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ABSTRACT:

The symmetric property plays an important role in non-commutative ring theory and module theory. In this paper, we study
the symmetric property with one element of the ring R and two nilpotent elements of R skewed by ring endomorphism 6
on rings, introducing the concept of a right 6-V £-symmetric ring and extend the concept of right 6-V £-symmetric rings to
modules by introducing another concept called the right 6-N*-symmetric module which is a generalization of 6-symmetric
modules. According to this, we examine the characterization of a right 6-V"£-symmetric ring and a right 6-V"*-symmetric
module and their related properties including ring and explore their connections to other classes of rings and modules.
Furthermore, we investigate the concept of 6-N £-symmetric on some ring extensions and localizations like R[], R[n, 1],
Dorroh extension, Jordan extension and module localizations like Q=19 '%.

KEYWORDS: Reduced-Ring, Symmetric Ring, Flat Module, &-Reduced Module, Polynomial Module.

1. INTRODUCTION

Every ring in this study has a unique identity, and every
module that is investigated is a unital module. Z, Z,, and N"£(R)
denotes the ring of integers, integers modulo » and the set of
nilpotent elements in R, respectively. Furthermore,1g , 6, M
denote the identity endomorphism, an endomorphism of an
arbitrary ring R (For short, endo) and right R-module
respectively. {’m R) ={me M: mR = 0} is the left
annihilator of R in M.

A ring R is reduced (For short red-ring), if it has no nonzero
nilpotent elements. However, if 06(0) = O implies U = O for
U € R, then endo 6 of the ring R is said to be rigid (For short,
rg- rmg endo) (Krempa, 1996). If there is a rg-ring endo 6 of
ring R, then R is said to be f-rigid ring (For short, §-rg-ring)
(Suarez H., et al., 2024). Note that, 6-rg-rings are red-rings by
[(Hong et al., 2000), Proposition 5]. and any rg-ring endo of a
ring is a monomorphism. Cohn introduced a ring R as reversible,
if whenever ©p = 0, then p = 0 , for b, p € R (Cohn, 1999).
Lembek referred to a ring R as symmetric (For short, S-ring), if
whenever Up®d =0, then UVodp=0, for U,p&E
R (Lambek, 1971). According to [(Shin, 1973), Lemma 1.1],
every red-ring is symmetric; however, the convers does not true
in general [(Anderson & Camillo, 1999), Example 11.5].
Although, it is clear that S-rings are reversible and commutative
rings are symmetric, the convers of each of them does not true in
general [(Anderson & Camillo, 1999), Example 1.5 and 11.5]
and [(Marks, 2002), Example 5 and 7]. As an extension of §-
rings and a specific instance of N *-semi-commutative rings,
Chakraborty and Das presented the idea of N £-symmetric rings
in (Chakraborty & Das, 2014). A ring R is right(R) (left(L)) V" £-
symmetric (For short, R(L)-NV£S-ring), if for b € R, and p, ® €
NE(R) with 5p® = 0(®p = 0), then V&P = 0. A ring is
N£S-ring if it is both L(R) N £S-ring.

The concept of an -symmetric ring was first proposed by
Kwak, T. K. in 2007, as an extension of S-rings and a
generalization of 6i-rg rings. In (Kwak, 2007) an endo 6 of a ring
R is called L(R)-6-symmetric ring(For short, 6-S-ring), if

* Corresponding author

Upé = 0 imply D®OE(P) = 0 (6(P)V& = 0), fora,p,® € R. A
ring R is L(R)- 6-S-ring if there exists a L(R)- S-ring endo 6 of
. the concepts of an 6-S-ring is an extension of S-rings and it is
also a generalization of 6i-rg rings.

The ring notion was recently extended to include modules.
A module M® is called symmetric (For short, S-module), if
whenever U,p €R, m € Mm% satisfy mUp = O, then we have
mpU = 0 ((Lambek, 1971) and (Raphael, 1975)) A module M%
is 6-semi-commutative if, mb = 0 implies mRE(D) = 0, for

m € M® and b € R. The module M® is semi-commutative if
it is ig-semi-commutative. Buhphang and Rege in (Buhphang &
Rege, 2002) examined the fundamental characteristics of semi-
commutative modules. Agayev and Harmanci concentrated on
semi-commutativity of subrings of matrix rings and carried out
additional research on semi-commutative rings and modules in
(Agayev & Harmanci, 2007).

Motivated to the above, this article is structured to introduce
and define a new kind of rings named a R-6-N*-S ring as a
generalization of 6-S-rings and an extension of N £S-rings, and
to explore and provide various characterizations, features and
relations about this concept and to study its related properties.
Additionally, we investigate the concept of right 6-N*-
symmetric on some of ring extensions and localizations. This
leads to a number of well-known outcomes as corollaries of our
results. Then we extend the property of R-6-N%S rings to
modules by introducing the notion of right - £-symmetric
module which is a generalization of 6-symmetric modules and
extensions of symmetric modules. We examine the
characteristics of right 6-N*-symmetric modules and their
associated attributes, such as localizations and module
extensions.

On §-V4-Symmetric Rings:

The fundamental structure of 6-N"4-S rings is examined in
this section, along with a number of associated ring features. We
begin with the following definition.
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Definition 2.1 An endo 6 of a ring R is said to be left(L)-
right(R) 6-N £-symmetric(For short,  L-R-6-N*S-ring), if
whenever Upd = 0, for vER and p,&E
NE(R), then v®6(P) = O(6(p)V&® = 0). A ring R is L-R-
6-NLS, if there exists a L-R N'£S endo 6 of R. Moreover, R is
6-V£S-ring if it is both L-R- 6 -V £-S-ring.
Remark 2.2:
Example 2.3 Suppose that a ring R = U,(Z,), then
- t F . P
NE(R) = {(0 i) |t.§€{0,2},F € 24}.
(i) Let 6:R — R be an endo defined by:
t H\\ _(t O
6((0 1)) B (0 0)'

Vo vt B oS~ (v AN o_(Y D
YTV = 0 for ¥ = (0 j) eRU=(] )= (0 11’) €
NL(iR), then we get t¥y' =0 and so ty¥ = O since Z, is
commutative. This yields YVG(0") = 0, and hence R is R-6-

N£S-ring. For?=(é g)eiﬁ,ﬁ’z((z) %)=\7€NL(9A1)
0 2

with YOV = 0, we have 6(0")YV = (
not L-6-N£S-ring.
(i) Let X: R — R be an endo defined by:

X (t f') _ (0 0)
o j/) \o i)
By using the same technique as in (i), we may demonstrate that
R is L-X-NV£-S-ring. However, R is not R-X-N£-S-ring for
YOV =0butYVX () = (g é) # 0, and thus R is not R-X-
NE-S-ring.

