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ABSTRACT: 

Malaria is a major global health threat, and timely and correct diagnosis is essential for effective treatment. Traditional 

diagnostic methods, such as the microscopic examination of blood smears, are time-consuming and require expert personnel. 

The study presents a mix of machine learning methods for automatic diagnosis of malaria by using the feature extraction 

capability of Convolutional Neural Networks (CNNs) along with the efficient classification performance of traditional 

machine learning classifiers. For our study, we utilize VGG16 CNN with a weight pre-trained on ImageNet to extract the 

features from non-infected and infected blood cell images from malaria. Five classical machine learning algorithms, such 

as Random Forest, Logistic Regression, K-Nearest Neighbours (KNN), Support Vector Machine (SVM), & Gradient 

Boosting, are used to classify the extracted features. Each classifier's performance is calculated based on accuracy, F1 score, 

precision, and recall metrics. The results of our experiments showed that the hybrid model has high accuracy in 

classification, where the Logistic Regression classifier could achieve above 93% accuracy. This hybrid method is a powerful 

diagnostic for malaria disease, accomplishing a more satisfactory compromise between the efficacy of the deep learning 

architectures such as CNNs, and the computational capabilities of more conventional classifiers. It holds promise for 

deployment into resource-limited settings where fast, automated threading diagnostic systems are much needed. 

KEYWORDS: Malaria classification, Convolutional Neural Networks, Feature extraction, Random Forest, Logistic 

Regression. 

1. INTRODUCTION 

        Malaria is a highly prevalent and life-threatening parasitic 

disease that affects humans worldwide, especially in tropical and 

subtropical areas. Caused by protozoan parasites of the genus 

Plasmodium, the disease is transmitted to humans via the bites of 

infected female Anopheles mosquitoes. According to the World 

Health Organization (WHO), malaria is a major public health 

threat and is most common in low- and middle-income countries. 

In 2019 alone, there were an estimated 229 million cases of 

malaria around the world, causing more than 400,000 deaths, 

mostly in sub-Saharan Africa. Malaria is a leading cause of death 

among children under five years of age. Despite extensive control 

and elimination programs, malaria remains a global health 

burden (Al-Awadhi et al., 2021). 

        Early and accurate diagnosis is one of the most important 

components of a comprehensive approach to combat malaria. 

Traditional diagnostic tools include blood smear microscopy, 

rapid diagnostic tests (RDTs), and molecular diagnostic tools 

such as polymerase chain reaction (PCR). The most common 

approach is microscopy of stained blood smears to detect malaria 

parasites by professionals who have been properly trained to 

perform this task. Despite the availability of microscopy and 

rapid diagnostic tests (RDTs), malaria diagnosis faces significant 

challenges, including dependence on skilled personnel, potential 

for human error, variability in test quality, high costs of 

molecular methods, and limited access to diagnostic facilities in 

rural or low-resource regions (Awosolu et al., 2022). 

        One way to overcome some such challenges is to automate 

the diagnosis process. Using image analysis techniques and 
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machine learning algorithms, computers can be trained to 

recognise malaria parasites in blood smear images quickly and 

accurately, helping to reduce diagnostic error and improve access 

to reliable malaria diagnosis, especially in rural areas where the 

availability of expertise may be limited. Deep learning has shown 

impressive results in image classification problems in various 

fields, particularly in medical imaging. These technologies have 

the potential for solving and enhancing malaria detectability 

(Grignaffini et al., 2024), yielding faster and accurate results. 

        Deep Learning and CNNs techniques have dominated tasks 

of image classification in the last years. CNNs are a class of 

artificial neural networks whose structure is inspired by the 

biological structure of the animal visual cortex, which takes in 

and processes structured grid data like images. Due to their nature 

of learning feature representations from pixel data automatically 

and hierarchically, they are very suitable for image-related tasks. 

