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ABSTRACT: 

The symmetric property plays an important role in non-commutative ring theory and module theory.  In this paper, we study 

the symmetric property with one element of the ring ℜ̂ and two nilpotent elements of ℜ̂ skewed by ring endomorphism ճ 

on rings, introducing the concept of a right ճ-𝒩ℒ-symmetric ring and extend the concept of right ճ-𝒩ℒ-symmetric rings to 

modules by introducing another concept called the right ճ-𝒩ℒ-symmetric module which is a generalization of ճ-symmetric 

modules. According to this, we examine the characterization of a right ճ-𝒩ℒ-symmetric ring and a right  ճ-𝒩ℒ-symmetric 

module and their related properties including ring and explore their connections to other classes of rings and modules.   

Furthermore, we investigate the concept of ճ-𝒩ℒ-symmetric on some ring extensions and localizations like ℜ̂[ͷ], ℜ̂[ͷ, ͷ−1], 

Dorroh extension, Jordan extension and module localizations like Ω−1ℳ̂Ω−1ℜ̂. 

KEYWORDS: Reduced-Ring, Symmetric Ring, Flat Module, Ճ-Reduced Module, Polynomial Module.

1. INTRODUCTION 

        Every ring in this study has a unique identity, and every 

module that is investigated is a unital module. 𝒵̅, 𝒵̅𝓃 and 𝒩ℒ(ℜ̂) 
denotes the ring of integers, integers modulo 𝓃 and the set of 

nilpotent elements in ℜ̂, respectively. Furthermore,1ℜ̂ , ճ, ℳ̂
ℜ̂ 

denote the identity endomorphism, an endomorphism of an 

arbitrary ring ℜ̂ (For short, endo) and right ℜ̂-module 

respectively. ℓ𝑚 (ℜ̂)  =  {𝑚 ∈  ℳ̂ ∶  𝑚ℜ̂  =  𝑂} is the left 

annihilator of ℜ̂ in ℳ̂.   

        A ring ℜ̂ is reduced (For short red-ring), if it has no nonzero 

nilpotent elements. However, if ῠճ(ῠ) = 𝑂 implies ῠ = 𝑂 for 

ῠ ∈ ℜ̂, then  endo ճ of the  ring ℜ̂ is said to be  rigid (For short, 

𝑟𝑔-ring endo) (Krempa, 1996).  If there is a 𝑟𝑔-ring endo ճ of 

ring ℜ̂, then ℜ̂ is said to be  ճ-rigid ring (For short,  ճ-𝑟𝑔-ring) 

(Suarez H., et al., 2024). Note that,  ճ-𝑟𝑔-rings are red-rings by 

[(Hong et al., 2000), Proposition 5]. and any 𝑟𝑔-ring endo of a 

ring is a monomorphism. Cohn introduced a ring ℜ̂ as reversible, 

if whenever ῠῤ = 𝑂, then ῤῠ = 𝑂 , for ῠ, ῤ ∈ ℜ̂ (Cohn, 1999).  

Lembek referred to a ring ℜ̂ as symmetric (For short,  𝒮-ring), if 

whenever ῠῤῶ = 𝑂, then ῠῶῤ = 𝑂, for ῠ, ῤ,ῶ ∈

ℜ̂ (Lambek, 1971). According to [(Shin, 1973), Lemma 1.1], 

every red-ring is symmetric; however, the convers does not true 

in general  [(Anderson & Camillo, 1999), Example 11.5]. 

Although, it is clear that 𝒮-rings are reversible and commutative 

rings are symmetric, the convers of each of them does not true in 

general   [(Anderson & Camillo, 1999), Example 1.5 and 11.5] 

and [(Marks, 2002), Example 5 and 7]. As an extension of  𝒮-

rings and a specific instance of 𝒩ℒ-semi-commutative rings, 

Chakraborty and Das presented  the idea of 𝒩ℒ-symmetric rings 

in  (Chakraborty & Das, 2014). A ring ℜ̂ is right(R) (left(L)) 𝒩ℒ-

symmetric (For short, R(L)-𝒩ℒ𝒮-ring), if for ῠ ∈ ℜ̂, and ῤ, ῶ ∈

𝒩ℒ(ℜ̂) with ῠῤῶ = 𝑂(ῶῠῤ = 𝑂), then ῠῶῤ = 𝑂. A ring is 

𝒩ℒ𝒮-ring if it is both L(R) 𝒩ℒ𝒮-ring.  

       The concept of an ճ-symmetric ring was first proposed by 

Kwak, T. K. in 2007, as an extension of 𝒮-rings and a 

generalization of ճ-𝑟𝑔 rings. In (Kwak, 2007) an endo ճ of a ring 

ℜ̂ is called L(R)-ճ-symmetric ring(For short,  ճ-𝒮-ring),  if 
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ῠῤῶ = 𝑂 imply ῠῶճ(ῤ) = 𝑂 (ճ(ῤ)ῠῶ = 𝑂), for 𝑎, ῤ, ῶ ∈ ℜ̂ . A 

ring ℜ̂ is L(R)- ճ-𝒮-ring if there exists a L(R)- 𝒮-ring endo ճ of 

ℜ̂. the concepts of an ճ-𝒮-ring is an extension of 𝒮-rings and it is 

also a  generalization of ճ-𝑟𝑔 rings.  

        The ring notion was recently extended to include modules. 

A module ℳ̂ℜ̂ is called symmetric (For short,  𝒮-module), if 

whenever ῠ, ῤ ∈ ℜ̂, 𝑚 ∈ ℳ̂ℜ̂ satisfy 𝑚ῠῤ = 𝑂, then we have 

𝑚ῤῠ = 𝑂 ((Lambek, 1971) and (Raphael, 1975)). A module ℳ̂ℜ̂ 

is ճ-semi-commutative if, 𝑚ῠ = 𝑂 implies 𝑚ℜ̂ճ(ῠ) = 𝑂, for 

𝑚 ∈ ℳ̂ℜ̂ 𝑎𝑛𝑑  ῠ ∈ ℜ̂. The module ℳ̂ℜ̂ is semi-commutative if 

it is 𝒾ℜ̂-semi-commutative. Buhphang and Rege in (Buhphang & 

Rege, 2002) examined the fundamental characteristics of semi-

commutative modules. Agayev and Harmanci concentrated on 

semi-commutativity of subrings of matrix rings and carried out 

additional research on semi-commutative rings and modules in 

(Agayev & Harmancı, 2007).  

        Motivated to the above, this article is structured to introduce 

and define a new kind of rings named a R-ճ-𝒩ℒ-𝒮 ring as a 

generalization of ճ-𝒮-rings and an extension of 𝒩ℒ𝒮-rings, and 

to explore and provide various characterizations, features and 

relations about this concept and to study its related properties.  

Additionally, we investigate the concept of right ճ-𝒩ℒ-

symmetric on some of ring extensions and localizations. This 

leads to a number of well-known outcomes as corollaries of our 

results. Then we extend the property of R-ճ-𝒩ℒ𝒮 rings to 

modules by introducing the notion of right ճ-𝒩ℒ-symmetric 

module which is a generalization of ճ-symmetric modules and 

extensions of symmetric modules. We examine the 

characteristics of right ճ-𝒩ℒ-symmetric modules and their 

associated attributes, such as localizations and module 

extensions. 

On Ճ-𝓝𝓛-Symmetric Rings: 

        The fundamental structure of ճ-𝒩ℒ-𝒮 rings is examined in 

this section, along with a number of associated ring features. We 

begin with the following definition. 
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Definition 2.1 An endo ճ of a ring ℜ̂ is said to be left(L)-

right(R) ճ-𝒩ℒ-symmetric(For short,  L-R-ճ-𝒩ℒ𝒮-ring), if 

whenever ῠῤῶ =  𝑂, for ῠ ∈ ℜ̂ and ῤ, ῶ ∈

𝒩ℒ(ℜ̂), 𝑡ℎ𝑒𝑛  ῠῶճ(ῤ) =  𝑂(ճ(ῤ)ῠῶ =  𝑂). A ring ℜ̂ is L-R- 

ճ-𝒩ℒ𝒮,  if there exists a L-R 𝒩ℒ𝒮 endo ճ of ℜ̂. Moreover,  ℜ̂ is 

ճ-𝒩ℒ𝒮-ring if it is both L-R- ճ -𝒩ℒ-𝒮-ring. 

Remark 2.2: 

1. A ring ℜ̂ is 𝒩ℒ𝒮-ring if ℜ̂ is 1ℜ̂-𝒩ℒ-symmetric, where 1ℜ̂ 

is the identity endo.    

2. Every subring Ŝ with ճ(Ŝ) ⊆ Ŝ of an ճ-𝒩ℒ𝒮-ring is also ճ-

𝒩ℒ𝒮-ring. 

3.  ℜ̂, but the converse does not true (See (Kwak, 

2007)Example 2.7(1) ). 

4. The concept of ճ-𝒩ℒ𝒮-ring is not R-L- ճ-𝒩ℒ𝒮-ring 

through the following example.

Example 2.3 Suppose that a ring ℜ̂ = 𝑈2(𝒵̅4), then 

𝒩ℒ(ℜ̂) = {(
ȶ ř
𝑂 ɉ

) | ȶ, ɉ ∈ {𝑂, 2}, ř ∈ 𝒵̅4}. 

(i) Let ճ: ℜ̂ → ℜ̂ be an endo defined by: 

ճ((
ȶ ř
𝑂 ɉ

)) = (
ȶ 𝑂
𝑂 𝑂

). 

If ῨỮṼ = 𝑂 for Ῠ = (
ȶ ř
𝑂 ɉ

) ∈ ℜ̂,Ữ = (
ɤ ƛ
𝑂 ɦ

) , Ṽ = (
ƴ ƥ
𝑂 ƕ

) ∈

𝒩ℒ(ℜ̂), then we get ȶɤƴ = 𝑂 and so ȶƴɤ = 𝑂 since 𝒵̅4 is 

commutative. This yields ῨṼճ(Ữ) = 𝑂, and hence ℜ̂ is R-ճ-

𝒩ℒ𝒮-ring. For Ῠ = (
1 𝑂
𝑂 𝑂

) ∈ ℜ̂, Ữ = (
2 1
𝑂 2

) = Ṽ ∈ 𝒩ℒ(ℜ̂) 

with ῨỮṼ = 𝑂, we have ճ(Ữ)ῨṼ = (
𝑂 2
𝑂 𝑂

) ≠ 𝑂, and thus ℜ̂ is 

not L-ճ-𝒩ℒ𝒮-ring.  

(ii) Let ⧗: ℜ̂ → ℜ̂ be an endo defined by: 

⧗ ((
ȶ ř
𝑂 ɉ

)) = (
𝑂 𝑂
𝑂 ɉ

). 

By using the same technique as in (i), we may demonstrate that 

ℜ̂ is L-⧗-𝒩ℒ-𝒮-ring. However, ℜ̂ is not R-⧗-𝒩ℒ-𝒮-ring for 

ῨỮṼ = 𝑂 but ῨṼ ⧗ (Ữ) = (
𝑂 2
𝑂 𝑂

) ≠ 𝑂, and thus ℜ̂ is not R-⧗-

𝒩ℒ-𝒮-ring.  

 

Lemma 2.4 (1) For a ring ℜ̂, ℜ̂ is R-ճ-𝒩ℒ𝒮-ring if and only if  

ῨỮṼ = 𝑂 implies  ῨṼճ(Ữ)  =  𝑂,  for ∅ ≠ Ῠ ⊆ ℜ̂ and   ∅ ≠

Ữ,∅ ≠ Ṽ ⊆ 𝒩ℒ(ℜ̂).  