0 0) # 0, and thus R is

Lemma 2.4 (1) For a ring R, R is R-6-NV~S-ring if and only if
YOV = 0 implies YV6(0) = 0, for =Y <SR and 0 =
0,0 V< NE(R).

(2) Consider R be a reversible ring. R is R-6-N£S-ring  if
and only if R is L-6-V£S-ring.

Proof. (1) It suffices to show that YO'V = O for @ # Y € R and
0+ 0,0+ VcNE(R), implies YVE(T) = 0, when R is right
6-N4S-ring. Let YOV = 0, thenvp®d = Ofor VeY,p €0
and ® € V, and hence b&6(p) = O by the condition. Thus
YVﬁ(fJ’) = ZEEY,() € (rand @ev VOG(P) = 0.

(2) Let 9p®d = O for ¥ € Rand p,® € NE(R). If R is R-6-
N£S-ring, then (1“)(1))(6(;’))) = 0, since R is reversible, we have
(6(9)(®&) = 6(p)V& = 0, and hence R is L-6-V£S-ring. The
converse is similar. [

The condition "Ris reversible" in (Proposition 2.4) is
irremovable, as demonstrated by Example 2.3. While it is evident
that all 6-symmetric objects are 6-N‘S-ring, the following
example shows that the converse is not true.

Example 2.5 Assume Z, is the ring of integer modulo 2, and
R =2, ® Z,. Using the standard addition and multiplication.
Since N4(R) = {(0,0)}, R is 6-N£S-ring. Now let 6: R - R
be defined by 6((9,p)) = (p,8). Then, for ¥ =(1,0),p =
0,1),d=(1,1) €R, Vpd =0 but v® G(p) = (1,0) £ 0,
and thus R is not an 6-S-ring. ]

Consider Risaringand @ # S R, lpo(d) = {® € R|&d =
0} is called the L-annihilator of d'in R. If = {0}, then we write
lg (V) instead of Ig {¥}.

Lemma 2.6 For a ring R, then the following are equivalent for a
nonzero endo 4:

(1) Ris R-6-N*S-ring;

(2) lg(p®) < lg(®6(P)), for any b € R and p, & € NE(R);

1. Aring R is N*S-ring if R is 1@-Nﬂ-symmetric, where 1g
is the identity endo.

2. Every subring S with 6(S) € § of an -V £S-ring is also 6-
NES-ring.

3. R, but the converse does mnot true (See (Kwak,
2007)Example 2.7(1) ).

4. The concept of 6-N*S-ring is not R-L- &-N%S-ring
through the following example.

(3) YUV = 0 if and only if YV6&(T") = 0, for any Y € R and
0,7 € NE(R);

4 IO c l@(f/d(ﬁ‘)), forany Y € Rand 0",V € V4(R).

Proof. (1) = (3). Suppose that YOV = 0 for Y € R and ',V <

NL(iT{) Forany ¥ € Y,p € ', ® € V Then Up& = 0, and hence

U®6(p) = 0. Therefore YV&(T) = {T0;@;6(p,): V; €Y, p; €

G’, (I)i € \7} = 0
The converse is obvious. (1) = (2) and (3) = (4) is clear.
[

Lemma 2.7 The class of 6-V£S-rings is closed under direct
products.

Proof. Note that N*([TyerRy) S [lyer V4(R,) and
6,(R,) € R, for each ¥ € T. Now, let YOV =0 ,where Y =
(Ox)ver € Ilyer ﬁr and U = (P+)ver V= (®y)yer €€
N4 (lyerRy) . Thus for U, € R, and p,, &, € N4(R,) ,
UyPydy = 0. Since R, is R-6-N£S-ring for each ¥ € T, then
Vy@y6(py) =0 for each ¥ €T. So we get YV&(T) = 0.
Therefore, the direct product [Iyer Ry of Ry is R-6-N£S-ring.

Recently, it was proven that if U,p € R, such that vp = 0 —
pa(v) = 0 (6(p)V = 0), then & is R(L) reversible, and the ring
R is called R(L) 6i-reversible if there exist a R(L) reversible endo
6 of R. A ring R is G-reversible (Baser et al., 2009) if it is both
L(R) G-reversible.

Theorem 2.8 Let R be a 6-N%S-ring. Then we have the

following.

L.For DER, p,& € NE(R)and Bp = 0, then V®E"(P) =
0,p®6™ () = 0, and p6"™(®) = 0,vn €
Z*. Consequently, R is right -reversible ring.

2.Consider 6 is a monomorphism of ®. Then we have the
following.

i.R is V£-symmetric ring,

ii.Forb € R, p,& € N4(R) and Vp® = 0, then 6" (V)p&d = 0
and U6"(p)® = 0, Vn € Z*. Conversely, if 6" ({0)pd =
0,08™(p)& = 0, or VPa™ (&) = O for some m € Z™, then
Up&d = 0.

Proof. The proof is similar to that of [(Kwak, 2007),

Theorem2.5]. m

EXTENSIONS OF RIGHT 6-NV*-SYMMETRIC RINGS:

In this section, we investigate the properly of right 6-V*-
symmetric on some extensions of right 6-N*-symmetric. One
may ask whether the following extensions
Mat,(R),U,(R),D,.(R), T(RR) and R[n] are right 6-2V~-
symmetric, if R is right 6-N‘-symmetric. According to this,
many results were obtained. Consider an 7 X 7 upper triangular
matrix ring, matrix ring over R, denoted as Un(g\{),M at,(R).
Suppose that D,,(R) represents the subring of U,,(R) where all
diagonal entries are the same.

For any red-ring R, both U, (R) and D, (R) qualify as R-6-
N£S-rings for any given endo 6. However, the following
counterexample demonstrates that there exists a red-ring R with
an endo 6 such that Mat,,(R) does not satisfy the R-6-NV£S-
rings condition.
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Example 3.1 An automorphism 6 of Z, defined by:
O—-1land1-0

Assume R = Mat,(Z,). Now for Y = ((1) (1)) €R, and U =

(8 (1)) V= (g é) € ME(R) we have YOV = 0 but
5=, o) oG D=0 oG 9=

é (1)) # 0. Therefore, Mat,(Z,) is not 6-N*S-ring.

(

The trivial extension of a ring R by a (R, R)-bimodule M Ris the
ring T(R, M) = ROM, which can be obtained by the standard
addition and multiplication as follows:

(ry, my)(ry, mz) = (1, imy + My 13).

This is isomorphic to the ring (Eg ?}f

operations are used. For an endo 6 of a ring R and the trivial
extension T(R,R) of R*, 6: T(R, R) = T(R, R) defined by:

b ¢)> LORO)

& <( 0 &)

)the usual matrix

0 9
is an endo of T(R, R). Since T(R, 0) is isomorphic to R.

The trivial extension of the red-ring is symmetric by [(Huh et al.,
2005), corollary 2.4]. However, for a R-6-N£S-ring R. T(R, R)
need not be a right 6-N£S-ring by the following example.