A CNN can learn different patterns like edges, textures and 

shapes from an image at its lower layers are patterns to help the 

network construct complex representations and objects or in the 

case of medical imaging, pathological features (Gao et al., 2022). 

CNNs have been successfully applied to medical imaging, 

including malaria diagnosis, skin cancer detection, and breast 

cancer classification in few studies. CNNs have been used in the 

context of diagnosing malaria, where images of blood cells are 

classified as parasitized or uninfected with significant success. 

However, CNNs are very powerful, but training deep neural 

networks require a lot of labeled data, computational resources, 

and time. This requirement poses an additional challenge with 

regard to practical implementation, particularly in low-resource 
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settings where computational capability and large-scale labelled 

data sets may not be available (Balasubramaniam et al., 2023). 

        However, deep learning architectures such as CNNs do have 

their shortcomings. A major problem lies in the computational 

expense of training and deploying such models. While designing 

a CNN from scratch to solve unique data problems, is often time-

consuming and hardware-intensive (GPUs and TPUs), making it 

a challenge in resource-limited settings. More importantly, the 

implementation of these complex models in real-time diagnosis 

systems can be a challenging task due to speed and resource cost. 

Also, deep learning models typically demand a lot of annotated 

training data, which can be quite challenging to obtain in the 

healthcare domain, given privacy concerns, expenses, and the 

necessity for expert labels (Salehi et al., 2023). 

        DL methods may involve complex architectures, which can 

limit their performance on small datasets. Hybrid models can 

work for leveraging the benefits of CNNs in feature extraction 

and overcoming computational complexity due to deep learning 

(by utilizing simpler and cheaper classifiers in the final 

stages)(Wen et al., 2023)Here, CNN is used to extract more 

higher-level representative features from image inputs and pass 

them through classical machine learning classifiers such as 

Random Forest, SVM, KNN, Logistic Regression, etc. Our 

hybrid method achieves high diagnostic accuracy while 

employing less processing power than other CNN-based systems, 

making it well-suited to real-time clinical applications. 

        Most recent work has adopted using CNNs for feature 

extraction combined with a traditional machine learning 

classifier. Because of this, CNNs can learn representations of 

edges, textures, and higher-order relationships that are almost 

impossible to hand-engineer on images, from the pixel values of 

raw images themselves. After extracting those features, typical 

classifiers like Random Forest or SVM, which are less time-

consuming and computationally expensive compared to deep 

neural networks, can be applied to classify the images based on 

their features (Sothe et al., 2020). 

        A key advantage of this hybrid method is the ability to train 

and deploy the model with much lower computational costs. The 

CNN is only employed as a feature extractor rather than going 

through an entire CNN process with deep classification layers, 

which reduces the amount of time spent training and applying the 

model to learn new parameters. The subsequent conventional 

classifiers can also be trained faster, using the CNN-extracted 

features, and require less memory space. Also, since CNN in this 

case acts as a feature extractor, the model can still leverage 

transfer learning with pre-trained CNNs such as VGG16, ResNet 

or Inception, pre-trained on large datasets like ImageNet. Even if 

the dataset is small for the specific domain (for instance, the 

domain of malaria diagnosis), the CNN still draws on features 

that were learned from general-purpose image classification tasks 

(Das et al., 2021). 

        (Rosnelly et al., 2023) Compared CNN and SVM classifiers 

for the classification of malaria parasites. An algorithm was used 

to extract features from images; that is, PEMA and KEHE 

algorithms were used to extract characteristics such as 

eccentricity and area. (Sonawane & Telang, 2020) made use of 

Bins Approach Algorithm and other feature extraction methods 

like color moments, texture features (GLCM). In this study, after 

preprocessing the blood smear images, SVM, RF and KNN based 

machine learning algorithms were used for classification.  For 

malaria detection from blood smear images, a hybrid approach of 

CNN and SVM was used by (Vijayalakshmi, 2020). The 

satisfactory classification accuracy was obtained when VGG19 

architecture was combined with SVM as even it was found to 

meet the threshold criteria thus it holds importance. 