       (2) Consider ℜ̂ be a reversible ring. ℜ̂ is R-ճ-𝒩ℒ𝒮-ring    if 

and only if  ℜ̂ is L-ճ-𝒩ℒ𝒮-ring. 

Proof. (1) It suffices to show that ῨỮṼ = 𝑂 for ∅ ≠ Ῠ ⊆ ℜ̂ and 

∅ ≠ Ữ,∅ ≠ Ṽ ⊆ 𝒩ℒ(ℜ̂), implies ῨṼճ(Ữ)  =  𝑂, when ℜ̂ is right 

ճ-𝒩ℒ𝒮-ring.   Let ῨỮṼ = 𝑂, then ῠῤῶ =  𝑂 for   ῠ ∈ Ῠ, ῤ ∈ Ữ 

and ῶ ∈ Ṽ, and hence ῠῶճ(ῤ)  =  𝑂 by the condition. Thus 

ῨṼճ(Ữ)  = ∑ ῠῶճ(ῤ) = 𝑂.ῠ∈Ῠ,ῤ ∈ Ữ and ῶ∈Ṽ  

(2) Let ῠῤῶ =  𝑂 for ῠ ∈ ℜ̂ 𝑎𝑛𝑑 ῤ,ῶ ∈ 𝒩ℒ(ℜ̂). If ℜ̂ is R-ճ-

𝒩ℒ𝒮-ring, then (ῠῶ)(ճ(ῤ)) = 𝑂, since ℜ̂ is reversible, we have 

(ճ(ῤ))(ῠῶ) = ճ(ῤ)ῠῶ = 𝑂, and hence ℜ̂ is L-ճ-𝒩ℒ𝒮-ring. The 

converse is similar.        ∎ 

        The condition "ℜ̂ is reversible" in (Proposition 2.4) is 

irremovable, as demonstrated by Example 2.3. While it is evident 

that all ճ-symmetric objects are ճ-𝒩ℒ𝒮-ring, the following 

example shows that the converse is not true. 

 

Example 2.5 Assume  𝒵̅2 is the ring of integer modulo 2, and 

ℜ̂ = 𝒵̅2⊕ 𝒵̅2. Using the standard addition and multiplication. 

Since 𝒩ℒ(ℜ̂) = {(𝑂, 𝑂)}, ℜ̂ is ճ-𝒩ℒ𝒮-ring. Now let ճ: ℜ̂ → ℜ̂ 

be defined by ճ((ῠ, ῤ)) = (ῤ, ῠ). Then, for ῠ = (1,𝑂), ῤ =

(𝑂, 1),ῶ = (1,1) ∈ ℜ̂, ῠῤῶ = 𝑂 but ῠῶ ճ(ῤ) = (1,𝑂) ≠ 𝑂, 

and thus ℜ̂ is not an ճ-𝒮-ring.              ∎  

     

Consider ℜ̂ is a ring and ∅ ≠ ɠ ⊆ ℜ̂, 𝑙𝚁⋄(ɠ)  =  {ῶ ∈  ℜ̂ | ῶɠ =

 𝑂} is called the L-annihilator of ɠ in ℜ̂. If ɠ = {ῠ}, then we write 

𝑙ℜ̂ (ῠ) instead of 𝑙ℜ̂ {ῠ}. 

Lemma 2.6 For a ring ℜ̂, then the following are equivalent for a 

nonzero endo ճ:  

(1) ℜ̂ is R-ճ-𝒩ℒ𝒮-ring;  

(2) 𝑙ℜ̂(ῤῶ) ⊆ 𝑙ℜ̂(ῶճ(ῤ)), for any ῠ ∈ ℜ̂ and ῤ, ῶ ∈ 𝒩ℒ(ℜ̂); 

(3) ῨỮṼ = 𝑂 if and only if  ῨṼճ(Ữ) = 𝑂, for any Ῠ ⊆ ℜ̂ and 

Ữ,Ṽ ⊆ 𝒩ℒ(ℜ̂); 

(4)  𝑙ℜ̂(ỮṼ) ⊆ 𝑙ℜ̂(Ṽճ(Ữ)), for any Ῠ ⊆ ℜ̂ and Ữ, Ṽ ⊆ 𝒩ℒ(ℜ̂). 

Proof. (1) → (3). Suppose that ῨỮṼ = 𝑂 for Ῠ ⊆ ℜ̂ and Ữ,Ṽ ⊆

𝒩ℒ(ℜ̂). For any ῠ ∈ Ῠ, ῤ ∈ Ữ,ῶ ∈ Ṽ Then ῠῤῶ = 𝑂, and hence 

ῠῶճ(ῤ) = 𝑂. Therefore ῨṼճ(Ữ) = {∑ῠ𝑖ῶ𝑖ճ(ῤ𝑖): ῠ𝑖 ∈ Ῠ, ῤ𝑖 ∈

Ữ,ῶ𝑖 ∈ Ṽ} = 𝑂.  

The converse is obvious.  (1) → (2) and (3) → (4) is clear.                                    

∎ 

Lemma 2.7 The class of ճ-𝒩ℒ𝒮-rings is closed under direct 

products.  

        Proof. Note that 𝒩ℒ(∏ ℜ̂ɤɤ∈Γ ) ⊆ ∏ 𝒩ℒ(ℜ̂ɤ)ɤ∈Γ  and 

ճɤ(ℜ̂ɤ) ⊆ ℜ̂ɤ for each ɤ ∈ Γ. Now, let ῨỮṼ = 0 ,where Ῠ =

(ῠɤ)ɤ∈Γ ∈  ∏ ℜ̂ɤɤ∈Γ  and  Ữ = (ῤɤ)ɤ∈Γ , Ṽ = (ῶɤ)ɤ∈Γ  ∈ ∈

𝒩ℒ(∏ ℜ̂ɤɤ∈Γ ) . Thus for ῠɤ ∈ ℜ̂ɤ and ῤɤ, ῶɤ ∈ 𝒩
ℒ(ℜ̂ɤ) , 

ῠɤῤɤῶɤ = 0.  Since ℜ̂ɤ is R-ճ-𝒩ℒ𝒮-ring for each ɤ ∈ Γ , then 

ῠɤῶɤճ(ῤɤ)  = 0 for each ɤ ∈ Γ. So we get ῨṼճ(Ữ) = 0. 

Therefore, the direct product ∏ ℜ̂ɤɤ∈Γ  of ℜ̂ɤ is R-ճ-𝒩ℒ𝒮-ring.                                        

 

Recently, it was proven that if ῠ, ῤ ∈ ℜ̂, such that ῠῤ = 𝑂 → 

ῤճ(ῠ) = 𝑂 (ճ(ῤ)ῠ = 𝑂), then ճ is R(L) reversible, and the ring 

ℜ̂ is called R(L) ճ-reversible if there exist a R(L) reversible endo 

ճ of ℜ̂. A ring ℜ̂ is ճ-reversible (Başer et al., 2009) if it is both 

L(R) ճ-reversible. 

 

Theorem 2.8 Let ℜ̂ be a ճ-𝒩ℒ𝒮-ring. Then we have the 

following. 

1. For ῠ ∈ ℜ̂, ῤ, ῶ ∈ 𝒩ℒ(ℜ̂) and  ῠῤ = 𝑂, then ῠῶճ𝓃(ῤ) =

𝑂, ῤῶճ𝓃(ῠ) = 𝑂, and ῠῤճ𝓃(ῶ) = 𝑂, ∀𝓃 ∈

𝑍+. Consequently,  ℜ̂ is right ճ-reversible ring. 

2. Consider ճ is a monomorphism of ℜ̂. Then we have the 

following. 

i.ℜ̂ is 𝒩ℒ-symmetric ring, 

ii.For ῠ ∈ ℜ̂, ῤ, ῶ ∈ 𝒩ℒ(ℜ̂) and  ῠῤῶ = 𝑂, then ճ𝓃(ῠ)ῤῶ = 𝑂 

and ῠճ𝓃(ῤ)ῶ = 𝑂, ∀𝓃 ∈ 𝑍+. Conversely, if ճ𝓂(ῠ)ῤῶ =
𝑂, ῠճ𝓂(ῤ)ῶ = 𝑂, or ῠῤճ𝓂(ῶ) = 𝑂 for some 𝓂 ∈ 𝑍+, then 

ῠῤῶ = 𝑂. 
Proof. The proof is similar to that of [(Kwak, 2007), 

Theorem2.5]. ∎ 

EXTENSIONS OF RIGHT ճ-𝓝𝓛-SYMMETRIC RINGS: 

        In this section, we investigate the properly of right ճ-𝒩ℒ-

symmetric on some extensions of right ճ-𝒩ℒ-symmetric. One 

may ask whether the following extensions 

𝑀𝑎𝑡𝓃(ℜ̂), 𝑈𝓃(ℜ̂), 𝐷𝓃(ℜ̂), 𝑇(ℜ̂, ℜ̂) 𝑎𝑛𝑑  ℜ̂[ͷ] are right ճ-𝒩ℒ-

symmetric, if ℜ̂ is right ճ-𝒩ℒ-symmetric. According to this, 

many results were obtained.  Consider an 𝓃 × 𝓃 upper triangular 

matrix ring, matrix ring over ℜ̂, denoted as 𝑈𝓃(ℜ̂),𝑀𝑎𝑡𝓃(ℜ̂). 

Suppose that 𝐷𝓃(ℜ̂) represents the subring of 𝑈𝓃(ℜ̂) where all 

diagonal entries are the same. 

        For any red-ring ℜ̂, both 𝑈2(ℜ̂) and 𝐷2(ℜ̂) qualify as R-ճ-

𝒩ℒ𝒮-rings for any given endo ճ. However, the following 

counterexample demonstrates that there exists a red-ring ℜ̂ with 

an endo ճ such that 𝑀𝑎𝑡𝓃(ℜ̂) does not satisfy the R-ճ-𝒩ℒ𝒮-

rings condition.
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Example 3.1 An automorphism ճ of 𝒵̅2 defined by: 

𝑂 → 1 and 1 → 𝑂 

Assume ℜ̂ = 𝑀𝑎𝑡2(𝒵̅2). Now for Ῠ = (
1 1
𝑂 𝑂

) ∈ ℜ̂, and Ữ =

(
𝑂 1
𝑂 𝑂

) , Ṽ = (
𝑂 1
𝑂 𝑂

) ∈ 𝒩ℒ(ℜ̂) we have ῨỮṼ = 𝑂 but  

ῨṼճ(Ữ) = (
1 1
𝑂 𝑂

) (
𝑂 1
𝑂 𝑂

)(
1 𝑂
1 1

) = (
𝑂 1
𝑂 𝑂

) (
1 𝑂
1 1

) =

(
1 1
𝑂 𝑂

) ≠ 𝑂. Therefore, 𝑀𝑎𝑡2(𝑍2) is not ճ-𝒩ℒ𝒮-ring. 

 

The trivial extension of a ring ℜ̂ by a (ℜ̂, ℜ̂)-bimodule ℳ̂ℜ̂is the 

ring 𝑇(ℜ̂, ℳ̂) = ℜ̂⨁ℳ̂, which can be obtained by the standard 

addition and multiplication as follows: 
(𝑟1, 𝑚1)(𝑟2, 𝑚2) = (𝑟1𝑟2, 𝑟1𝑚2 +𝑚1𝑟2). 

