resulting in a very
strong decision boundary. SVM works well in high-dimensional
space; therefore, the CNN extracted features would be best fitted
to be classified with SVM.

Gradient Boosting Classifier: Gradient Boosting is yet
another ensemble learning method that builds a series of models,
each of which tries to rectify the mistakes made by the previous
models. This results in a very accurate model (while possibly
more computationally expensive than other classifiers) through
iterating and updating. Gradient Boosting works very well for
complex decision boundaries and also reduces overfitting.

Table 1 :Summarizes the key hyperparameters used for each classifier in our experiments.

Classifier

Main Hyperparameters

Random Forest

Logistic Regression
K-Nearest Neighbors
Support Vector Machine
Gradient Boosting

Number of trees = 100, Max depth = None
Regularization = L2, Solver = 'liblinear

k = 5, Distance metric = Euclidean

Kernel =RBF,C=1.0

Number of estimators = 100, Learning rate = 0.1

Traditional classifiers were selected because they offer efficient
training and inference when working with fixed feature
representations extracted from CNNs, allowing for high accuracy
with reduced computational requirements, which is critical for
deployment in resource-limited environments.

Performance Evaluation:

We then split the dataset and evaluate train-test performance
of the classifiers based on scientific literature guidance, using
80% of the data for training and 20% for testing. We used the
following evaluation metrics to see how each of the classifiers
performed:

Accuracy: The number of correctly predicted instances divided
by the total number of instances.

F1 Score: This is harmonic mean of Precision and Recall, hence
a better statistic when the classes are imbalanced.

Precision: True positives of the predicted positives.

Recall: True positives / Actual positives

The CNN features extracted were used to train each classifier and
to evaluate on the test set. They represent good measures of the
classifiers performance, by describing both the accuracy along
with the ratio between false positive and false negative cases.

Experimental Results:

Using five of the most popular classifiers — Random Forest,
Logistic Regression, KNN, SVM and Gradient Boosting — we
evaluated the hybrid method of extracting CNN-based features
and passing them to a traditional machine learning classifier for
malaria classification. This section shows the results and explains
it on the basis of four performance metrics, namely, accuracy, F1
score, precision, and recall. These metrics provide an overall
assessment of the success of the models at classifying malaria-
infected and uninfected cells. All experiments were conducted
using Python, TensorFlow, and Scikit-learn, and Keras on a
standard workstation equipped with an Intel Core i7 CPU, 16 GB
RAM, and no dedicated GPU. As shown in figure 2.

Performance Metrics of Classifiers
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Figure 2: Performance Metrics of Classifiers
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Random Forest Classifier:

The Random Forest classifier yielded an accuracy of
91.09%, indicative of a good classification performance but still
with potential for enhancement. We also had an F1 score of
91.09%, which is an indication that we have a good balance
between precision and recall. For precision, it was 91.17% and
recall 91.09%. This means Random Forest had a slight advantage
in making positive predictions correct, such that there is a small
gap between precision and recall. The Random Forest has the
advantage of being an ensemble of decision trees and taking the
average of their predictions, so it is able to generalize well to
unseen data, yet the model can be tuned further / trained on a
larger dataset.

Its relatively high precision suggests that the model is good
at avoiding false positives (e.g. not classifying uninfected cells as
infected). If the recall indicates this is likely to be the case, it
means that the model may sometimes miss some infected cells,
which has obvious implications when considering how this might
be used in the wild; if someone has malaria this kind of false
negative could be life threatening. While it gets a good accuracy,
we could get even higher accuracy with a little tweaking such as
hyperparameter tuning (increasing no of trees, adjusting trees’
depth, etc), or feeding the models with more data.

Logistic Regression Classifier:

Logistic Regression classifier is considered good for
preserving interpretability in the model process, and despite
being a simple technique, it outperformed Random Forest with
an accuracy of 93.27% having proven robust for this type of
binary classification problem, such as malaria detection. The F1
score stood at 93.26%, with 93.39% precision and 93.27% recall.
Logistic Regression yielded good performance with reasonably
well-balanced precision and recall, indicating success both in
correctly identifying malaria-infected cells and ensuring that the
cells predicted to be infected are largely so.

As Logistic Regression is a generalized linear model and
assumed to perform a little worse than a more complex model
such Random Forest and/or Gradient Boosting. Yet, its
simplicity, interpretability and reasonably strong performance
when used in some diagnostic systems can make it a competitive
choice, especially in cases where faster prediction times and
lower computational expenses are necessary. The high precision
score for Logistic Regression indicates that it is quite accurate at
avoiding false positives, which is crucial when utilizing it for
healthcare purposes. But Logistic Regression is a linear model
that may not perform well on more complex and non-linear
decision boundaries.