Example 3.2 Suppose the R-6-N£S-ring

Eﬁz{(g g |UpEZ} Assume 6: R — R be an endo defined
b a((§ 8)= (0 ) ez =AM, Lo
1 0 0 0

A= (8 é) (‘f 8) €X,B=

0] (10 0) (0 1) 0 1 11
N I N
09GN/ T\
NED)

ABC = 0 but AC 6(B) # 0. Thus T = T(R,R) is not right 6-
NES-ring.

Proposition 3.3 Consider R is a red-ring, then T(R, R) is a R-
6-N£S-ring.

Proof. The proof is similar to that of [(Kwak, 2007),
Proposition3.2]. =

The following is an extension of the trivial extension T(R, R) of
the 6i-rg ring to a new ring:

0 612 V13 Uin
0 U Uy Uop N
‘In = 0 0 hV) VU3, : 13,131‘]‘ ER
0o 0 0 )
And,
( 0 v12 l\4)13 ﬁln \
0 0 Uz Uzp _
Nﬁ(zn) = 0 0 0 U3, | Qij € R
0O 0 0 0

The endo 6:F, - T, defined by 6((v;;)) = (6(v;)), is
further extended to an endo 6 of a ring R for any 7 = 3. If R is
6-rg then I3 is not a R-6-V £ S-ring by [(Kwak, 2007), Example
3.4]. The following example shows that I, cannot be 6-NV'*S-
ring for any 7 > 4, even if R is an 6-rg ring.
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Example 3.4 Consider 6 is an endo of an 6-rg ring R. Note that
6(e) =efore? =e € R. By [(Hong et al., 2000), Proposition 5]
In particular 6(1) = 1.

Let ABC = O for

01 -1 0 0 0 0 0
{o 0o o o)\, _[0o 0o 0o 1 (@
A=lo 0 o 0>'B‘<0001EN(5R)'

0 0 0 0 0 0 0 0

0 0 0 0
0 01 0)\._a
<0000)E“R'
0 0 0 0
But we have,
ACG(B)

01 -1 0N/0 0 0 ON/0 O O O
=0000)0010 0 0 0 1
o o o oflo o o oJ]lo 0 0 1
o0 o o/\o 0 o0 0o/\o 0 o0 o0
0 0 1 0
0 0 0 0
=\lo 0 0o 0]*°
0 0 0 0
Thus I, is not a R-6-N£S-ring.

Theorem 3.5 Consider R is a red-ring and n € Z*. If R is a R-
6-N£S-ring with 6(1) = 1, then R[u]/ < n” > is a R-6-N'£S-
ring, where < u”™ > is the ideal generated by n”.

Proof. Suppose T = R[u]/<un” >1Ifn = 1,then T = R.If
n = 2,thenT = T(R,R) is aright 6-N £ S-ring by Proposition
3.3, Now for n = 3 the prove is similar to the proof of [(Kwak,
2007), Theorem 3.8]. m

From (Harmanci et al., 2021), Consider R is a ring and d a
subring of R and T(R,d) = {(rl,rz, T 5,8, ) | ER,s €
d1<m1<1<m,,n€Z} The operations of the ring
T(R,d) are twice addition and multiplication. We provide
sufficient and necessary criteria for T[R, d] to be 6-N£S-ring in
the following proposition.

Proposition 3.6 Consider R is a ring and d is a subring of .
Then the following are equivalent:

(1) T[R,d] is R-6-N£S-ring;

(2) RisR-6-NES-ring.

Proof. (1) = (2) Let b € R, p,® € NE(R) with ¥ p& = 0. Let

Y=(3,00,0,-)€T[Rd], 0=(p0,0,0,-)06=

(®,0,0,0,-) e NE(T[R,d]) and YOB=0. By(l),

Y36(0) = 0 in T[R, d]. Hence Uc6( p) = 0 and so R is R-6-

NES-ring,

(2) - (1) Assume that Y = (04,05, -+, 0,,5,5, ) € T[RR, d] and
= (P b2y P tit, ), B = (@, By, *+, &y, b, ) €

NL(T[ER, d]) with YO'B = 0. Then all components of ' and 3
are nilpotent in R. Since R is R-6-N£S-ring, we obtain

YB36(0) =0 Hence T[R,d] is R-6-N%S-ring.
]

The polynomial ring over a right N “*-symmetric is now
examined to see if it is a  R-6-N‘S-ring.

However, the following example shows that the answer is
negative.

Example 3.7 Assume that Z, is the field of integers modulo 2,
and consider A = Z,[Vg, U1, V2, o, P1, P2, ®] is the free algebra
of polynomials with zero constant term in non-commuting
intermediates Vg, V;, Uy, Po, P1, P2 and & over Z,. Define an
automorphism 6 of A by :

UO! U1,U2, pOl plr p2r ® - pOl pll erUOlUIrUZl ®

Take an ideal I in the ring Z, + A, generated by the following
elements:
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VoP0, VoP1 + V1P0, VoP2 + V1P1 + V200, V1P, +

V201, V202, Vo7 Po, V2702, PoV0, PoU1 + P100, PoV2 + P101 +
P200, P10z + P2U1, P07V, P2702, (Up + V1 + V)7 (Po +

P1 + 02), (Po + P1 + F”z)”f(ﬁo +0; +0y), and A A7,
where 7, 7y, 75,73, 74 € A.

Now R=(Z,+7A)/I is symmetric by [(Huh et al,
2005),Example 3.1] and so a R-V'4-Sring. By [(Mohammadi et
al.,2012), Example 3.6,

we have ® € R[u] and Dy + V1n + Vu2, po + Pyt + pou? €
NE@RM]). Now ®(Dg + Un +U,u2)(Po + pint + pou?) =
(@Y + ®V U+ @V, (Pg + P+ Pan?) = dUVPo +
dVoPpin + BVP U2 + BV PN + DP1011% + DY P13 +
dV,PoN% + BdULp U3 + BU,Pn* = BV Py + (BVpP; +
@U1poIN + (BVgpy + @D1 1 + DV2P0IM? + (B, +
@dV,P N3 + BV, P u? € Iun], but ®d(po + pin+
;’)2142)6((130 +0m+ ‘321’12)) = ®(Po + pin+ pon?) (o +
pin+ pau?) = DP5 + DdPopin + dPoPan® + DdP1Pon +
BPTU® + @1 o1 + Bpopon® + DPap1n® + BPIN* = BpF +
(@pop1 + ®p1poIn + (@Pop2 + ®PF + DP2PoIN* +

(@p1p2 + P )1 + dpsu* & I[u], because p§, dPops +
®p1po, Elo by + dPop; + BP + BP2po, DP1P2 +

Dp2p1, ®p3 & I. Hence R[1] is not a R-6-N£S-ring. m

According to Rege and Chhawchharia (Rege&Chhawchharia, 19
97),a ring R Armendariz exists if whenever any polynomials
FM) =0 + O+ -+ 0,u", g(W) = po +pin+ -+

p, " € R[] satisfy #()g(n) = 0, then U;p; = O for each j
and §.