This is isomorphic to the ring (ℜ̂ ℳ̂
𝑂 ℜ̂

) the usual matrix 

operations are used. For an endo ճ of a ring ℜ̂ and the trivial 

extension 𝑇(ℜ̂, ℜ̂) of 𝚁⋄, ճ: 𝑇(ℜ̂, ℜ̂) → 𝑇(ℜ̂, ℜ̂) defined by: 

ճ ((
ῠ ῤ
𝑂 ῠ

)) = (
ճ(ῠ) ճ(ῤ)
𝑂 ճ(ῠ)

) 

is an endo of 𝑇(ℜ̂, ℜ̂). Since 𝑇(ℜ̂, 𝑂) is isomorphic to ℜ̂. 
The trivial extension of the red-ring is symmetric by [(Huh et al., 

2005), corollary 2.4]. However, for a R-ճ-𝒩ℒ𝒮-ring ℜ̂. 𝑇(ℜ̂, ℜ̂) 
need not be a right ճ-𝒩ℒ𝒮-ring by the following example. 

 

Example 3.2 Suppose the R-ճ-𝒩ℒ𝒮-ring 

ℜ̂ = {(
ῠ ῤ
𝑂 ῠ

) | ῠ, ῤ ∈ 𝒵̅}. Assume ճ: ℜ̂ → ℜ̂ be an endo defined 

by ճ((
ῠ ῤ
𝑂 ῠ

)) = (
ῠ −ῤ
𝑂 ῠ

). Take 𝔗 = 𝑇(ℜ̂, ℜ̂) , Let 

𝐴 = (
(
1 𝑂
𝑂 1

) (
𝑂 𝑂
𝑂 𝑂

)

(
𝑂 𝑂
𝑂 𝑂

) (
1 𝑂
𝑂 1

)
) ∈ 𝔗 , 𝐵 =

(
(
𝑂 1
𝑂 𝑂

) (
−1 1
𝑂 −1

)

(
𝑂 𝑂
𝑂 𝑂

) (
𝑂 1
𝑂 𝑂

)
) , 𝐶 = (

(
𝑂 1
𝑂 𝑂

) (
1 1
𝑂 1

)

(
𝑂 𝑂
𝑂 𝑂

) (
𝑂 1
𝑂 𝑂

)
) ∈

𝒩ℒ(𝔗)  

𝐴𝐵𝐶 = 𝑂 but 𝐴𝐶 ճ(𝐵) ≠ 𝑂. Thus 𝔗 = 𝑇(ℜ̂, ℜ̂) is not right  ճ-

𝒩ℒ𝒮-ring. 

 

Proposition 3.3 Consider  ℜ̂ is a red-ring, then 𝑇(ℜ̂, ℜ̂) is a R-

ճ-𝒩ℒ𝒮-ring. 

Proof. The proof is similar to that of [(Kwak, 2007), 

Proposition3.2].   ∎ 

 

The following is an extension of the trivial extension 𝑇(ℜ̂, ℜ̂) of 

the ճ-𝑟𝑔 ring to a new ring: 

𝔗𝓃 =

{
 
 

 
 

(

 
 

ῠ
𝑂
𝑂
⋮
𝑂

ῠ12
ῠ
𝑂
⋮
𝑂

ῠ13
ῠ23
ῠ
⋮
𝑂

⋯
⋯
⋯
⋱
⋯

ῠ1𝓃
ῠ2𝓃
ῠ3𝓃
⋮
ῠ )

 
 
∶  ῠ, ῠ𝑖𝑗 ∈ ℜ̂

}
 
 

 
 

 

And,  

𝒩ℒ(𝔗𝓃) =

{
 
 

 
 

(

 
 

𝑂
𝑂
𝑂
⋮
𝑂

ῠ12
𝑂
𝑂
⋮
𝑂

ῠ13
ῠ23
𝑂
⋮
𝑂

⋯
⋯
⋯
⋱
⋯

ῠ1𝓃
ῠ2𝓃
ῠ3𝓃
⋮
𝑂 )

 
 
∶ 𝑎𝑖𝑗 ∈ ℜ̂

}
 
 

 
 

 

The endo ճ:𝔗𝓃 → 𝔗𝓃 , defined by ճ ((ῠ𝑖𝑗)) = (ճ(ῠ𝑖𝑗)), is 

further extended to an endo ճ of a ring ℜ̂ for any 𝓃 ≥ 3. If ℜ̂ is 

ճ-𝑟𝑔 then 𝔗3 is not a R-ճ-𝒩ℒ𝒮-ring by [(Kwak, 2007), Example 

3.4].  The following example shows that 𝔗𝓃 cannot be ճ-𝒩ℒ𝒮-

ring for any 𝓃 ≥ 4, even if ℜ̂ is an ճ-𝑟𝑔 ring. 

 

Example 3.4 Consider ճ is an endo of an ճ-𝑟𝑔 ring ℜ̂. Note that 

ճ(𝑒) = 𝑒 for 𝑒2 = 𝑒 ∈ ℜ̂. By [(Hong et al., 2000), Proposition 5] 

In particular ճ(1) = 1. 
Let 𝐴𝐵𝐶 = 𝑂 for  

𝐴 = (

𝑂
𝑂
𝑂
𝑂

1
𝑂
𝑂
𝑂

−1
𝑂
𝑂
𝑂

𝑂
𝑂
𝑂
𝑂

) , 𝐵 = (

𝑂
𝑂
𝑂
𝑂

𝑂
𝑂
𝑂
𝑂

𝑂
𝑂
𝑂
𝑂

𝑂
1
1
𝑂

) ∈ 𝒩ℒ(ℜ̂),  

𝐶 = (

𝑂
𝑂
𝑂
𝑂

𝑂
𝑂
𝑂
𝑂

𝑂
1
𝑂
𝑂

𝑂
𝑂
𝑂
𝑂

) ∈ ℜ̂. 

But we have, 

𝐴𝐶ճ(𝐵)

= (

𝑂
𝑂
𝑂
𝑂

1
𝑂
𝑂
𝑂

−1
𝑂
𝑂
𝑂

𝑂
𝑂
𝑂
𝑂

)(

𝑂
𝑂
𝑂
𝑂

𝑂
𝑂
𝑂
𝑂

𝑂
1
𝑂
𝑂

𝑂
𝑂
𝑂
𝑂

)(

𝑂
𝑂
𝑂
𝑂

𝑂
𝑂
𝑂
𝑂

𝑂
𝑂
𝑂
𝑂

𝑂
1
1
𝑂

)

= (

𝑂
𝑂
𝑂
𝑂

𝑂
𝑂
𝑂
𝑂

1
𝑂
𝑂
𝑂

𝑂
𝑂
𝑂
𝑂

) ≠ 𝑂 

Thus 𝔗4 is not a R-ճ-𝒩ℒ𝒮-ring. 

 

Theorem 3.5 Consider ℜ̂ is a red-ring and 𝓃 ∈ 𝒵̅+. If ℜ̂ is a R-

ճ-𝒩ℒ𝒮-ring with ճ(1) = 1, then ℜ̂[ͷ]/ < ͷ𝓃 > is a R-ճ-𝒩ℒ𝒮-

ring, where < ͷ𝓃 > is the ideal generated by ͷ𝓃 . 

Proof. Suppose 𝔗 = ℜ̂[ͷ]/ < ͷ𝓃 > If 𝓃 =  1, then 𝔗 ≅ ℜ̂. If 

𝓃 =  2, then 𝔗 ≅ 𝑇(ℜ̂, ℜ̂) is a right ճ-𝒩ℒ𝒮-ring by Proposition 

3.3, Now for 𝓃 ≥  3 the prove is similar to the proof of [(Kwak, 

2007), Theorem 3.8]. ∎ 

 

From (Harmanci et al., 2021), Consider ℜ̂ is a ring and ɠ a 

subring of ℜ̂ and 𝑇(ℜ̂, ɠ) = {(𝑟1, 𝑟2, … , 𝑟𝓃, 𝑠, 𝑠, … ) |𝑟ɿ ∈ ℜ̂, 𝑠 ∈

ɠ, 1 ≤ 𝓃, 1 ≤ ɿ ≤ 𝓃, ɿ, 𝓃 ∈ 𝒵̅ }. The operations of the ring 

𝑇(ℜ̂, ɠ) are twice addition and multiplication. We provide 

sufficient and necessary criteria for 𝑇[ℜ̂, ɠ] to be ճ-𝒩ℒ𝒮-ring in 

the following proposition. 

 

Proposition 3.6 Consider ℜ̂ is a ring and ɠ is a subring of ℜ̂. 
Then the following are equivalent: 

(1) 𝑇[ℜ̂, ɠ] is R-ճ-𝒩ℒ𝒮-ring; 

(2) ℜ̂ is R-ճ-𝒩ℒ𝒮-ring. 

Proof. (1) → (2) Let ῠ ∈ ℜ̂, ῤ,ῶ ∈ 𝒩ℒ(ℜ̂) with ῠ ῤῶ = 𝑂. Let 

Ῠ = (ῠ, 𝑂, 𝑂, 𝑂,⋯ ) ∈ 𝑇[ℜ̂, ɠ], Ỡ = ( ῤ, 𝑂, 𝑂, 𝑂,⋯ ), ẞ =

(ῶ, 𝑂, 𝑂, 𝑂,⋯ ) ∈ 𝒩ℒ(𝑇[ℜ̂, ɠ]) and ῨỠẞ = 𝑂. By(1), 

Ῠẞճ(Ỡ) = 𝑂 in 𝑇[ℜ̂, ɠ]. Hence ῠ𝑐ճ( ῤ) = 𝑂 and so ℜ̂ is R-ճ-

𝒩ℒ𝒮-ring, 

(2) → (1) Assume that Ῠ = (ῠ1, ῠ2, ⋯ , ῠ𝓃, 𝑠, 𝑠,⋯ ) ∈ 𝑇[ℜ̂, ɠ] and 

Ỡ = ( ῤ1,  ῤ2, ⋯ ,  ῤ𝓃, 𝑡, 𝑡, ⋯ ), ẞ = (ῶ1, ῶ2, ⋯ , ῶ𝓃 , ℎ, ℎ,⋯ ) ∈

𝒩ℒ(𝑇[ℜ̂, ɠ]) with ῨỠẞ = 𝑂. Then all components of Ỡ and ẞ 

are nilpotent in ℜ̂. Since ℜ̂ is R-ճ-𝒩ℒ𝒮-ring, we obtain 

Ῠẞճ(Ỡ) = 𝑂.  Hence 𝑇[ℜ̂, ɠ] is R-ճ-𝒩ℒ𝒮-ring.                                        

∎ 

The polynomial ring over a right 𝒩ℒ-symmetric is now 

examined to see if it is a R-ճ-𝒩ℒ𝒮-ring. 

However, the following example shows that the answer is 

negative. 