        Deep learning techniques for automatic malaria detection 

have been further explored in recent work. Research conducted 

by (Ramos-Briceño et al., 2025) utilized a CNN derived model 

for identification of parasitized and uninfected cells with a 

remarkable accuracy, using images of thick blood smear to 

generalise the model in both P. falciparum and P. vivax species. 

Their model focused on the superior performance of deep 

architectures for medical imaging problems. (Ahamed et al., 

2025) study introduced a group of tailored CNN structures 

(PCNN, SPCNN and SFPCNN), which were found to enhance 

malaria parasite classification. The SPCNN model, especially, 

improved robustness and interpretability by incorporating the 

spatial feature extracting network into the convolution process. 

These recent works validate the applicability of CNN-based 

methods to malaria diagnosis and also demonstrate the 

capabilities of architecture adaptation in improving the accuracy 

of diagnosis which closely relates with the motivations of our 

proposed hybrid model. 

        In this paper, we propose a hybrid scheme using the VGG16 

CNN for feature extraction, and traditional multi-class classifiers 

for classification. In this paper, we specifically try five classifiers, 

namely: Random Forest, Logistic Regression, K-Nearest 

Neighbors, Support Vector Machine, and Gradient Boosting. The 

accuracy, precision, recall and F1-score metrics are the most 

common metrics used to quantify classifier performance in a 

classification problem, and therefore are reported for each one. 

We seek to explore whether this hybrid functional approach can 

provide excellent diagnostic performance while being 

computationally tractable for real-world applications in low-

resource environments. 

       The remainder of this paper is organized as follows: In 

Section 2 we review related work in the area of automated 

malaria detection and hybrid machine learning models. In 

Section 3, we explain the methodology, covering the dataset, 

preprocessing steps, CNN-based feature extraction, and 

classifiers applied. In Section 4, we show the experiment results 

and discuss the performance of the hybrid model using various 

classifiers. Section 5 wraps up the paper by proposing future 

work. 

2. METHODOLOGY 

        The Methodology includes several phases beginning from 

Dataset and Image Acquisition, Data Preprocessing where the 

images are resized and normalized. In Hybrid Model Design, 

CNN (VGG16) extracts features, which classified using 

traditional machine learning algorithms like Random Forest, 

Logistic Regression, SVM. Finally, Performance Evaluation 

calculates models using accuracy, precision, recall and f1 score 

for an efficient and accurate approach towards malaria diagnosis. 

As shown in figure 1.
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Figure 1: Data flow of the proposed model 

Dataset and Image Acquisition: 

        The dataset used in this study is the NIH Malaria Dataset, 

which is publicly available through the TensorFlow Datasets 

(TFDS) repository. This dataset is widely considered a standard 

benchmark for malaria image classification tasks because it 

contains a large number of labeled, high-quality blood smear 

images, is balanced between infected and uninfected samples, 

and is captured under realistic microscopy settings, reflecting 

practical diagnostic challenges. While the dataset is balanced 

between classes, it primarily focuses on a specific imaging 

protocol and may not cover the full diversity of real-world 

variations such as differences in microscope brands, slide 

preparation techniques, or patient demographics across regions. 

This dataset containing 27,558 blood smear slide images. The 

dataset consists of two classes: parasitized (infected) and 

uninfected of the cells. The data is appropriately labeled, and the 

dataset is moderately balanced with almost the same amount of 

parasitized and uninfected images. Images are obtained under a 

regular light microscope and they have three color channels 

(RGB) and pixels dimensions vary from 100x100 pixels to 

200x200 pixels. 

        It is one of the image-based malaria diagnosis datasets, and 

hence a good choice for our research. And because it is available 

via TFDS, it can be used in the TensorFlow framework for simple 

data processing, training and evaluation. 