Since Armendariz was the first to demonstrate that a

red-ring always satisfies this criterion, they used this terminolo
gy ([(Armendariz, 1974), Lemmal]). Assume Risa ring with an
endo 6. Recall that the map R[u] - R[u] by X%, o -
AIONS

Proposition 3.8 Suppose R is an Armendariz ring then R is R-
6-V£S-ring if and only if R[u] is a R-6-N£S-ring.

Proof. It also suffices to establish necessity. Let #(n) =
Yo € R[u] and g(w) = Tk, oy, A(W) =

Yoot € NERM])  with #00)gM)AM) =0 and so
U@ = 0 for all jj and . U;@:6(p;) =0 since R is
Armendariz  and a  R-6-N%S-ring.  This  yields
$0AMW) 6(g(W) = 0, therefore, R[u] is a R-6-NV£S-ring.

Theorem 3.9 (1) For aring R, if R is 6-rg then R is a R-6-N£S-
ring.
2) If the skew polynomial ring R[w; 6] of a ring R
is a S-ring, then R is a 6-NLS-ring.
Proof. (1) Consider R is 6-rg. Note that any 6-rg ring is reduced
and 6 is a monomorphism by [(Marks, 2002), P.218]. We show
that R is R-6-N£S-ring. Assume Up& = O forv € Rand p, ® €
N L(i’]\%) Then we obtain pUié = 0, since R is reduced (and so
symmetric). Thus,
UO6(P)A(V®E(P)) = VOE(PO®)E®(P) = 0. Since R is 6-rg,
V®6(p) = 0 and thus R is a R-6-N£S-ring.
(2) Assume Up® = O forv,p, ® € NL(ﬂA?) Letr =0,s = p,t =
&x € R[n; 6] Then rst = Vpodmu = 0 € R[w; 6], since R[u; 6] is
S-ring, we get O =#rts = (VO)np = VO6(P)N, and so
VOG(P) = 0. Thus R is a R-6-N£S-ring. n

The Dorroh extension(For short DoEx) of an algebra R over
a commutative ring S, introduced by Dorroh in 1932(Dorroh,
1932), is a construction that enlarges R by incorporating
elements of R. It is defined as the Abelian group D =R x §
with multiplication given by (1y,51)(ry,8) = (111y + s1715 +
S,71,515;) forall7; € R and s; € S. This operation preserves the
algebraic structure while introducing a direct interaction between
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elements of R and S. Additionally, any S-linear endo 6 of R
extends naturally to an S, S-algebra homomorphism 6:D — D,
defined by 6(r, s) = (6(r), s), applying @ to the first component
while keeping the second component fixed.

Theorem 3.10 Consider R is an algebra equipped with an endo
6 and an identity element, defined over a commutative red-ring
Z. Then R is a R-6-NV£S-ring if and only if the DoEx D of R by
Z is R-6-N£S-ring.

Proof. It is clear that NL(T)) = (NL(‘JA%), 0). Since Z is a
commutative red-ring. Consider (9, 0), (p,0) € N~(D(R,2))
and (U, eDR2z) with @ BDD0)B0) =(H+
£)9,0)($,0) = ((f +8)Vp,0). Thus H+EVp=0, V,p€
NE(R). Since R is 6-NEtS-ring, we get f+E€Z, (f+
8)pa) = 0. So (§, &)(p, 0)6((1,0)) = 0. Thus D(R, Z) is &-
NES-ring.m

SOME LOCALIZATIONS 6-VE-

SYMMETRIC RINGS:

OF RIGHT

Assume that 6 is a monomorphism of the ring ®. The
construction of an over-ring of ®. ( A ring R is an over ring of
integral domain d) if d is a subring of R and R is a subring of the
field of fraction Q(d), the relationship d € R € Q(d)). As
introduced by Jordan, is now under consideration (for more
details, see (Jordan, 1982)). Define Y(RR, f) as the subset of the
skew Laurent polynomial ring R[w,u~%; 6], consisting of
elements of the form u="8u™ for £ € R and n = 0. Notably, for
m = 0, the relation 1=™&n™ = 6™ (&) hold for any & € R. This
implies that for any m > O, the transformation follows the
pattern:

W EN" = M—(n+m) 6—m(§)nn+m_
From this, it follows that Y(%R,6) forms a subring of
R[u, nL; 6], equipped with the natural operation:

(M—sléms)(n—eﬁme) — M—(3+e)ﬁe(-é)63(ﬁ)ms+e'

And,
U + UEUE = 14‘(3’“"3)(66('8‘) + 63(ﬁ))v13+€, ve,fj € Rand
3,€ = 0.
Notably, Y(%R, 6) serves as an over-ring of %, and the mapping
YR, 6) - Y(R,6) defined by n™2&n® - u 3613, is an
automorphism of Y(iﬁ, 6).
Jordan established that such an extension Y(Eﬁ, 6) always exists
for any given pair (iﬁ, ﬁ) (Jordan, 1982).
This is achieved using left localization of the skew polynomial
R[u, 6] with respect to the set of powers of u. This extension
Y’(E}A%, fi) is commonly referred to as the Jordan extension of R by
6.
Proposition 4.1 Consider $ is a ring with a monomorphism, then
R is R-6-NVLS-ring if and only if the Jordan extension Y =
Y(R, 6) is R-6-NV£S-ring.

Proof. If R is R-6-NV*S-ring, then so is each subring ¢ with
6(Y) c Y. Therefore, it is enough to demonstrate the necessity.
Assume R is 6-N£S-ring and Vp& = O where U = u™38;1° €
A p =18 ® = n i’ € N4(A) for 3,6,¢> 0. Then
& ER and £,5 € NE(R). From Upd =0, we get
6F(8)6(8)6%(83) =0 and so 6°(8))63(E3)6(65(R)) =
6F(8)63(83)8°1(2,) = 0 by assumption. Hence b&®&(p) =
MPE M) (M EUT ) AN EE,UE) =
M) (M N ) (M 6(E)n®) =
M—(3+f+€)6f(§1)63(§3)6€+1(§2)u+(3+f+€) =0.
Therefore, Jordan extension A (R, 6) is right 6-N £S-ring.
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Recall that the map Ru,n™1] » Ru,mu™1] defined by
© _pamt =32 G(a)n’ is an endo of R[u,m"1] and the
map obviously extends 6.

Proposition 4.2 If R is an Armendariz ring, then the following
claims are equivalent:

1) R is a R-6-N£S-ring;

(2) R[u] is a R-6-N£S-ring;

3) R[m,n1]is a R-6-N£S-ring.