K-Nearest Neighbors Classifier:

The K-Nearest Neighbors (KNN) classifier achieved the
lowest score of the classifiers with 83.85% accuracy. The F1
score is 83.69% with a precision of 85.22% and recall of 83.85%,
which reflects this relatively low accuracy. KNN outperformed
the other algorithms because of the simplicity and sensitivity of
the structure of the data. While more complex models learn
complex decision boundaries or template ensemble methods,
KNN only needs to learn the distance to nearest neighbors. The
complexity of the malaria dataset and overlapping regions
between parasitized and uninfected cells, which KNN may
struggle with, in this case, could cause KNN to be less helpful
than other approaches.

KNN had a higher precision than recall, which suggests it
was more careful than accurate in its positive predictions, missing
positive cases. This means KNN may classify malaria-positive
cells as uninfected more often than we would like, resulting in a
relatively high number of false negatives. In the case of malaria
detection, this becomes particularly problematic as the goal is to
detect all positive cases. Because of the low performance, KNN
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would not be a suitable choice for this classification problem in
a real-world diagnostic context.

Support Vector Machine Classifier:

The SVM classifier has a validation accuracy of 90.71%,
comparable to Random Forest and logistic regression. The F1
score was 90.69%, precision was 91.04% and recall was 90.71%.
SVM's performance reflects on its ability to handle high-
dimensional feature space effectively as it finds the optimal
hyperplane which separates the parasitized cells from the
uninfected cells. Both precision and recall were reasonably good,
indicating this model was very effective in minimizing the
number of false positives as well as false negatives leading to a
reliable model for malaria detection.

This method works well when the classes in the training set
are not linearly separable and it can map the data to higher
dimensions using kernel trick. It performs competitively in this
experiment and thus can serve as a strong candidate for image
classification tasks. But SVM has also high computational cost
which makes it use in less suitable that is not real-time
application in resource-constrained environments.

Gradient Boosting Classifier:

Lastly, The Gradient Boosting classifier recorded an
accuracy of 92.22%, putting it, performance-wise, between
Logistic Regression and SVM. The F1 score was 92.21%,
precision — 92.32%, recall — 92.22%. This ability of Gradient
Boosting to emphasize the mistakes of the preceding models to
incrementally enhance its predictions is very powerful and suits
complex tasks extremely well. It is close to the best-performing
models, and its balanced precision and recall suggests it is good
at minimizing both false positives and false negatives.

Gradient Boosting — Gradient Boosting builds models in a
sequential manner, making it very good at generating very
accurate predictions. However, Gradient Boosting is also
computationally intensive, similar to SVM, mainly with a large
number of trees as well as boosting rounds. Although it is more
accurate than the previous methods, its complexity may restrict
its use in many real-time applications unless there are a lot of
computational resources available.

3. DISCUSSION

To summarize, Logistic Regression and Gradient Boosting
were the winners in terms of accuracy, with Logistic Regression
slightly better than Gradient Boosting. Nonetheless, all classifiers
except the KNN classifier produced strong metrics, boasting
sensitivity levels of over 90%, indicating their potential for use
in malaria classification. The low accuracies of KNN indicate
that it is not suitable for complex datasets like the malaria dataset.
The other classifiers displayed a more balanced approach
between precision and recall; thus, they can be alternative options
for the implementation of malaria classification in diagnostic
systems. Improvements could be made from tuning hyper
parameters and adding more data augumentation techniques to
further avoid overfitting and improve generalization. As we
employed a pretrained VGG16 model solely for feature
extraction and combined it with traditional machine learning
classifiers, the computational demands were significantly lower
than training deep CNNs end-to-end. A more detailed evaluation
of inference speed and memory consumption will be considered
in future work to further validate the approach for deployment in
resource-limited environments.

In many low-resource settings, access to high-performance
computing infrastructure, such as GPUs or large memory servers,
is limited. Training and deploying deep CNN models from
scratch often requires significant computational resources and
annotated datasets, which are not readily available. By using a
pretrained VGG16 model solely for feature extraction and
combining it with lightweight traditional classifiers, our hybrid
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approach reduces the computational burden substantially. This
makes it more feasible for deployment on standard CPUs or
mobile devices, aligning with the practical constraints typically
encountered in rural and resource-limited environments.

CONCLUSION

This work proposes a hybrid approach for understanding the
use of CNN based feature extraction in conjunction with
traditional machine learning classifiers for the purpose of malaria
diagnosis. The combination of VGG16 and various classification
algorithms (like Logistic Regression and Gradient Boosting)
allows for a balance between accuracy and computational
efficiency in the proposed model. Out of all the classifiers that
were evaluated, Logistic Regression was able to produce the best
overall performance, boasting an accuracy of over 93.27% for
this binary classification problem, and hence it is a strong and
efficient choice for detecting malaria.

In this hybrid approach, we aim at a practical solution of its
application in more resource-constrained settings by minimizing
the computational intensity of deep learning architectures.
Moreover, this approach strikes an adequate balance between the
feature representation ability of CNNs and the interpretability
and simplicity of classical classifiers.

Potential future works include tuning of hyperparameters,
experiment with different CNN architectures for feature
extraction, or advanced data augmentation techniques to increase
the generalizability of the model. This work lays the groundwork
for further development of this approach for use in the field for
rapid and near-elimination of malaria or other medical diagnoses.
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