Data Preprocessing: 

        Processing image data is an important step of ensuring a 

successful machine learning pipeline, and that process takes 

preprocessing of the data. Since the images in malaria dataset do 

not have the same dimensions, we standardized the input size to 

be 224×224 pixels by resizing all images to this size. This 

dimension was selected, as it is a common input size for CNNs, 

e.g., VGG16 used for feature extraction. It helps in normalizing 

the input size, and also decreases computational cost which helps 

the model to concentrate on the essential parts of the image. 

Image Normalization: 

        After resizing, we normalized the pixel values of all the 

images. Normalization is transforming the pixel value originally 

in range [0, 255] into a new range [0, 1]. This is an important step 

since, in general, CNNs benefit from having input data scaled to 

a smaller normalized range. So Normalized images helps in 

keeping the process of learning stable and enables the model to 

converge faster during training Without normalization, it can lead 

to worse performance or divergence due to high variance in the 

pixel values while making gradient updates. 

Hybrid Model Design: 

        We use two components from different empirical paradigms 

of machine learning: Deep Learning (in the form of CNNs for 

feature extraction and traditional machine learning classifiers for 

classification. This utilizes the best of both worlds: CNN helps to 

extract the features from the images while a traditional classifier 

does the classification of the extracted features. 

CNN for Feature Extraction: 

        In our pipeline, the CNN will serve the primary purpose of 

extracting features. Given the effectiveness of CNNs for 

automatically learning hierarchical feature representations 

directly from raw pixel data, they have emerged as the gold 

standard for image classification problems (Litjens et al., 2017; 

Shen et al., 2017). To extract features, we used pretrained 

VGG16 networks, and this model was one of the well-known 

CNN architectures, which has been pretrained on the ImageNet 

dataset that is a comprehensive dataset of around millions of 

labeled images across thousands of categories. 

        VGG16 Architecture: VGG16 has 16 layers, 13 

convolutional and 3 fully connected. It uses a simple, yet 

effective, design pattern where a number of small 3×3 filters from 

a number of convolutional layers are stacked on top of each other 

followed by a max-pooling layer to reduce the size of the spatial 

dimension of the image. This architecture enables the network to 

learn progressively intricate features as information propagates 

through the layers, ranging from basic edge types in the lower 

layers to advanced object features in the higher layers. 

        Specifically, we will be using the VGG16 model's top 

classification layers (a.k.a the "head" of the model) in our hybrid 

approach. With this change, the network is only being used as a 

feature extractor and is not directly making classification. 

Concretely, we only removed the last fully connected layers and 

added a Global Average Pooling (GAP) layer. The GAP layer 

finds the average of each feature map, reducing the 

dimensionality of the output feature maps and providing a fixed 

length feature vector for each input image. 

        Moreover, VGG16 was chosen due to its elegant structure 

that has proven to be effective and widely accepted in the domain 

of computer vision. VGG16 is pretrained on ImageNet, so it has 

already learned a lot of features that are able to recognize objects. 

One observation is that while malaria is a specialized domain, 

their features transfer to our malaria classification task. 

Therefore, by employing transfer learning technique, we used the 

Pre-trained weights of VGG16 to Extract higher order features 

from malaria dataset instead of training the network from scratch. 

This allows for a large reduction in the computational cost and 

time for training. 

Traditional Machine Learning Classifiers: 

        After the CNN extracts features from images, classical 

machine learning classifiers are used to perform the actual 

classification task. We tried out five non-neural network 

classifiers: Random Forest, Logistic Regression, KNN, SVM, 

and Gradient Boosting. Table 1 summarizes the key 

hyperparameters used for each classifier in our experiments to 

enhance reproducibility. 
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Random Forest: Random Forest is combined multiple decision 

trees to obtain a final prediction Individual trees are trained 

separately on random subsets of the data, and the overall 

prediction is determined by the majority vote among all trees. 