Proof. (1) & (2) is proven in proposition 3.8

(2) < (3) Showing necessity is sufficient. Let F(n) €
R, n ] and W), KW € N (R, n"1]) with
FWOBMBM) =0. Then In et such that £ (n) =
FOOu™ € R[n] and B;(0) = BWu", B (W) = Bou™ €
NE@RM]) and so F; (W)B; (MK, () = 0. Since R[] is R-6-
NES-ring, we obtain F; (WK (n) 6(51 (Vt)) = 0. Hence
FOOB(W 6(500) = w"F, (W1, (W) 6(5:00) = 0. Thus
R[n, m"1] is a R-6-NLS-ring.

(3) = (2) and (3) = (1) are clear. [ ]

Proposition 4.3 Assume that R is a ring and that Z(R) is an
infinite subring with all of its nonzero elements regular in 4.
Then R is R-6-N£S-ring if and only if R[u] is R-6-N £S-ring if
and only if R[w; n=1] is R-6-N£S-ring.

Proof. It is sufficient to demonstrate that, R[u] is 6-N~S-
ring when so is R, R[u]is obtained as the subdirect product of an
infinite collection of copies of R, as Z(R) comprises an infinite
subring where each nonzero element is regular in R according to
the hypothesis. Thus R[u] is 6-V£S-ring because R is 6-V£S-
ring by the assumption. ®

ON RIGHT 6-MV£-SYMMETRIC MODULES:

This section extends the idea of a R-6-N"£S-ring to modules
by introducing the notion of a right 6-N*-symmetric module,
which is an extension of symmetric modules and generalization
of G-symmetric modules. Some of the well-established results
which are obtained in section 3 and section 4 are generalized to
right 6-NV%-symmetric modules. We introduce the following
definition first.

Definition 5.1 Assume R is a ring and § a nonzero endo of R.

An R-module M¥ is called a right 6-V4-symmetric modules
(For short R-6-V Ls -module) if whenever mab = O for a,b €
NE@R) and m € M® implies mb6i(a) = 0

Example 5.2:
1. R-1g-NV*-symmetric modules are exactly R-6-NV%S-
module.
2. For any commutative ring, any module M Risan 6-NES-
modules.
o eamn g =g gl a3
3. Let D be a division ring, R = and A = Z1
" 0 D D
Then A is an 6-V£S-module.
4. Ttis clear that 6-symmetric modules are 6-V*S-module but

the converse implication is not true as we see in the
following example.
Example 5.3 Let Z be the ring of integers. We now consider the

ring R = {(B 9) ;0,00 EZ} and the R-module M® =
{(0 q) ;a4 b € Z_'} and 6 an homomorphism defined on R by

r b
) where (B

(5 2)=(

0

P\ @ & i« pr Lo
. G))E%iRlsRﬁNS
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module for m = (?l ;) e M% and h,ke N‘(ﬁ\%) where b =
(g ‘)01) k= (8 Poz) we have,
mik= (1 3G DG §)=0

Also, '

mks®) =, )6 26 D=0 o)=o
But M™% is not 6- -symmetric form = (? ?) EMh= (g é)
k= (é ;)Eiﬁ we have,

(0 90 3G -0 9)-0

k= 303 96 -6 9o

However, the converse is true if, M
following Lemma.

R is an 6- -rg-module by the

Lemma 5.4 Let M'% be an 6-rg-module, then the following are
equivalent:
1.

2. M¥isan 6-N% symmetric module.
Proof. (1) = (2) It is clear.

) =) Letmp? =0, forme MF and peR. If m =0, is
trivial. Then p2 = 0 implies p € NE(R), since MF is G-V~
symmetric. Hence mp? = 0 implies mpp =
0 implies mp6(p) = 0, and since MR is an 6-rg-module
implies that mp = 0. Therefore, M R is an 6-red-module and by

[(Agayev et al., 2009), Theorem 2.1] M R is an ti-symmetric
module. L

M%is an 6-symmetric module;

Proposition 5.5 For a given endo of a ring R and an R-module
M?*. The statements below are equivalent:

1. M%is R-6-N~S-module,

2. L5a(5(P)) € £5a(p6(V)), for any U, p € NE(R),

3. YOV =0 if and only if YV&(U") = 0,for U,V € N*(R)
and Y € M},

4. 2(0V) € ey(V6(D)), for any 0,V € NE(R) and ¥ €
]\7[9%

Proof. (1) = (3) Suppose that YOV = 0, for I,V € V*(R) and

Y € M%. Then 6p® = 0 forany S € Y, p € U’andw €V, and
hence V6 6(p) = Therefore YV6a(0) =
{Zi=1 ljl(I)Lﬁ([l)l) H f)i € Y, F')i € U, and (I)i € ‘7} =0 The
converse is clear. (1) = (2) and (3) — (4) is obvious m

Proposition 5.6 Suppose that R is a ring and § an endo of R and
M™% is an R-module. Then we have the following:

1. mﬁ)lp')z ﬁw- =0 1mphes mﬁﬁ(l)ﬁﬁ(z) fjﬁ(w) =0 for
each permutation 6 of the set {1,2,..., @}, where p; €
NER)andw € 2+,

2. mvV,..05 =0 if and only if
M6 (0,) 62(0,) ... Gw(Bgy) =0 for any i, iy .. ig €
zZt,

Proof. The proof is similar to the proof of [(Agayev et al., 2009),
Proposition2.4]. n

Proposition 5.7 Suppose R is a ring and 6 an endo of R and R-
module M *. Then we have the following:

1. The class of a R-6-N%S-modules is closed under
submodules, and direct sums.
2. The direct product of R-6-N*S-modules is R-6-N*S-

module.
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3. [Ifee is a central idempotent of a ring R with 6(e) = e and
6(1—¢) =1 — e, then M*® and M 1-9F are R-6-NVES-
module if and only it M is right 6-V£S-module.

Proof. (1) Depending on the definitions and algebraic structures,
the proof is straightforward.

(2) Note that M ([Le; R,) € [loes V4(R,) and 6,(R,) € R,
for each £ € I. Suppose that M R is 6-£S-module for each # €
I and let MAB =0 where, A= (d;)pe ,@A= (B)ees €
NL(HFEI g\:{f) ]V[ = (mf)fE[ € HfEl (ﬁf Then
m,d, %, = 0 for each £ € I and m,&,6(4,) = O by hypothesis
since d,, &, € NL(ETQF) and m, € Mﬁ‘ for each f € I. This
implies MB6t(A) = 0, entailing that the direct product
[Mee; J@mf is R-6-NV*S-module.