 

Example 3.7 Assume that 𝒵̅2 is the field of integers modulo 2, 

and consider ᾏ = 𝒵̅2[ῠ𝑂, ῠ1, ῠ2, ῤ𝑂, ῤ1, ῤ2, ῶ] is the free algebra 

of polynomials with zero constant term in non-commuting 

intermediates   ῠ𝑂, ῠ1, ῠ2, ῤ𝑂, ῤ1, ῤ2 and ῶ over 𝒵̅2. Define an 

automorphism ճ of ᾏ by : 

ῠ𝑂, ῠ1, ῠ2, ῤ𝑂, ῤ1, ῤ2, ῶ → ῤ𝑂, ῤ1, ῤ2, ῠ𝑂, ῠ1, ῠ2, ῶ 

Take an ideal 𝐼 ̅ in the ring 𝒵̅2 + ᾏ, generated by the following 

elements:  



Mustafa and Ahmed/ Science Journal of University of Zakho, 13(3), 348-356 July-September, 2025 

351 

 

ῠ𝑂ῤ𝑂, ῠ𝑂ῤ1 + ῠ1ῤ𝑂, ῠ𝑂ῤ2 + ῠ1ῤ1 + ῠ2ῤ𝑂, ῠ1ῤ2 +
ῠ2ῤ1, ῠ2ῤ2, ῠ𝑂𝓇̂ῤ𝑂, ῠ2𝓇̂ῠ2, ῤ𝑂ῠ𝑂, ῤ𝑂ῠ1 + ῤ1ῠ𝑂, ῤ𝑂ῠ2 + ῤ1ῠ1 +
ῤ2ῠ𝑂, ῤ1ῠ2 + ῤ2ῠ1, ῤ𝑂𝓇̂ῠ𝑂, ῤ2𝓇̂ῠ2, (ῠ𝑂 + ῠ1 + ῠ2)𝓇̂(ῤ𝑂 +
ῤ1 + ῤ2), (ῤ𝑂 + ῤ1 + ῤ2)𝓇̂(ῠ𝑂 + ῠ1 + ῠ2), and 𝓇̂1𝓇̂2𝓇̂3𝓇̂4, 
where 𝓇̂, 𝓇̂1, 𝓇̂2, 𝓇̂3, 𝓇̂4 ∈ ᾏ. 

Now ℜ̂ = (𝒵̅2 +ᾏ)/𝐼 ̅ is symmetric by [(Huh et al., 

2005),Example 3.1] and so a R-𝒩ℒ-𝒮ring. By [(Mohammadi et 

al., 2012), Example 3.6],  

we have ῶ ∈ ℜ̂[ͷ] and  ῠ𝑂 + ῠ1ͷ + ῠ2ͷ
2, ῤ𝑂 + ῤ1ͷ + ῤ2ͷ

2 ∈

𝒩ℒ(ℜ̂[ͷ]). Now ῶ(ῠ𝑂 + ῠ1ͷ + ῠ2ͷ
2)(ῤ𝑂 + ῤ1ͷ + ῤ2ͷ

2) =
(ῶῠ𝑂 + ῶῠ1ͷ + ῶῠ2ͷ

2)(ῤ𝑂 + ῤ1ͷ + ῤ2ͷ
2) = ῶῠ𝑂ῤ𝑂 +

ῶῠ𝑂ῤ1ͷ + ῶῠ𝑂ῤ2ͷ
2 +ῶῠ1ῤ𝑂ͷ + ῶῤ1ῠ1ͷ

2 + ῶῠ1ῤ2ͷ
3 +

ῶῠ2ῤ𝑂ͷ
2 + ῶῠ2ῤ1ͷ

3 + ῶῠ2ῤ2ͷ
4 = ῶῠ𝑂ῤ𝑂 + (ῶῠ𝑂ῤ1 +

ῶῠ1ῤ𝑂)ͷ + (ῶῠ𝑂ῤ2 + ῶῠ1ῤ1 +ῶῠ2ῤ𝑂)ͷ
2 + (ῶῠ1ῤ2 +

ῶῠ2ῤ1)ͷ
3 +ῶῠ2ῤ2ͷ

4 ∈ 𝐼[̅ͷ], but ῶ(ῤ𝑂 + ῤ1ͷ +

ῤ2ͷ
2)ճ((ῠ𝑂 + ῠ1ͷ + ῠ2ͷ

2)) = ῶ(ῤ𝑂 + ῤ1ͷ + ῤ2ͷ
2)(ῤ𝑂 +

ῤ1ͷ + ῤ2ͷ
2) = ῶῤ𝑂

2 +ῶῤ𝑂ῤ1ͷ +ῶῤ0ῤ2ͷ
2 + ῶῤ1ῤ0ͷ +

ῶῤ1
2ͷ2 + ῶῤ1ῤ2ͷ

3 + ῶῤ2ῤ0ͷ
2 + ῶῤ2ῤ1ͷ

3 + ῶῤ2
2ͷ4 = ῶῤ𝑂

2 +
(ῶῤ𝑂ῤ1 + ῶῤ1ῤ0)ͷ + (ῶῤ0ῤ2 + ῶῤ1

2 + ῶῤ2ῤ0)ͷ
2 +

(ῶῤ1ῤ2 + ῶῤ2ῤ1)ͷ
3 + ῶῤ2

2ͷ4 ∉ 𝐼[̅ͷ], because ῤ𝑂
2 , ῶῤ𝑂ῤ1 +

ῶῤ1ῤ0, 𝒸̂𝒷̂𝑂𝒷̂2 + ῶῤ0ῤ2 +ῶῤ1
2 + ῶῤ2ῤ0, ῶῤ1ῤ2 +

ῶῤ2ῤ1, ῶῤ2
2 ∉ 𝐼.̅ Hence ℜ̂[ͷ] is not a R-ճ-𝒩ℒ𝒮-ring.∎ 

 

According to Rege and Chhawchharia (Rege&Chhawchharia,19

97),a ring ℜ̂ Armendariz exists if whenever any polynomials

 𝒻(ͷ) = ῠ𝑂 + ῠ1ͷ +⋯+ ῠ𝓂ͷ
𝓂 , ℊ(ͷ) = ῤ𝑂 + ῤ1ͷ +⋯+

ῤ𝓃ͷ
𝓃 ∈ ℜ̂[ͷ] satisfy 𝒻(ͷ)ℊ(ͷ) = 𝑂, then ῠʝῤɉ = 𝑂 for each ʝ 

and ɉ.  
Since Armendariz was the first to demonstrate that a 

red‑ring always satisfies this criterion, they used this  terminolo

gy ([(Armendariz, 1974), Lemma1]). Assume ℜ̂ is a ring with an 

endo ճ. Recall that the map ℜ̂[ͷ] → ℜ̂[ͷ] by ∑ ῠʝͷ
ʝ𝓂

ʝ=𝑂 →

∑ ճ(ῠ)ͷʝ𝓂
ʝ=𝑂 . 

 

Proposition 3.8 Suppose ℜ̂ is an Armendariz ring then ℜ̂ is R-

ճ-𝒩ℒ𝒮-ring if and only if ℜ̂[ͷ] is a R-ճ-𝒩ℒ𝒮-ring. 

Proof. It also suffices to establish necessity. Let 𝒻(ͷ) =
∑ ῠʝͷ

ʝ ∈ ℜ̂[ͷ] and𝓂
ʝ=𝑂  ℊ(ͷ) = ∑ ῤɉͷ

ɉ𝓃
ɉ=𝑂 , 𝒽(ͷ) =

∑ ῶřͷ
ř𝓌

ř=𝑂 ∈ 𝒩ℒ(ℜ̂[ͷ])  with 𝒻(ͷ)ℊ(ͷ)𝒽(ͷ) = 𝑂 and so 

ῠʝῤɉῶř = 𝑂 for all ʝ, ɉ and ř.  ῠʝῶřճ(ῤɉ) = 𝑂 since ℜ̂ is 

Armendariz and a R-ճ-𝒩ℒ𝒮-ring. This yields 

𝒻(ͷ)𝒽(ͷ) ճ(ℊ(ͷ)) = 𝑂, therefore, ℜ̂[ͷ] is a R-ճ-𝒩ℒ𝒮-ring. 

 

Theorem 3.9 (1) For a ring ℜ̂, if ℜ̂ is ճ-𝑟𝑔 then ℜ̂ is a R-ճ-𝒩ℒ𝒮-

ring. 

(2) If the skew polynomial ring ℜ̂[ͷ; ճ] of a ring ℜ̂ 

is a 𝒮-ring, then ℜ̂ is a  ճ-𝒩ℒ𝒮-ring. 

Proof. (1) Consider ℜ̂ is ճ-𝑟𝑔. Note that any ճ-𝑟𝑔 ring is reduced 

and ճ is a monomorphism by [(Marks, 2002), P.218]. We show 

that ℜ̂ is R-ճ-𝒩ℒ𝒮-ring. Assume ῠῤῶ = 𝑂 for ῠ ∈ ℜ̂ and ῤ,ῶ ∈

𝒩ℒ(ℜ̂). Then we obtain ῤῠῶ = 𝑂, since ℜ̂ is reduced (and so 

symmetric). Thus, 

ῠῶճ(ῤ)ճ(ῠῶճ(ῤ)) = ῠῶճ(ῤῠῶ)ճῶ(ῤ) = 𝑂.  Since ℜ̂ is ճ-𝑟𝑔, 

ῠῶճ(ῤ) = 𝑂 and thus ℜ̂ is a R-ճ-𝒩ℒ𝒮-ring. 

(2) Assume ῠῤῶ = 𝑂 for ῠ, ῤ, ῶ ∈ 𝒩ℒ(ℜ̂). Let ᵲ = ῠ, ᵴ = ῤ, ᵵ =

ῶ𝑥 ∈ ℜ̂[ͷ; ճ] Then ᵲᵴᵵ = ῠῤῶͷ = 𝑂 ∈ ℜ̂[ͷ; ճ], since ℜ̂[ͷ; ճ] is 

𝒮-ring, we get 𝑂 = ᵲᵵᵴ = (ῠῶ)ͷῤ = ῠῶճ(ῤ)ͷ, and so 

ῠῶճ(ῤ) = 𝑂. Thus ℜ̂ is a R-ճ-𝒩ℒ𝒮-ring.                       ∎ 

        The Dorroh extension(For short DoEx) of an algebra ℜ̂ over 

a commutative ring Ŝ, introduced by Dorroh in 1932(Dorroh, 

1932), is a construction that enlarges ℜ̂ by incorporating 

elements of ℜ̂. It is defined as the Abelian group 𝒟̂  = ℜ̂  ×  Ŝ 
with multiplication given by (𝑟1, 𝑠1)(𝑟2, 𝑠2) = (𝑟1𝑟2 + 𝑠1𝑟2 +

𝑠2𝑟1, 𝑠1𝑠2) for all 𝑟𝑖 ∈ ℜ̂ and 𝑠𝑖 ∈ Ŝ. This operation preserves the 

algebraic structure while introducing a direct interaction between 

elements of ℜ̂ and Ŝ. Additionally, any Ŝ-linear endo ճ of ℜ̂ 

extends naturally to an 𝑆, S-algebra homomorphism ճ: 𝒟̂ → 𝒟̂, 

defined by ճ(𝑟, 𝑠) = (ճ(𝑟), 𝑠), applying ճ to the first component 

while keeping the second component fixed. 

 

Theorem 3.10 Consider ℜ̂ is an algebra equipped with an endo 

ճ and an identity element, defined over a commutative red-ring 

𝒵̅. Then ℜ̂ is a R-ճ-𝒩ℒ𝒮-ring if and only if the DoEx 𝒟̂ of ℜ̂ by 

𝒵̅ is R-ճ-𝒩ℒ𝒮-ring. 