Random Forests are well-known for their robustness and 

handling high-dimensional feature spaces, which made it a good 

candidate for our feature-rich data. 

        Logistic Regression: Logistic Regression is a simple yet 

powerful linear classifier commonly used for binary 

classification tasks. Logistic Regression is a classification 

algorithm that estimates the probability of a binary outcome 

based on one or more predictor variables. Logistic Regression is 

very simple, but works good on separable data which could be 

the case with features extracted from CNN. 

        KNN: The KNN algorithm is a non-parametric method that 

classifies the image based on the majority class of the k-nearest 

neighbors in the feature space. Despite its simplicity and 

interpretability, KNN's performance might be sensitive to the 

value of k and the distance metric employed. Since prediction 

includes distance computations from all points in the training set, 

KNN can be slow on larger datasets. 

        SVM: SVM is a great classifier, works by choosing the 

hyperplane that best classifies the data by two. It finds the 

hyperplane that best separates the data points on either side and 

maximizes the distance between the support vectors (the data 

points that are closest to the hyperplane), resulting in a very 

strong decision boundary. SVM works well in high-dimensional 

space; therefore, the CNN extracted features would be best fitted 

to be classified with SVM. 

        Gradient Boosting Classifier: Gradient Boosting is yet 

another ensemble learning method that builds a series of models, 

each of which tries to rectify the mistakes made by the previous 

models. This results in a very accurate model (while possibly 

more computationally expensive than other classifiers) through 

iterating and updating. Gradient Boosting works very well for 

complex decision boundaries and also reduces overfitting. 

 

Table 1 :Summarizes the key hyperparameters used for each classifier in our experiments. 

Classifier Main Hyperparameters 

Random Forest Number of trees = 100, Max depth = None 

Logistic Regression Regularization = L2, Solver = 'liblinear' 

K-Nearest Neighbors k = 5, Distance metric = Euclidean 

Support Vector Machine Kernel = RBF, C = 1.0 

Gradient Boosting Number of estimators = 100, Learning rate = 0.1 

 

Traditional classifiers were selected because they offer efficient 

training and inference when working with fixed feature 

representations extracted from CNNs, allowing for high accuracy 

with reduced computational requirements, which is critical for 

deployment in resource-limited environments. 

Performance Evaluation: 

        We then split the dataset and evaluate train-test performance 

of the classifiers based on scientific literature guidance, using 

80% of the data for training and 20% for testing. We used the 

following evaluation metrics to see how each of the classifiers 

performed: 

Accuracy: The number of correctly predicted instances divided 

by the total number of instances. 

F1 Score: This is harmonic mean of Precision and Recall, hence 

a better statistic when the classes are imbalanced. 

Precision: True positives of the predicted positives. 

Recall: True positives / Actual positives 

The CNN features extracted were used to train each classifier and 

to evaluate on the test set. They represent good measures of the 

classifiers performance, by describing both the accuracy along 

with the ratio between false positive and false negative cases. 

Experimental Results: 

        Using five of the most popular classifiers — Random Forest, 

Logistic Regression, KNN, SVM and Gradient Boosting — we 

evaluated the hybrid method of extracting CNN-based features 

and passing them to a traditional machine learning classifier for 

malaria classification. This section shows the results and explains 

it on the basis of four performance metrics, namely, accuracy, F1 

score, precision, and recall. These metrics provide an overall 

assessment of the success of the models at classifying malaria-

infected and uninfected cells. All experiments were conducted 

using Python, TensorFlow, and Scikit-learn, and Keras on a 

standard workstation equipped with an Intel Core i7 CPU, 16 GB 

RAM, and no dedicated GPU. As shown in figure 2.