(3) Establishing necessity is enough. Assume M R and M 1-OR
are R-6-NV£S-modules. Consider ma# = 0, forme M ﬁ, and
a,& € NE(R,), then 0 = emdab = m(ed)&. And 0 = (1 —
emab = m((1 - e)ai)l?. By hypothesis, we get O =
mb&a(ed) and 0 = mba(1 —e)d,

0 = m&6a(e)a(d) and 0 = mBE(1 — €)6(4),

0 = mbet(d) and 0 = mE(1 —€)6(Q),
0 = mbet(d) + m&6(E) — mbel(d),
0 = mba(a).

MR is a R-6-NLS-module.

R

and

According to (Lee & Zhou, 2004), the module M¥ is said to be
6-reduced, if for each m € M* and each # € R, with m#” = 0
,then mR N +#M = 0.

Lemma 5.8 ([(Raphael, 1975), Lemma 1.2]). Let MR be an R-
module. Then the following statements are equivalent:

1. M%is 6-reduced;

2. The following statements are true: For each m € M % and
7 €ER,

a. m# =0 - mRP =mR4(P) = 0;

b. mAa(#) =0 - ms = 0;

c. mP?=0->ms=0.

If the module M is 1-red-module, it is referred to as reduced.
Hence, a ring R is a red-ring if and only if R is is 1-red-module
asan R-module M™% .

Proposition 5.9 Every 6-reduced module is a R-6-N*S-module.
Proof. Considerm € M™% and ¥, p € NE(R) with mbp = 0, we
prove mpa(v) = 0. We apply conditions of G-reduced module
in the process. Now 0 = mop = moa(p) = 0. Then,
ma(p)oa(p)v = m(G(PV)EG(6(P)D) = mE(P)V =
ma(P)G(6(V)) = m&(pE(D)) = mP&(V). Hence M¥ is a R-6-
NES-module. m

The following illustration shows that, in general, Proposition
5.9's converse is not true.

Example 5.10 Consider Z, denote the ring of integer modulo 4.

R (0 P .5hes T 7R —
Le;the ring‘R = {(0 ﬁ) ;0,p € Z4} and the R-module M'* =
{(” g) ;g nb € 2_4} and a homomorphism 6:R = R is
v P 0
o f))) (0
but not -reduced.

defined by 6 (( —ﬁp) MR is R-6-V£S-module

ii.
iil.

iv.
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For,ifm=(g g)eﬁﬁandf=(é 3)6@.Thenm¢°=
ovut(y )= DG 2= )G emtn

M+ # 0. Hence M™ is not 6-reduced.

Proposition 5.11 For a ring R and R-module M % Then the
following conditions are equivalent,

M is R-6-V£S-module.
Each submodule of M™ is R-6-V £S-module.

Each finitely generated submodule of M R is 6-NES-
module.

Each cyclic submodule of M R js R-6-V£S-module.
Proof. It is a direct result of definitions and Proposition 3.6.

Theorem 5.12 Every flat module over an R-6-V £S-ring is an R-
6-N£S-module.

Proof. Assume M® be a flat module over the R-6-N'£S -ring R
and 0 > B —>F->M R S 0 a short exact sequence with F free
R-module. By [(Lee & Zhou, 2004), Theorem 2.3] is a R-6-
NES-module and we write M® = F /15 and any element y =
y+}§€]\7[ﬁ for y €. Let ya& = O where 37E]\7l'9} and
a,benN £(R). Since M R is flat there exists a homomorphism
% T - K such that ¥ (y@8) = ya# Now setu =% (y) —y € F.
Then ud# = 0. Since F is R-6-N£S-module, ud6(&) = 0.
Then * (y@ﬁ(ci)) = yB&6(&). Since * (y) €K, we have
y&6(4) € B. Therefore y46(4) = 0. Therefore M R is R-6-
N£S-module. m

Proposition 5.13 Assume R, d are rings and 9: R — d be a ring
endo. If M9 is a right R-module, then M%is a right R-module
viamr = m9(r) forallr € Randm € MR, Moreover, M® is
R-6-NV£S-module, if and only if M9 is R-6-N£S-module.
Proof. Let MY be an R-6-N%S-module. Consider &,4& €
NE(R) and m € M Such that ma@# = 0 Then m9(a#) =
mI(A)9(#) = 0. Since MY is R-6-N£S-module, we have,
md(#)6(9(a)) = 0,

mI(8)9(&) = 0,

mI(#6(a)) = 0.
Hence M® is a 6-V£S-module.
Conversely. Assume that 9 is onto and M% is a R-6-WLs-
module. Let ,p € N£(d) and m € M9 such that mip = 0.
Since 9 is onto, there exists &, & € N L(iﬁ) such that b = 9(Q)
and p=9(&). Then 0=mI(@)I(#) =mI(ak)=mab.
Since M is right 6-N£S-module, we have 0 = m&6(&).
Hence 0 =md(#6(4)) =0 =mI(H)6(I(A)) = mpa(v).
Thus M9 is R-6-N£S-module. [

Now we study the NV £-symmetric property on some module
extensions and module localizations like
M), Mu,n 1], Mn,ut;6].
The following concepts were introduced by Lee and Zhou. For a
module M, We examine M[u] = {Zf:o mut:s>0,m; €
M } ,M 1] is an Abelian group under clearly addition operation.
Additionally, the next, scalar product operation turns M [u] into
a right R[u]-module:
For m(wW) = ¥3_om,n® € M[u] and f(W) =Y _,a,un” €
Ru),
3+e
LONOESY

d=0 \o+o=d

mya, |x%.
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M [u] becomes a right module over R[u] as a result of these
operations. In the same way, the Laurent polynomial extension
M [u,n~1] becomes a right module over R[u, n=1] with a similar
scalar product. Zhou and Lee (Lee & Zhou, 2004) also introduced
notations for M module as,

Mw; 6] = {Zf:o m,un |p=0,m, € ﬁ[} Each of the above
is abelian group underneath the addition condition. Furthermore,
M[w; 6] is a module for R[u; 6] under the product operation as:

n
mn) = Z m,un® € M[u; 6],
o=0

00 = fu € Riw; 6]
0=0

u+o

Z( > m, a"(fo))n“
ot+v=d

=0

In the same way, the skew Laurent polynomial module
Mu,m™1; 6] transforms into a module on R[u, n=1; 6.

Again, from (Lee & Zhou, 2004), module M is known as G-
Armendariz if the below conditions holds: (i) For m € M and
a € R,ma =0 for the case if mfi(a) = 0 (ii) any m(n) =
Y _omon® € M[u; 6] and f) =3 asun €
R[w; 6], m(W) f(W) = 0 imply maﬁ"(a@) = 0 for all ¢ and 0.
And then, Anderson and Camillo (Anderson & Camillo, 1999),
extended the concept of Armendariz ring to Armendariz module,
as follows: A R-module M is Armendariz when, if m(n) =
Y _omen” € M[u] and g(n) = X_, agn® € R[], such that
mm)g(n) = 0 implies m, a, = 0 for all ¢ and 0. The
Armendariz property is applicable for any finite product of
polynomials. Clearly, R is an Armendariz ring if and only if ;ﬁi’l\%

mWf(w) =

is an Armendariz R-module.