Proof. It is clear that 𝒩ℒ(𝒟̂) = (𝒩ℒ(ℜ̂), 𝑂). Since 𝒵̅ is a 

commutative red-ring. Consider (ῠ, 𝑂), (ῤ, 𝑂) ∈ 𝒩ℒ(𝒟̂(ℜ̂, 𝑍)) 

and (ῠ, ἓ) ∈ 𝒟̂(ℜ̂, 𝑍) with (ἢ, ἓ)(ῠ, 𝑂)(ῤ, 𝑂) = ((ἢ +

ἓ)ῠ, 𝑂)(ῤ, 𝑂) = ((ἢ + ἓ)ῠῤ,𝑂). Thus (ἢ + ἓ)ῠῤ = 𝑂, ῠ, ῤ ∈

𝒩ℒ(ℜ̂). Since ℜ̂ is ճ-𝒩ℒ𝒮-ring, we get ἢ + ἓ ∈ 𝑍, (ἢ +

ἓ)ῤճ(ῠ) = 𝑂.  So (ἢ, ἓ)(ῤ, 𝑂)ճ((ῠ, 𝑂)) = 𝑂. Thus 𝒟̂(ℜ̂, 𝑍) is ճ̅-

𝒩ℒ𝒮-ring.∎ 

                                                                                        

SOME LOCALIZATIONS OF RIGHT ճ-𝓝𝓛-

SYMMETRIC RINGS: 

        Assume that ճ is a monomorphism of the ring  ℜ̂. The 

construction of an over-ring of ℜ̂.  ( A ring  ℜ̂ is an over ring of 

integral domain ɠ, if ɠ is a subring of ℜ̂ and ℜ̂ is a subring of the 

field of fraction 𝒬(ɠ), the relationship ɠ ⊆ ℜ̂ ⊆ 𝒬(ɠ)). As 

introduced by Jordan, is now under consideration (for more 

details, see (Jordan, 1982)). Define Ῠ(ℜ̂, ճ) as the subset of the 

skew Laurent polynomial ring ℜ̂[ͷ, ͷ−1; ճ], consisting of 

elements of the form ͷ−𝑛ἓͷ𝑛 for ἓ ∈ ℜ̂ and 𝑛 ≥ 𝑂. Notably, for 

𝑚 ≥ 𝑂, the relation ͷ−𝑚ἓͷ𝑚 = ճ−𝑚(ἓ) hold for any ἓ ∈ ℜ̂. This 

implies that for any 𝑚 ≥ 𝑂, the transformation follows the 

pattern:  

ͷ−𝑛ἓͷ𝑛 = ͷ−(𝑛+𝑚)ճ−𝑚(ἓ)ͷ𝑛+𝑚. 

From this, it follows that  Ῠ(ℜ̂, ճ) forms a subring of 

ℜ̂[ͷ, ͷ−1; ճ], equipped with the natural operation: 

(ͷ−зἓͷз)(ͷ−єῆͷє) = ͷ−(з+є)ճє(ἓ)ճз(ῆ)ͷз+є, 
And, 

ͷ−зἓͷз + ͷ−єῆͷє = ͷ−(з+є)(ճє(ἓ) + ճз(ῆ))ͷз+є, ∀ἓ, ῆ ∈ ℜ̂ and 

з, є ≥ 𝑂. 

Notably, Ῠ(ℜ̂, ճ) serves as an over-ring of ℜ̂, and the mapping 

Ῠ(ℜ̂, ճ) → Ῠ(ℜ̂, ճ) defined by ͷ−зἓͷз → ͷ−зճ(ἓ)ͷз, is an 

automorphism of Ῠ(ℜ̂, ճ).  

Jordan established that such an extension Ῠ(ℜ̂, ճ) always exists 

for any given pair (ℜ̂, ճ) (Jordan, 1982).  

This is achieved using left localization of the skew polynomial 

ℜ̂[ͷ, ճ] with respect to the set of powers of ͷ. This extension 

Ῠ(ℜ̂, ճ) is commonly referred to as the Jordan extension of ℜ̂ by 

ճ. 

Proposition 4.1 Consider ℜ̂ is a ring with a monomorphism, then 

ℜ̂ is R-ճ-𝒩ℒ𝒮-ring if and only if the Jordan extension Ῠ =

Ῠ(ℜ̂, ճ) is R-ճ-𝒩ℒ𝒮-ring. 

 

Proof. If ℜ̂ is R-ճ-𝒩ℒ𝒮-ring, then so is each subring ɠ with 

ճ(Ῠ) ⊆ Ῠ. Therefore, it is enough to demonstrate the necessity. 

Assume ℜ̂ is ճ-𝒩ℒ𝒮-ring and ῠῤῶ = 𝑂 where ῠ = ͷ−зἓ1ͷ
з ∈

𝒜̂, ῤ = ͷ−єἓ2ͷ
є, ῶ = ͷ−ᵳἓ3ͷ

ᵳ ∈ 𝒩ℒ(𝒜̂) for з, є, ᵳ > 𝑂. Then 

ἓ1 ∈ ℜ̂ and ἓ2, ἓ3 ∈ 𝒩
ℒ(ℜ̂). From ῠῤῶ = 𝑂, we get 

ճᵳ(ἓ1)ճ
є(ἓ2)ճ

з(ἓ3) = 𝑂 and so ճᵳ(ἓ1)ճ
з(ἓ3)ճ(ճ

є(ἓ2)) =

ճᵳ(ἓ1)ճ
з(ἓ3)ճ

є+1(ἓ2) = 𝑂 by assumption. Hence ῠῶճ(ῤ) =
(ͷ−зἓ1ͷ

з)(ͷ−ᵳἓ3ͷ
ᵳ)ճ(ͷ−єἓ2ͷ

є) =
(ͷ−зἓ1ͷ

з)(ͷ−ᵳἓ3ͷ
ᵳ)(ͷ−єճ(ἓ2)ͷ

є) =

ͷ−(з+ᵳ+є)ճᵳ(ἓ1)ճ
з(ἓ3)ճ

є+1(ἓ2)ͷ
+(з+ᵳ+є) = 𝑂.  

Therefore, Jordan extension 𝒜̂(ℜ̂, ճ) is right ճ-𝒩ℒ𝒮-ring.          ∎ 
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Recall that the map ℜ̂[ͷ, ͷ−1] → ℜ̂[ͷ, ͷ−1] defined by 

∑ 𝑎𝒾ͷ
𝒾∞

𝒾=−𝑛 → ∑ ճ(𝑎𝒾)ͷ
𝒾∞

𝒾=−𝑛  is an endo of ℜ̂[ͷ, ͷ−1] and the 

map obviously extends ճ.  
 

Proposition 4.2 If ℜ̂ is an Armendariz ring, then the following 

claims are equivalent:  

(1) ℜ̂ is a R-ճ-𝒩ℒ𝒮-ring; 

(2) ℜ̂[ͷ] is a R-ճ-𝒩ℒ𝒮-ring; 

(3) ℜ̂[ͷ, ͷ−1] is a R-ճ-𝒩ℒ𝒮-ring. 

 Proof. (1) ↔ (2) is proven in proposition 3.8 

(2) ↔ (3) Showing necessity is sufficient. Let Ғ(ͷ) ∈

ℜ̂[ͷ, ͷ−1] and Ҕ(ͷ), Ӄ(ͷ)  ∈ 𝒩ℒ(ℜ̂[ͷ, ͷ−1]) with 

Ғ(ͷ)Ҕ(ͷ)Ӄ(ͷ) = 𝑂.  Then ∃𝓃 ∈ 𝒵̅+ such that 𝒻1(ͷ) =

Ғ(ͷ)ͷ𝓃 ∈ ℜ̂[ͷ] and  Ҕ1(ͷ) = Ҕ(ͷ)ͷ
𝓃 , Ӄ1(ͷ) = Ӄ(ͷ)ͷ

𝓃  ∈

𝒩ℒ(ℜ̂[ͷ]) and  so Ғ1(ͷ)Ҕ1(ͷ)Ӄ1(ͷ) = 𝑂. Since ℜ̂[ͷ] is R-ճ-

𝒩ℒ𝒮-ring, we obtain Ғ1(ͷ)Ӄ1(ͷ) ճ(Ҕ1(ͷ)) = 𝑂. Hence 

Ғ(ͷ)Ӄ(ͷ) ճ(Ҕ(ͷ)) = ͷ−3𝓃Ғ1(ͷ)Ӄ1(ͷ) ճ(Ҕ1(ͷ)) = 𝑂. Thus 

ℜ̂[ͷ, ͷ−1] is a R-ճ-𝒩ℒ𝒮-ring. 

(3) → (2) and (3) → (1) are clear.                  ∎ 

 

Proposition 4.3 Assume that ℜ̂ is a ring and that 𝒵̅(ℜ̂) is an 

infinite subring with all of its nonzero elements regular in ℜ̂. 

Then ℜ̂ is R-ճ-𝒩ℒ𝒮-ring if and only if ℜ̂[ͷ] is R-ճ-𝒩ℒ𝒮-ring if 

and only if ℜ̂[ͷ; ͷ−1] is R-ճ-𝒩ℒ𝒮-ring.  

        Proof. It is sufficient to demonstrate that,  ℜ̂[ͷ] is ճ-𝒩ℒ𝒮-

ring when so is ℜ̂, ℜ̂[ͷ]is obtained as the subdirect product of an 

infinite collection of copies of ℜ̂, as 𝒵̅(ℜ̂) comprises an infinite 

subring where each nonzero element is regular in ℜ̂ according to 

the hypothesis. Thus ℜ̂[ͷ] is ճ-𝒩ℒ𝒮-ring because ℜ̂ is ճ-𝒩ℒ𝒮-

ring by the assumption.     ∎ 

ON RIGHT ճ-𝓝𝓛-SYMMETRIC MODULES: 

        This section extends the idea of a R-ճ-𝒩ℒ𝒮-ring to modules 

by introducing the notion of a right ճ-𝒩ℒ-symmetric module, 

which is an extension of symmetric modules and generalization 

of ճ-symmetric modules. Some of the well-established results 

which are obtained in section 3 and section 4 are generalized to 

right ճ-𝒩ℒ-symmetric modules. We introduce the following 

definition first. 

 

Definition 5.1 Assume ℜ̂ is a ring and ճ a nonzero endo of ℜ̂. 

An ℜ̂-module ℳ̂ℜ̂ is called a right ճ-𝒩ℒ-symmetric modules 

(For short R-ճ-𝒩ℒ𝒮-module) if whenever 𝑚𝑎𝑏 = 𝑂 for 𝑎, 𝑏 ∈

𝒩ℒ(ℜ̂) and 𝑚 ∈ ℳ̂ℜ̂ implies 𝑚𝑏ճ(𝑎) = 𝑂. 

Example 5.2: 

1. R-1ℜ̂-𝒩ℒ-symmetric modules are exactly R-ճ-𝒩ℒ𝒮-

module.   

2. For any commutative ring, any module ℳ̂ℜ̂ is an  ճ-𝒩ℒ𝒮-

modules. 

3. Let Ḓ̅ be a division ring, ℜ̂ = [
Ḓ̅ Ḓ̅

𝑂 Ḓ̅
], and 𝒜 = [

𝑂 Ḓ̅

𝑂 Ḓ̅
]. 

Then 𝒜ℜ̂ is an ճ-𝒩ℒ𝒮-module. 

4. It is clear that ճ-symmetric modules are ճ-𝒩ℒ𝒮-module but 

the converse implication is not true as we see in the 

following example. 

Example 5.3 Let 𝒵̅ be the ring of integers. We now consider the 

ring ℜ̂ = {(
ῠ ῤ
𝑂 ῶ

) ; ῠ, ῤ, ῶ ∈ 𝒵̅} and the ℜ̂-module ℳ̂ℜ̂ =

{(
𝑂 ϥ
ϻ Ϧ

) ; ϥ, ϻ, Ϧ ∈ 𝒵̅} and ճ an homomorphism defined on ℜ̂ by 

ճ((
ῠ ῤ
𝑂 ῶ

)) = (
𝑂 ῤ
𝑂 𝑂

) where (
ῠ ῤ
𝑂 ῶ

) ∈ ℜ̂. ℜ̂ is R-ճ-𝒩ℒ𝒮-

module for 𝑚 = (
𝑂 ϥ
ϻ Ϧ

) ∈ ℳ̂ℜ̂ and ⱨ̂ , ⱪ̂ ∈ 𝒩ℒ(ℜ̂) where ⱨ̂ =

(
𝑂 ῤ1
𝑂 𝑂

) , ⱪ̂ = (
𝑂 ῤ2
𝑂 𝑂

) we have, 

𝑚ⱨ̂ⱪ̂ = (
𝑂 ϥ
ϻ Ϧ

) (
𝑂 ῤ1
𝑂 𝑂

) (
𝑂 ῤ2
𝑂 𝑂

) = 𝑂 

Also, 

𝑚ⱪ̂ճ(ⱨ̂) = (
𝑂 ϥ
ϻ Ϧ

) (
𝑂 ῤ2
𝑂 𝑂

) (
𝑂 ῤ1
𝑂 𝑂

) = (
𝑂 𝑂
𝑂 𝑂

) = 𝑂. 