 

 

 
Figure 2: Performance Metrics of Classifiers 
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Random Forest Classifier: 

        The Random Forest classifier yielded an accuracy of 

91.09%, indicative of a good classification performance but still 

with potential for enhancement. We also had an F1 score of 

91.09%, which is an indication that we have a good balance 

between precision and recall. For precision, it was 91.17% and 

recall 91.09%. This means Random Forest had a slight advantage 

in making positive predictions correct, such that there is a small 

gap between precision and recall. The Random Forest has the 

advantage of being an ensemble of decision trees and taking the 

average of their predictions, so it is able to generalize well to 

unseen data, yet the model can be tuned further / trained on a 

larger dataset. 

        Its relatively high precision suggests that the model is good 

at avoiding false positives (e.g. not classifying uninfected cells as 

infected). If the recall indicates this is likely to be the case, it 

means that the model may sometimes miss some infected cells, 

which has obvious implications when considering how this might 

be used in the wild; if someone has malaria this kind of false 

negative could be life threatening. While it gets a good accuracy, 

we could get even higher accuracy with a little tweaking such as 

hyperparameter tuning (increasing no of trees, adjusting trees’ 

depth, etc), or feeding the models with more data. 

Logistic Regression Classifier: 

        Logistic Regression classifier is considered good for 

preserving interpretability in the model process, and despite 

being a simple technique, it outperformed Random Forest with 

an accuracy of 93.27% having proven robust for this type of 

binary classification problem, such as malaria detection. The F1 

score stood at 93.26%, with 93.39% precision and 93.27% recall. 

Logistic Regression yielded good performance with reasonably 

well-balanced precision and recall, indicating success both in 

correctly identifying malaria-infected cells and ensuring that the 

cells predicted to be infected are largely so. 

        As Logistic Regression is a generalized linear model and 

assumed to perform a little worse than a more complex model 

such Random Forest and/or Gradient Boosting. Yet, its 

simplicity, interpretability and reasonably strong performance 

when used in some diagnostic systems can make it a competitive 

choice, especially in cases where faster prediction times and 

lower computational expenses are necessary. The high precision 

score for Logistic Regression indicates that it is quite accurate at 

avoiding false positives, which is crucial when utilizing it for 

healthcare purposes. But Logistic Regression is a linear model 

that may not perform well on more complex and non-linear 

decision boundaries. 

K-Nearest Neighbors Classifier: 

        The K-Nearest Neighbors (KNN) classifier achieved the 

lowest score of the classifiers with 83.85% accuracy. The F1 

score is 83.69% with a precision of 85.22% and recall of 83.85%, 

which reflects this relatively low accuracy. KNN outperformed 

the other algorithms because of the simplicity and sensitivity of 

the structure of the data. While more complex models learn 

complex decision boundaries or template ensemble methods, 

KNN only needs to learn the distance to nearest neighbors. The 

complexity of the malaria dataset and overlapping regions 

between parasitized and uninfected cells, which KNN may 

struggle with, in this case, could cause KNN to be less helpful 

than other approaches. 

        KNN had a higher precision than recall, which suggests it 

was more careful than accurate in its positive predictions, missing 

positive cases. This means KNN may classify malaria-positive 

cells as uninfected more often than we would like, resulting in a 

relatively high number of false negatives. In the case of malaria 

detection, this becomes particularly problematic as the goal is to 

detect all positive cases. Because of the low performance, KNN 

would not be a suitable choice for this classification problem in 

a real-world diagnostic context. 

Support Vector Machine Classifier: 

        The SVM classifier has a validation accuracy of 90.71%, 

comparable to Random Forest and logistic regression. The F1 

score was 90.69%, precision was 91.04% and recall was 90.71%. 

SVM's performance reflects on its ability to handle high-

dimensional feature space effectively as it finds the optimal 

hyperplane which separates the parasitized cells from the 

uninfected cells. Both precision and recall were reasonably good, 

indicating this model was very effective in minimizing the 

number of false positives as well as false negatives leading to a 

reliable model for malaria detection. 