Theorem 5.14 Consider M'¥ is a 6-Armendariz module. Then,
the statements that follow are equivalent:

1. M%isR-6-N£S-module;
2. M[w; 6]%048 is R-6-V £S-module;
3. Mnu L 6)RMTHE s R-6-VE£S-module.

Proof. It suffices to demonstrate that 1 = 3. Let m(n) =
>, mon® € Mnn L 6]5‘[‘“'”_1:5] and An) =
olo an®, B(n) = Gmomyni € NE@R[m,nL; 6]). Then we
obtain ag, b, € NV L(R). Let m(W)AM) B(W) = O this implies
myasb, = 0 for all ¢,9,q. Thus, by hypothesis m,b,a; = 0.
Therefore m(W)B(n) A() = 0, and so M [u, n™1; ]R8 g
aR-6-V%S-module. m

Corollary 5.15 Consider M % be an Armendariz module. Then
the following are equivalent:

1. M%is R-6-NMES-module;

2. MR is R-6-N£S-module;

3. M 14_1]5‘[""“_1] is R-6-V"£S-module.

Proposition 5.16 Consider 6 is an endo of a ring R and MRis 6-
reduced module. Then M Ris R-6-V£S-module over iﬁA if and
only if MR [u]/M R[] (™) is R-6-N£S-module over i[i
integer n > 2.

Proof. Let M™® is right 6-NV*S-module with pgh = 0, where
= n+ < u" >. Note that a, byc,1 “*/+¥ = 0, for each o, § and
q with o + 0 + q = n. Therefore, it is sufficient to display the

cases o0 +0+q<mn—1. Since pgh=0, The following
equations are available to us:

for

(1) mosoto =0,
(2) moéotl + m051t0 + m150t0 = 0,
(3) m050t2 + m051t1 + m052t0 + m150t1 + m151t0 +

m250t0 = 0,
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(n—2) mpspt,_y + Mpd1t,_ 3+ -+m, 381,

+m,_80tp =0,

(n—1) mpspt,_1 +Mpdi1t,_p+ -+ m, 80t

+m,_8%tg +m,_180to = 0.

Since M™* is G-reduced for any m € M*,a € R,ma2 =0 -
ma = 0, and each 6-reduced module is semi-commutative.
These facts are used as follows:

Eq(l) and Eq(2) X 8oty gives my(80ty)? =0, and so
my8pto =0 and mpspt; + mpsd,ty = 0, multiplying by
81t gives 0 = mp8y (toz) = my81ty, S0 we have, mp8pt; =
0,mps8,tp = 0 and my3pt, = 0. From Eq(1),(2) and (3)
X 8pto, We get my8pty = O and,

Mooty + Mpd1t, + Mpdytp + My8pty + M8t =0, in
a similar way. If we multiply the right side of Eq(3) by
B81tg, 80%1, 82t and 8%, respectively, then we obtain
my81tg = 0,m8pt; = 0,mp8,tp = 0,mp8,t; =0, and
mp8pt,; = O in turn Inductively we assume that m,8,%t, = O
where 0 +0+q=0,1,..,(n—2). We apply the above
method to Eq.(n —1). First, the induction hypotheses and
Eq.(n—1) X 8oty givem,_189to = O and,

(n—1) mo8pty_y +Mpsit, o+ +m, 3801
+m,_8tg + m,_ 180t = 0.
If we multiply Eq. (n — 1) on the right side by 8,%p, 80%1, .-
and &1%,_, respectively, then we obtain m,_,8,ty =
0,my_,80%t; =0,.., mpdity_, =0 and so mpspt,_1 = 0.
In turn. This shows that m,s,%, = O for all &, 6 and ¢ with o +
0+ q=n — 1. Consequently, m,8,t, = O for all o,0 and ¢
with ¢ + 6 <7 — 1, and thus motqﬁ"(aé) =0,Yo € Zt by
[(Kwak, 2007), Theorem 2.5(1)]. This yields ph6(q) = 0, and
therefore M % [u] /MR [M](M") is R-6-N£S-module. ]

If ur = 0 implies 7 = O forr € R, then an element u of a ring
R is right regular. Regular indicates that it is both left and right
regular (and so not a zero divisor), while left regular is defined
similarly. Assume that M is a subset of R that is multiplicatively
closed and made up of central regular elements. Let & be an
automorphism of R and consider 6(m) = m,¥m € M. Then
6(m™ ) =m= in MR and the induced map 6: M 1R -
MR defined by  6(ula) =u"6(a) is also an
automorphism.

Proposition 5.17 Consider a ring R and a subset . of R that is
multiplicatively closed and consists of central regular elements.
Then
(1) RisaR-6-NLS-ring if and only if is Q"R is a R-6-N£S-
ring.
2) A module M Ris R-6-NLS-module if and only if
QMR is a R-6-N£S-module.
Proof.(1) Assume xtk =0 with x =414, v =214,k =
WY, 4,7, €Q and dE€R’, &,¢ € NH(R). Since Q is
included in the centre of R,
we have 0 =xtok = A 145 16w 1¢ =
(@ % L V)ake = (avw)1ab¢ and so sa8¢E = 0 for
some & € Q. But R is R-6-N%S-ring by the condition, so
5&66(@) =0 Sxk6(T) =
s(@ Q) (@06 ((7718)) = s(aw®)ac6(¥) = 0.
Hence Q™R is R-6-NV£S-ring.
(2) Since a submodule of a R-6-V£S-module is likewise a R-6-
N£S-module, it is sufficient to verify the required condition.
Assume that MRis R-6-N*S-module
@'M@E @) =0 for ¢'me QMY and
p,071p € NE(QIR) where me M%, b,p € MER).
Since Q is included in the centre of R, we have O =
(T"m) (™) (07p) = ($£4)"'mPp and so O = mubp. By

and

a and
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assumption mpa(v) = 0. Therefore (q~'m)(c~1p)a(u~1v) =
(@™ "m) (e ) (kT 6(®)) = 0. Hence QMY ™® is a R-6-
NES-module. m

Corollary 5.18 (1) For a ring R, R[n] is R-6-N*S-ring if and
only if is R[w; u~1] a R-6-N£S-ring.

(2) For a R-module J@ﬁ, ]\7[[14]9?[;5] is R-6-N*S-module if and
only if M [x, 2~ 1]%%+ 7 is a R-6-N£S-module.

Proof (1). Consider Q = {1,n,u?,---}. Then clearly Q is a
multiplicatively closed subset of ®[u]. Since R[u;n1] =
Q1R[u), it follows that R[u;u~1] is right 6-N*S-ring by
proposition 5.17(1).