But ℳ̂ℜ̂ is not ճ-symmetric for 𝑚 = (
𝑂 𝑂
1 1

) ∈ 𝑀, ⱨ̂ = (
𝑂 2
𝑂 𝑂

) 

, ⱪ̂ = (
1 2
𝑂 𝑂

) ∈ ℜ̂, we have, 

𝑚ⱨ̂ⱪ̂ = (
𝑂 𝑂
1 1

) (
𝑂 2
𝑂 𝑂

) (
1 2
𝑂 𝑂

) = (
𝑂 𝑂
𝑂 𝑂

) = 𝑂 

But, 𝑚ⱪ̂ճ(ⱨ̂) = (
𝑂 𝑂
1 1

)(
1 2
𝑂 𝑂

) (
𝑂 2
𝑂 𝑂

) = (
𝑂 𝑂
𝑂 2

) ≠ 𝑂.  

 

However, the converse is true if, ℳ̂ℜ̂ is an ճ-𝑟𝑔-module by the 

following Lemma. 

 

Lemma 5.4 Let ℳ̂ℜ̂ be an ճ-𝑟𝑔-module, then the following are 

equivalent: 

1. ℳ̂ℜ̂ is an  ճ-symmetric module; 

2. ℳ̂ℜ̂ is an  ճ-𝒩ℒ symmetric module. 

Proof. (1) ⟹ (2) It is clear. 

(2) ⟹ (1) Let 𝑚ῤ2 = 0, for 𝑚 ∈ ℳ̂ℜ̂ and ῤ ∈ ℜ̂. If 𝑚 = 0, is 

trivial. Then ῤ2 = 0 implies ῤ ∈ 𝒩ℒ(ℜ̂), since ℳ̂ℜ̂ is ճ-𝒩ℒ 

symmetric. Hence 𝑚ῤ2 = 0  implies 𝑚ῤῤ =

0 implies 𝑚ῤճ(ῤ) = 0, and since ℳ̂ℜ̂ is an ճ-𝑟𝑔-module 

implies that 𝑚ῤ = 0. Therefore,  ℳ̂ℜ̂ is an ճ-𝑟𝑒𝑑-module and by 

[(Agayev et al., 2009), Theorem 2.1] ℳ̂ℜ̂ is an ճ-symmetric 

module.                                                    ∎ 

 

Proposition 5.5 For a given endo of a ring ℜ̂ and an ℜ̂-module 

ℳ̂ℜ̂. The statements below are equivalent: 

1. ℳ̂ℜ̂ is R-ճ-𝒩ℒ𝒮-module, 

2. ℓ
ℳ̂ℜ̂(ῠ(ῤ)) ⊆ ℓℳ̂ℜ̂(ῤճ(ῠ)), for any ῠ, ῤ ∈ 𝒩ℒ(ℜ̂), 

3. ῨỮṼ = 𝑂 if and only if ῨṼճ(Ữ) = 𝑂,for Ữ,Ṽ ⊆ 𝒩ℒ(ℜ̂) 

and Ῠ ⊆ ℳ̂𝚁⋄ , 

4. ℓῨ(ỮṼ) ⊆ ℓῨ(Ṽճ(Ữ)), for any Ữ, Ṽ ⊆ 𝒩ℒ(ℜ̂) and Ῠ ⊆

ℳ̂ℜ̂. 

Proof. (1) → (3) Suppose that ῨỮṼ = 𝑂, for Ữ, Ṽ ⊆ 𝒩ℒ(ℜ̂) and 

Ῠ ⊆ ℳ̂ℜ̂. Then ῠῤῶ = 𝑂 for any ῠ ∈ Ῠ, ῤ ∈ Ữ and ῶ ∈ Ṽ, and 

hence ῠῶ ճ(ῤ) = 𝑂. Therefore ῨṼճ(Ữ) =
{∑ ῠ𝑖ῶ𝑖ճ(ῤ𝑖) ; 𝑖=1  ῠ𝑖 ∈ Ῠ, ῤ𝑖 ∈ Ữ and ῶ𝑖 ∈ Ṽ} = 𝑂. The 

converse is clear. (1) → (2) and (3) → (4) is obvious ∎ 

 

Proposition 5.6 Suppose that ℜ̂ is a ring and ճ an endo of ℜ̂ and 

ℳℜ̂ is an ℜ̂-module. Then we have the following: 

1. 𝑚ῤ1ῤ2…ῤ𝜛 = 𝑂 implies 𝑚ῤճ(1)ῤճ(2)…ῤճ(𝜛) = 𝑂 for 

each permutation ճ of the set {1,2,… ,𝜛}, where ῤ𝑖 ∈

𝒩ℒ(ℜ̂) and 𝜛 ∈ 𝒵̅+. 

2. mῠ1ῠ2…ῠ𝜛 = 𝑂 if and only if 

ɱ̂ճ𝑖1(ῠ1) ճ
𝑖2(ῠ2)… ճ

𝑖𝜛(ῠ𝜛) = 𝑂 for any 𝑖1, 𝑖2… 𝑖𝜛 ∈
𝒵̅+. 

Proof. The proof is similar to the proof of [(Agayev et al., 2009), 

Proposition2.4].                                   ∎ 

 

Proposition 5.7 Suppose ℜ̂ is a ring and ճ an endo of  ℜ̂  and ℜ̂-

module ℳ̂ℜ̂. Then we have the following:  

1. The class of a R-ճ-𝒩ℒ𝒮-modules is closed under 

submodules, and direct sums. 

2. The direct product of R-ճ-𝒩ℒ𝒮-modules is R-ճ-𝒩ℒ𝒮-

module. 
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3. If ҿ is a central idempotent of a ring ℜ̂ with ճ(ҿ) = ҿ and 

ճ(1 − ҿ) = 1 − ҿ, then ℳ̂ҿℜ̂ and ℳ̂(1−ҿ)ℜ̂ are R-ճ-𝒩ℒ𝒮-

module if and only if ℳ̂ℜ̂ is right ճ-𝒩ℒ𝒮-module. 

Proof. (1) Depending on the definitions and algebraic structures, 

the proof is straightforward. 

(2) Note that 𝒩ℒ (∏ ℜ̂ᵳᵳ∈𝐼 ) ⊆ ∏ 𝒩ℒ(ℜ̂ᵳ)ᵳ∈𝐼  and ճᵳ(ℜ̂ᵳ) ⊆ ℜ̂ᵳ 

for each ᵳ ∈ 𝐼. Suppose that ℳ̂ℜ̂ᵳ  is ճ-𝒩ℒ𝒮-module for each ᵳ ∈

𝐼 and let ℳ̂𝒜̂ℬ̂ = 𝑂 where, 𝒜̂ = (𝒶̂ᵳ)ᵳ∈𝐼 , ℬ̂ = (𝒷̂ᵳ)ᵳ∈𝐼 ∈

𝒩ℒ(∏ ℜ̂ᵳᵳ∈𝐼 ) and ℳ̂ = (mᵳ)ᵳ∈𝐼 ∈ ∏ (ℳ̂ᵳ
ℜ̂ᵳ
)ᵳ∈𝐼 . Then 

𝑚ᵳ𝒶̂ᵳ𝒷̂ᵳ = 𝑂 for each ᵳ ∈ 𝐼 and mᵳ𝒷̂ᵳճ(𝒶̂ᵳ) = 𝑂 by hypothesis 

since 𝒶̂ᵳ, 𝒷̂ᵳ ∈ 𝒩
ℒ(ℜ̂ᵳ) and mᵳ ∈ ℳᵳ

ℜ̂ᵳ  for each ᵳ ∈ 𝐼. This 

implies ℳ̂ℬ̂ճ(𝒜̂) = 𝑂, entailing that the direct product 

∏ ℳ̂ᵳ
ℜ̂ᵳ
 ᵳ∈𝐼 is R-ճ-𝒩ℒ𝒮-module.  

(3) Establishing necessity is enough. Assume ℳ̂ҿℜ̂ and ℳ̂(1−ҿ)ℜ̂  

are R-ճ-𝒩ℒ𝒮-modules. Consider 𝑚𝒶̂𝒷̂ = 𝑂, for 𝑚 ∈ ℳ̂ℜ̂, and 

𝒶̂, 𝒷̂ ∈ 𝒩ℒ(ℜ̂𝑖), then 𝑂 = ҿ𝑚𝒶̂𝒷̂ = 𝑚(ҿ𝒶̂)𝒷̂. And 𝑂 = (1 −

ҿ)𝑚𝒶̂𝒷̂ = 𝑚((1 − ҿ)𝒶̂)𝒷̂. By hypothesis, we get 𝑂 =

𝑚𝒷̂ճ(ҿ𝒶̂) and 𝑂 = 𝑚𝒷̂ճ(1 − ҿ)𝒶̂, 

𝑂 = 𝑚𝒷̂ճ(ҿ)ճ(𝒶̂) and 𝑂 = 𝑚𝒷̂ճ(1 − ҿ)ճ(𝒶̂),  

𝑂 = 𝑚𝒷̂ҿճ(𝒶̂) and 𝑂 = 𝑚𝒷̂(1 − ҿ)ճ(𝒶̂), 

𝑂 = 𝑚𝒷̂ҿճ(𝒶̂) + m𝒷̂ճ(𝒶̂) − m𝒷̂ҿճ(𝒶̂), 

𝑂 = 𝑚𝒷̂ճ(𝒶̂). 

ℳ̂ℜ̂ is a R-ճ-𝒩ℒ𝒮-module.                         ∎ 

 

According to (Lee & Zhou, 2004), the module ℳ̂ℜ̂ is said to be 

ճ-reduced, if for each 𝑚 ∈ ℳ̂ℜ̂ and each 𝓇̂ ∈ ℜ̂, with 𝑚𝓇̂ = 𝑂 

, then  𝑚ℜ̂ ∩ 𝓇̂ℳ̂ = 𝑂.  
 

Lemma 5.8 ([(Raphael, 1975), Lemma 1.2]). Let ℳ̂ℜ̂ be an ℜ̂-

module. Then the following statements are equivalent: 

1. ℳ̂ℜ̂ is ճ-reduced; 

2. The following statements are true: For each 𝑚 ∈ ℳ̂ℜ̂ and 

𝓇̂ ∈ ℜ̂, 

a. 𝑚𝓇̂ = 𝑂 → 𝑚ℜ̂𝓇̂ = 𝑚ℜ̂ճ(𝓇̂) = 𝑂; 
b. 𝑚𝓇̂ճ(𝓇̂) = 𝑂 → 𝑚𝓇̂ = 𝑂; 
c. 𝑚𝓇̂2 = 𝑂 → 𝑚𝓇̂ = 𝑂. 

If the module ℳ̂ℜ̂ is 1-red-module, it is referred to as reduced. 

Hence, a ring ℜ̂ is a red-ring if and only if  ℜ̂ is is 1-red-module 

as an  ℜ̂-module ℳ̂ℜ̂ . 