        This method works well when the classes in the training set 

are not linearly separable and it can map the data to higher 

dimensions using kernel trick. It performs competitively in this 

experiment and thus can serve as a strong candidate for image 

classification tasks. But SVM has also high computational cost 

which makes it use in less suitable that is not real-time 

application in resource-constrained environments. 

Gradient Boosting Classifier: 

        Lastly, The Gradient Boosting classifier recorded an 

accuracy of 92.22%, putting it, performance-wise, between 

Logistic Regression and SVM. The F1 score was 92.21%, 

precision — 92.32%, recall — 92.22%. This ability of Gradient 

Boosting to emphasize the mistakes of the preceding models to 

incrementally enhance its predictions is very powerful and suits 

complex tasks extremely well. It is close to the best-performing 

models, and its balanced precision and recall suggests it is good 

at minimizing both false positives and false negatives. 

        Gradient Boosting — Gradient Boosting builds models in a 

sequential manner, making it very good at generating very 

accurate predictions. However, Gradient Boosting is also 

computationally intensive, similar to SVM, mainly with a large 

number of trees as well as boosting rounds. Although it is more 

accurate than the previous methods, its complexity may restrict 

its use in many real-time applications unless there are a lot of 

computational resources available. 

3. DISCUSSION 

        To summarize, Logistic Regression and Gradient Boosting 

were the winners in terms of accuracy, with Logistic Regression 

slightly better than Gradient Boosting. Nonetheless, all classifiers 

except the KNN classifier produced strong metrics, boasting 

sensitivity levels of over 90%, indicating their potential for use 

in malaria classification. The low accuracies of KNN indicate 

that it is not suitable for complex datasets like the malaria dataset. 

The other classifiers displayed a more balanced approach 

between precision and recall; thus, they can be alternative options 

for the implementation of malaria classification in diagnostic 

systems. Improvements could be made from tuning hyper 

parameters and adding more data augumentation techniques to 

further avoid overfitting and improve generalization. As we 

employed a pretrained VGG16 model solely for feature 

extraction and combined it with traditional machine learning 

classifiers, the computational demands were significantly lower 

than training deep CNNs end-to-end. A more detailed evaluation 

of inference speed and memory consumption will be considered 

in future work to further validate the approach for deployment in 

resource-limited environments. 

        In many low-resource settings, access to high-performance 

computing infrastructure, such as GPUs or large memory servers, 

is limited. Training and deploying deep CNN models from 

scratch often requires significant computational resources and 

annotated datasets, which are not readily available. By using a 

pretrained VGG16 model solely for feature extraction and 

combining it with lightweight traditional classifiers, our hybrid 
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approach reduces the computational burden substantially. This 

makes it more feasible for deployment on standard CPUs or 

mobile devices, aligning with the practical constraints typically 

encountered in rural and resource-limited environments. 

CONCLUSION 

        This work proposes a hybrid approach for understanding the 

use of CNN based feature extraction in conjunction with 

traditional machine learning classifiers for the purpose of malaria 

diagnosis. The combination of VGG16 and various classification 

algorithms (like Logistic Regression and Gradient Boosting) 

allows for a balance between accuracy and computational 

efficiency in the proposed model. Out of all the classifiers that 

were evaluated, Logistic Regression was able to produce the best 

overall performance, boasting an accuracy of over 93.27% for 

this binary classification problem, and hence it is a strong and 

efficient choice for detecting malaria. 

        In this hybrid approach, we aim at a practical solution of its 

application in more resource-constrained settings by minimizing 

the computational intensity of deep learning architectures. 

Moreover, this approach strikes an adequate balance between the 

feature representation ability of CNNs and the interpretability 

and simplicity of classical classifiers. 

        Potential future works include tuning of hyperparameters, 

experiment with different CNN architectures for feature 

extraction, or advanced data augmentation techniques to increase 

the generalizability of the model. This work lays the groundwork 

for further development of this approach for use in the field for 

rapid and near-elimination of malaria or other medical diagnoses. 
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