(2) It is evident from proposition 5.17(2). if Q = {1,n,1?,...}.
Then € is a multiplicatively closed subset of R[] consisting of
regular central element of R[u]. Since Q1M [W]*M =
M, B0 and Q1R [M] = R u ). |

Q(Eﬁ) is a classical right quotient for R if every regular element
of R is invertible in Q and every element of O can be written in
the form ab~' with a, b € R and b regular.

A right Ore ring is a ring R where, for any a, b € R with b
being regular, 3a,, b; € R with b, also regular, such that ab; =
baj. It is well known that R is a right ore ring if and only if its
classical right quotient ring Q(R) exists. Now, suppose R is a
ring with the classical right quotient ring O(R). Then any
automorphism 6 of R extends to Q(R) by defining its action on
fractions as 6(ab™) = 6(a)(6(b))~* for all a, b € R, provided
that 6(b) remains regular whenever b is a regular element in .

Theorem 5.19 Consider R is Ore ring with an endo 6 of R and
O(iﬁ) is the classical right quotient ring N7 ring of . Then
(1) RisaR-6-N~S-ring if and only if Q(R)is a R-6-N £ S-ring.
?2) MR is a R-6-NLS-module if and only if O(ﬁ) is a R-6-
N+S-module.
Proof. (1) Consider R is a R-6-N£S-ring. Assume A = au™' €
O®R) and B=bv1,C=cowteNLO®R))with ABC =
ap~t bv~lcw™! where a,u € R and b,v,c,w € NE(R) with
w, v, w regular. Let O(R)be an N ring Then R is M7 and so
b,c € N4(R).3 ¢;, by € R with by regular such that b, = cb,
and ¢;b7! = b~c. Now 3y, b; € R with p; regular such that
buy = uby ,u~*bh = byu;'. Hence ABC = au~'bv~lcw™! =
abiu;™w lcw ™ = 0. Let I and | be the ideals in Q(R),
generated by B and € within V4(Q(R)), respectively. Then each
of I and ] are N£ withb = Bv € I, ¢ = Cw € J, Since R is right
Ore, for ¢,v € N4(R) 3 ¢1,v; € NE(R) with v, regular such
that cv; = vey ,v™'c = vyt .Here note that ¢; € N4(R).
Indeed, vc; = cv; €] and so ¢; = v~ (vcy) €J. So ABC =
abjuitcvit wt = 0.
Similarly, also there exists ¢, € N4(R) and p, € R with p,
regular such that ¢; i, = py¢,, 7 c; = cyu; 1, Thus, we obtain
that ABC = ab;c, u;'vi*w=! = 0 and hence ab,c, = 0. This
implies O = abyc,it = aub,c; = abpic, = abcyyy, and O =
abc, = abcypuy = abuyc, = abcypy. So we have 0 = abcy =
abc,v = abvc, = abev. Tt follows that ac6(b) = 0, since R is
a R-6-V£S-ring.
Similar, there exists c3, by, w,, by € NE(R) and piz, p, € R with
Us, W3, iy Tegular such that cus = pcy, utc = czuz!, bw, =
whby, ™ b = byw, ™1, byuy = usby, and, ACG(B) =
acsuztwta(h)6(v) ™! = aczuzth,wz6(w)"t =
acsbypuztw;*6(v)"t. Form act(b) =0. We have 0=
act(b)w, = acwb, = acb,w, and hence O = ach, =
acbyu, = acuzby = acbyuus. It follows that,
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0 = acb, = acbyuz = acuzb, = aucsb, = aczbyp, and hence
acsh, = 0. Now we have AC6(B) = 0, therefore Q(R) is a R-
6-N+S-ring.
(2) Assume that M® is a R-6-NV£S-module. Let 4 = au~le
Q(M) and B=bvL,C =cot € N5(Q(R)) with ABC =
ap~t bv~lcw = where a,u € M¥ and b, v,c,w € NE(R) with
U, v, w regular. Let (_)(ETK) be an N7 ring Then R is N7 and so
b,c € NL(‘JA%) then3 ¢y, by € R with b, regular such that bc; =
chyandc;byt = b7c. Now3 yy € ]’V\[ﬁ, b, € R with y; regular
such  that  bu; = uby ,u~ b = byu;t. Hence ABC =

au~bvlcw™t = abjui'v lcw™t = 0. Let I and J be the
ideals in Q(%R), generated by B and C within N*(Q(R)),
respectively. Then each of I and J are N'* with b = Bv € I and
c=Cw € J, Since R is right Ore, for c,v € NX(R) 3 ¢;, vy €
NE@R) with v, regular such that cv; = vy, v™1c = ¢t
.Here note that c; € N*(R) . Indeed, vc; = cv; € Jandso ¢; =
v~ (vey) €J.S0 ABC = abuilcvit w ™t = 0.
Similarly, also 3 ¢, € L(iﬁ) and p, € M R with U, regular
such that ¢y u, = pycy, u7tcy = cpuzt, Thus, we obtain that
ABC = abyc, u;'vi'w ' = 0 and hence ab;c, = 0. This
implies O = ab;c,u = aub;c, = abu;c, = abcypy, and 0 =
abc, = abcy,u; = abpyc; = abcypy. So we have 0 = abc; =
abc,v = abve, = abev. It follows that ac6(b) = 0, since MR
is a R-6-V'£S-module.

Similar, 3cs, by, w5, by € NE(R) and ps,py € MR with

Us, Wy, g Tegular such that cug = pcy, u=lc = czuzt, bw, =
Wby, w™'h = byw, ™Y, by = Uzhy, and, AC6(B) =
aczuz*w t6(b)G(W) ! = aczpzthywy t6(v) T =
acshyu;lw;t6(v)"t. Form act(b) =0. We have O =
ac6(b)w, = acwb, = acb,w, and hence O = ach, =
acbyu, = acusb, = acbuus. It follows that, O = acb, =
acb,us = acusb, = apcsb, = aczbyp, and hence aczb, = 0.
Now we have ACG(B) = 0, therefore Q(M) is a R-6-V~S-
module. [

CONCLUSION

This article introduced the concept right fi -+ symmetric
rings and then extends it to right 6-N% symmetric modules,
which serve as generalizations of both -symmetric rings and 6-
symmetric modules. Several results were founded as the
characterization of 6-V*-symmetric rings in section 2, also for
-V £-symmetric modules in section 5. In addition to that we
investigated the concept of an 6-V"£-symmetric rings on some of
ring extensions and localizations in section 3 and 4, also for 6-
N£-symmetric modules in section. As a proposal for a future
work, the following questions are presented;

1. Are all right 6-N*-symmetric rings and 6-N*-symmetric
modules necessarily non-commutative?

2. Is there a relationship between 6-N*-symmetric module and
fi-semi-commutative?

3.Are there a class of modules which are N *-symmetric over
their endomorphism?
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