 

Proposition 5.9 Every ճ-reduced module is a R-ճ-𝒩ℒ𝒮-module. 

Proof. Consider 𝑚 ∈ ℳ̂ℜ̂ and ῠ, ῤ ∈ 𝒩ℒ(ℜ̂) with 𝑚ῠῤ = 𝑂, we 

prove 𝑚ῤճ(ῠ) = 𝑂. We apply conditions of ճ-reduced module 

in the process. Now 𝑂 = 𝑚ῠῤ = 𝑚ῠճ(ῤ) = 𝑂. Then, 

 𝑚ճ(ῤ)ῠճ(ῤ)ῠ = 𝑚(ճ(ῤ)ῠ)ճ(ճ(ῤ)ῠ) = 𝑚ճ(ῤ)ῠ =

𝑚ճ(ῤ)ճ(ճ(ῠ)) = 𝑚ճ(ῤճ(ῠ)) = 𝑚ῤճ(ῠ). Hence ℳ̂ℜ̂ is a R-ճ-

𝒩ℒ𝒮-module. ∎ 

 

The following illustration shows that, in general, Proposition 

5.9's converse is not true. 

 

Example 5.10 Consider 𝒵̅4 denote the ring of integer modulo 4. 

Let the ring ℜ̂ = {(
ῠ ῤ
𝑂 ῠ

) ; ῠ, ῤ ∈ 𝒵̅4} and the ℜ̂-module ℳ̂ℜ̂ =

{(
𝑂 ϥ
ϻ Ϧ

) ; ϥ, ϻ, Ϧ ∈ 𝒵̅4} and a homomorphism ճ: ℜ̂ → ℜ̂ is 

defined by ճ ((
ῠ ῤ
𝑂 ῠ

)) = (
ῠ −ῤ
𝑂 ῠ

).  ℳ̂ℜ̂ is R-ճ-𝒩ℒ𝒮-module 

but not ճ-reduced. 

For, if 𝑚 = (
𝑂 𝑂
2 1

) ∈ ℳ̂ℜ̂ and 𝓇̂ = (
2 3
𝑂 2

) ∈ ℜ̂. Then 𝑚𝓇̂ =

𝑂 but (
𝑂 𝑂
𝑂 2

) = (
𝑂 𝑂
2 1

)(
2 𝑂
𝑂 2

) = (
𝑂 𝑂
2 𝑂

) (
2 3
𝑂 2

) ∈ 𝑚ℜ̂ ∩

ℳ̂𝓇̂ ≠ 0. Hence ℳ̂ℜ̂ is not ճ-reduced.  

 

Proposition 5.11 For a ring ℜ̂ and ℜ̂-module ℳ̂ℜ̂. Then the 

following conditions are equivalent, 

i. ℳ̂ℜ̂ is R-ճ-𝒩ℒ𝒮-module. 

ii. Each submodule of ℳ̂ℜ̂ is R-ճ-𝒩ℒ𝒮-module. 

iii. Each finitely generated submodule of ℳ̂ℜ̂ is ճ-𝒩ℒ𝒮-

module. 

iv. Each cyclic submodule of ℳ̂ℜ̂ is R-ճ-𝒩ℒ𝒮-module. 

Proof. It is a direct result of definitions and Proposition 3.6. 

 

Theorem 5.12 Every flat module over an R-ճ-𝒩ℒ𝒮-ring is an R-

ճ-𝒩ℒ𝒮-module.  

Proof. Assume ℳ̂ℜ̂ be a flat module over the R-ճ-𝒩ℒ𝒮-ring ℜ̂ 

and  𝑂 → Ӄ → Ғ → ℳ̂ℜ̂ → 𝑂 a short exact sequence with Ғ free 

ℜ̂-module. By [(Lee & Zhou, 2004), Theorem 2.3] is a R-ճ-

𝒩ℒ𝒮-module and we write ℳ̂ℜ̂ = Ғ/Ӄ and any element 𝑦̅ =

𝑦 + Ӄ ∈ ℳ̂ℜ̂ for 𝑦 ∈ Ғ. Let 𝑦̅𝒶̂𝒷̂ = 𝑂 where 𝑦̅ ∈ ℳ̂ℜ̂ and 

𝒶̂, 𝒷̂ ∈ 𝒩ℒ(ℜ̂). Since ℳ̂ℜ̂ is flat there exists a homomorphism 

⋆̂: Ғ → Ӄ such that ⋆̂ (𝑦𝒶̂𝒷̂) = 𝑦𝒶̂𝒷̂ Now set 𝑢 =⋆̂ (𝑦) − 𝑦 ∈ Ғ. 

Then 𝑢𝒶̂𝒷̂ = 𝑂. Since Ғ is R-ճ-𝒩ℒ𝒮-module, 𝑢𝒷̂ճ(𝒶̂) = 𝑂. 

Then ⋆̂ (𝑦𝒷̂ճ(𝒶̂)) = 𝑦𝒷̂ճ(𝒶̂). Since ⋆̂ (𝑦) ∈ Ӄ, we have 

𝑦𝒷̂ճ(𝒶̂) ∈ Ӄ. Therefore 𝑦̅𝒷̂ճ(𝒶̂) = 𝑂. Therefore ℳ̂ℜ̂ is R-ճ-

𝒩ℒ𝒮-module. ∎    

 

Proposition 5.13 Assume ℜ̂, ɠ are rings and 𝜗: ℜ̂ → ɠ be a ring 

endo. If ℳ̂ɠ is a right ℜ̂-module, then ℳ̂ℜ̂is a right ℜ̂-module 

via 𝑚𝑟 = 𝑚𝜗(𝑟) for all 𝑟 ∈ ℜ̂ and 𝑚 ∈ ℳ̂ℜ̂. Moreover, ℳ̂ℜ̂ is 

R-ճ-𝒩ℒ𝒮-module, if and only if ℳ̂ɠ is R-ճ-𝒩ℒ𝒮-module. 

Proof. Let ℳ̂ɠ be an R-ճ-𝒩ℒ𝒮-module. Consider 𝒶̂, 𝒷̂ ∈

𝒩ℒ(ℜ̂) and 𝑚 ∈ ℳ̂ℜ̂ Such that 𝑚𝒶̂𝒷̂ = 𝑂 Then 𝑚𝜗(𝒶̂𝒷̂) =

𝑚𝜗(𝒶̂)𝜗(𝒷̂) = 𝑂. Since ℳ̂ɠ is R-ճ-𝒩ℒ𝒮-module, we have, 

𝑚𝜗(𝒷̂)ճ(𝜗(𝒶̂)) = 𝑂, 

𝑚𝜗(𝒷̂)𝜗(𝒶̂) = 𝑂, 

𝑚𝜗(𝒷̂ճ(𝒶̂)) = 𝑂. 

Hence ℳ̂ℜ̂ is a ճ-𝒩ℒ𝒮-module. 

Conversely.  Assume that 𝜗 is onto and ℳ̂ℜ̂ is a R-ճ-𝒩ℒ𝒮-

module. Let ῠ, ῤ ∈ 𝒩ℒ(ɠ) and 𝑚 ∈ ℳ̂ɠ such that 𝑚ῠῤ = 𝑂. 

Since 𝜗 is onto, there exists 𝒶̂, 𝒷̂ ∈ 𝒩ℒ(ℜ̂) such that ῠ = 𝜗(𝒶̂) 

and ῤ = 𝜗(𝒷̂). Then 𝑂 = 𝑚𝜗(𝒶̂)𝜗(𝒷̂) = 𝑚𝜗(𝒶̂𝒷̂) = 𝑚𝒶̂𝒷̂. 

Since ℳ̂ℜ̂ is right ճ-𝒩ℒ𝒮-module, we have 𝑂 = 𝑚𝒷̂ճ(𝒶̂). 

Hence 𝑂 = 𝑚𝜗(𝒷̂ճ(𝒶̂)) = 𝑂 = 𝑚𝜗(𝒷̂)ճ(𝜗(𝒶̂)) = 𝑚ῤճ(ῠ). 

Thus ℳ̂ɠ is R-ճ-𝒩ℒ𝒮-module.                                           ∎ 

 

Now we study the 𝒩ℒ-symmetric property on some module 

extensions and module localizations like 

ℳ̂[ͷ], ℳ̂[ͷ, ͷ−1], ℳ̂[ͷ, ͷ−1; ճ] . 
The following concepts were introduced by Lee and Zhou. For a 

module ℳ̂, We examine ℳ̂[ͷ] = {∑ 𝑚𝑖ͷ
𝑖𝑠

𝑖=𝑂 ∶ 𝑠 ≥ 𝑂,𝑚𝑖 ∈

ℳ̂} , ℳ̂[ͷ] is an Abelian group under clearly addition operation. 

Additionally, the next, scalar product operation turns ℳ̂[ͷ] into 

a right ℜ̂[ͷ]-module: 

For 𝑚(ͷ) = ∑ 𝑚ℴͷ
ℴ ∈ ℳ̂[ͷ]𝑠

ℴ=𝑂  and 𝑓(ͷ) = ∑ 𝑎𝓋ͷ
𝓋 ∈𝑡

𝓋=𝑂

ℜ̂[ͷ], 

𝑚(ͷ)𝑓(ͷ) = ∑ ( ∑ 𝑚ℴ𝑎ℴ
ℴ+ộ=𝒹

)𝓍𝒹
з+є

𝒹=𝑂

. 
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ℳ̂[ͷ] becomes a right module over ℜ̂[ͷ] as a result of these 

operations. In the same way, the Laurent polynomial extension 

ℳ̂[ͷ, ͷ−1] becomes a right module over ℜ̂[ͷ, ͷ−1] with a similar 

scalar product. Zhou and Lee (Lee & Zhou, 2004) also introduced 

notations for ℳ̂ module as,  

ℳ̂[ͷ; ճ] = {∑ 𝑚ℴͷ
ℴ  | 𝑝 ≥ 𝑂,𝑚ℴ ∈ ℳ̂

𝓅̂
ℴ=𝑂 }. Each of the above 

is abelian group underneath the addition condition. Furthermore, 

ℳ̂[ͷ; ճ] is a module for ℜ̂[ͷ; ճ] under the product operation as:  

𝑚(ͷ) = ∑𝑚ℴͷ
ℴ

𝜇

ℴ=𝑂

∈ ℳ̂[ͷ; ճ], 

𝑓(ͷ) = ∑𝑓ộͷ
ộ

𝜎

ộ=𝑂

∈ ℜ̂[ͷ; ճ] 

𝑚(ͷ)𝑓(ͷ) = ∑ ( ∑ 𝑚ℴ

ℴ+𝓋=𝒹

𝛼ℴ(𝑓ℴ))

𝜇+𝜎

𝒹=𝑂

ͷ𝒹 

In the same way, the skew Laurent polynomial module 

ℳ̂[ͷ, ͷ−1; ճ] transforms into a module on ℜ̂[ͷ, ͷ−1; ճ].  
Again, from (Lee & Zhou, 2004), module ℳ̂ is known as ճ-

Armendariz  if the  below conditions holds: (i) For 𝑚 ∈ ℳ̂ and 

𝑎 ∈ ℜ̂,𝑚𝑎 = 𝑂 for the case if 𝑚ճ(𝑎) = 𝑂 (ii) any 𝑚(ͷ) =
∑ 𝑚ℴͷ

ℴ𝑡
ℴ=𝑂 ∈ ℳ̂[ͷ; ճ] and 𝑓(ͷ) = ∑ 𝑎ộͷ

ộ𝑛
ộ=𝑂 ∈

ℜ̂[ͷ; ճ],𝑚(ͷ)𝑓(ͷ) = 𝑂 imply 𝑚ℴճ
ℴ(𝑎ộ) = 𝑂 for all ℴ and ộ. 

And then, Anderson and Camillo (Anderson & Camillo, 1999), 

extended the concept of Armendariz ring to Armendariz module, 

as follows: A ℜ̂-module ℳ̂ℜ̂ is Armendariz when, if 𝑚(ͷ) =
∑ 𝑚ℴͷ

ℴ ∈ ℳ̂[ͷ]
𝜇
ℴ=𝑂  and 𝑔(ͷ) = ∑ 𝑎ộͷ

ộ ∈ ℜ̂[ͷ]𝜎
ộ=𝑂 , such that 

𝑚(ͷ)𝑔(ͷ) = 𝑂 implies 𝑚ℴ  𝑎𝓋 = 𝑂 for all ℴ and ộ. The 

Armendariz property is applicable for any finite product of 

polynomials. Clearly, ℜ̂ is an Armendariz ring if and only if ℜ̂ℜ̂
.  

is an Armendariz ℜ̂-module. 

 

Theorem 5.14 Consider ℳ̂ℜ̂ is a ճ-Armendariz module. Then, 

the statements that follow are equivalent: 

1. ℳ̂ℜ̂ is R-ճ-𝒩ℒ𝒮-module; 

2. ℳ̂[ͷ; ճ]ℜ̂[ͷ;ճ] is R-ճ-𝒩ℒ𝒮-module; 

3. ℳ̂[ͷ, ͷ−1; ճ]ℜ̂[ͷ,ͷ
−1;ճ] is R-ճ-𝒩ℒ𝒮-module. 

Proof. It suffices to demonstrate that 1 ⇒ 3. Let 𝑚(ͷ) =

∑ 𝑚ℴͷ
ℴ∞

ℴ=𝑂 ∈ ℳ̂[ͷ, ͷ−1; ճ]ℜ̂[ͷ,ͷ
−1;ճ] and 𝔄(ͷ) =

∑ 𝑎ộͷ
ộ∞

ộ=𝑂 , 𝔅(ͷ) = ∑ 𝑚ϥͷ
ϥ∞

ϥ=𝑂 ∈ 𝒩ℒ(ℜ̂[ͷ, ͷ−1; ճ]). Then we 

obtain 𝑎ộ, 𝑏ϥ ∈ 𝒩
ℒ(ℜ̂). Let 𝑚(ͷ)𝔄(ͷ) 𝔅(ͷ) = 𝑂 this implies 

𝑚ℴ𝑎ộ𝑏ϥ = 𝑂 for all ℴ, ộ, ϥ. Thus, by hypothesis 𝑚ℴ𝑏ϥ𝑎ộ = 𝑂. 

Therefore 𝑚(ͷ)𝔅(ͷ) 𝔄(ͷ) = 𝑂, and so ℳ̂[ͷ, ͷ−1; ճ]ℜ̂[ͷ,ͷ
−1;ճ] is 

a R-ճ-𝒩ℒ𝒮-module.    ∎ 

Corollary 5.15 Consider ℳ̂ℜ̂ be an Armendariz module. Then 

the following are equivalent: 

1. ℳ̂ℜ̂ is R-ճ-𝒩ℒ𝒮-module; 

2. ℳ̂[ͷ]ℜ̂[ͷ] is R-ճ-𝒩ℒ𝒮-module; 

3. ℳ̂[ͷ, ͷ−1]ℜ̂[ͷ,ͷ
−1] is R-ճ-𝒩ℒ𝒮-module. 

Proposition 5.16 Consider ճ is an endo of a ring ℜ̂ and ℳ̂ℜ̂is ճ-

reduced module. Then ℳ̂ℜ̂is R-ճ-𝒩ℒ𝒮-module over ℜ̂ if and 

only if ℳ̂ℜ̂[ͷ]/ℳ̂ℜ̂[ͷ](ͷ𝓃) is R-ճ-𝒩ℒ𝒮-module over 
ℜ̂[ͷ]

<ͷ𝓃>
 for 

integer 𝓃 ≥ 2. 

Proof.  Let ℳ̂ℜ̂ is right  ճ-𝒩ℒ𝒮-module with 𝑝𝑞ℎ = 𝑂, where 

ͷ̅ = ͷ+ < ͷ𝑛 >. Note that 𝑎ℴ𝑏ộ𝑐ϥͷ̅
 𝑖+𝑗+𝑘 = 𝑂, for each ℴ, ộ and 

ϥ with  ℴ + ộ + ϥ ≥ 𝓃. Therefore, it is sufficient to display the 

cases ℴ + ộ + ϥ ≤ 𝓃 − 1. Since 𝑝𝑞ℎ = 𝑂, The following 

equations are available to us:  

(1)   𝑚𝑂𝓈𝑂𝓉𝑂 = 𝑂, 
(2)   𝑚𝑂𝓈𝑂𝓉1 +𝑚𝑂𝓈1𝓉𝑂 +𝑚1𝓈𝑂𝓉𝑂 = 𝑂, 
(3)   𝑚𝑂𝓈𝑂𝓉2 +𝑚𝑂𝓈1𝓉1 +𝑚𝑂𝓈2𝓉𝑂 +𝑚1𝓈𝑂𝓉1 +𝑚1𝓈1𝓉𝑂 +

𝑚2𝓈𝑂𝓉𝑂 = 𝑂, 

       ⋮ 
 (𝓃 − 2)  𝑚𝑂𝓈𝑂𝓉𝓃−2 +𝑚𝑂𝓈1𝓉𝓃−3 +⋯+𝑚𝓃−3𝓈1𝓉𝑂

+𝑚𝓃−2𝓈𝑂𝓉𝑂 = 𝑂, 
 (𝓃 − 1)  𝑚𝑂𝓈𝑂𝓉𝓃−1 +𝑚𝑂𝓈1𝓉𝓃−2 +⋯+𝑚𝓃−2𝓈𝑂𝓉1

+𝑚𝓃−2𝓈1𝓉𝑂 +𝑚𝓃−1𝓈𝑂𝓉𝑂 = 𝑂. 

Since ℳ̂ℜ̂ is ճ-reduced for any 𝑚 ∈ ℳ̂ℜ̂, 𝑎 ∈ ℜ̂,𝑚𝑎2 = 𝑂 → 

𝑚𝑎 = 𝑂, and each ճ-reduced module is semi-commutative. 

These facts are used as follows: 

Eq(1) and Eq(2) × 𝓈𝑂𝓉𝑂 gives 𝑚1(𝓈𝑂𝓉𝑂)
2 = 𝑂, and so  

𝑚1𝓈𝑂𝓉𝑂 = 𝑂 and 𝑚𝑂𝓈𝑂𝓉1 +𝑚𝑂𝓈1𝓉𝑂 = 𝑂, multiplying by  

𝓈1𝓉𝑂 gives 𝑂 = 𝑚𝑂𝓈1(𝓉𝑂
2) = 𝑚𝑂𝓈1𝓉𝑂, so we have, 𝑚𝑂𝓈𝑂𝓉1 =

𝑂,𝑚𝑂𝓈1𝓉𝑂 = 𝑂 and 𝑚1𝓈𝑂𝓉𝑂 = 𝑂. From Eq(1),(2) and (3)  

× 𝓈𝑂𝓉𝑂, we get  𝑚2𝓈𝑂𝓉𝑂 = 𝑂 and,  

  𝑚𝑂𝓈𝑂𝓉2 +𝑚𝑂𝓈1𝓉1 +𝑚𝑂𝓈2𝓉𝑂 +𝑚1𝓈𝑂𝓉1 +𝑚1𝓈1𝓉𝑂 = 𝑂, in 

a similar way. If we multiply the right side of Eq(3) by 

𝓈1𝓉𝑂, 𝓈𝑂𝓉1, 𝓈2𝓉𝑂 and 𝓈1𝓉1 respectively, then we obtain 

𝑚1𝓈1𝓉𝑂 = 𝑂,𝑚1𝓈𝑂𝓉1 = 𝑂,𝑚𝑂𝓈2𝓉𝑂 = 𝑂,𝑚𝑂𝓈1𝓉1 = 𝑂, and 

𝑚𝑂𝓈𝑂𝓉2 = 𝑂 in turn Inductively we assume that 𝑚ℴ𝓈𝓋𝓉𝓀 = 𝑂 

where ℴ + ộ + ϥ = 𝑂, 1, … , (𝓃 − 2). We apply the above 

method to Eq. (𝑛 − 1). First, the induction hypotheses and 

Eq. (𝑛 − 1)  × 𝓈𝑂𝓉𝑂 give 𝑚𝑛−1𝓈𝑂𝓉𝑂 = 𝑂 and, 
(𝓃 − 1)  𝑚𝑂𝓈𝑂𝓉𝓃−1 +𝑚𝑂𝓈1𝓉𝓃−2 +⋯+𝑚𝓃−2𝓈𝑂𝓉1

+𝑚𝓃−2𝓈1𝓉𝑂 +𝑚𝓃−1𝓈𝑂𝓉𝑂 = 𝑂. 
If we multiply Eq. (𝓃 − 1) on the right side by 𝓈1𝓉𝑂, 𝓈𝑂𝓉1, …, 
and 𝓈1𝓉𝑛−2 respectively, then we obtain 𝑚𝑛−2𝓈1𝓉𝑂 =
𝑂,𝑚𝑛−2𝓈𝑂𝓉1 = 𝑂,… ,𝑚𝑂𝓈1𝓉𝑛−2 = 𝑂 and so 𝑚𝑂𝓈𝑂𝓉𝑛−1 = 𝑂. 
In turn. This shows that 𝑚ℴ𝓈ộ𝓉ϥ = 𝑂 for all ℴ, ộ and ϥ with ℴ +

ộ + ϥ = 𝓃 − 1. Consequently, 𝑚ℴ𝓈ộ𝓉ϥ = 𝑂 for all ℴ, ộ and ϥ 

with ℴ + ộ ≤ 𝓃 − 1, and thus 𝑚ℴ𝓉ϥճ
ℴ(𝓈ộ) = 𝑂, ∀ℴ ∈ 𝑍

+ by 

[(Kwak, 2007), Theorem 2.5(1)]. This yields 𝑝ℎճ̅(𝑞) = 𝑂, and 

therefore ℳ̂ℜ̂[ͷ]/ℳ̂ℜ̂[ͷ](ͷ𝓃) is R-ճ-𝒩ℒ𝒮-module.           ∎ 

 

If 𝑢𝑟 = 𝑂 implies 𝑟 = 𝑂 for 𝑟 ∈ ℜ̂, then an element 𝑢 of a ring 

ℜ̂ is right regular. Regular indicates that it is both left and right 

regular (and so not a zero divisor), while left regular is defined 

similarly. Assume that ℳ̂ is a subset of ℜ̂ that is multiplicatively 

closed and made up of central regular elements. Let ճ be an 

automorphism of ℜ̂ and consider ճ(𝑚) = 𝑚, ∀𝑚 ∈ ℳ̂. Then 

ճ(𝑚−1) = 𝑚−1 in ℳ̂−1ℜ̂ and the induced map ճ: ℳ̂−1ℜ̂ →

ℳ̂−1ℜ̂ defined by  ճ(𝑢−1𝑎) = 𝑢−1ճ(𝑎) is also an 

automorphism. 

 

Proposition 5.17 Consider a ring ℜ̂ and a subset Ω of ℜ̂ that is 

multiplicatively closed and consists of central regular elements. 

Then 

(1) ℜ̂ is a R-ճ-𝒩ℒ𝒮-ring if and only if is Ω−1ℜ̂  is a R-ճ-𝒩ℒ𝒮-

ring.   

(2) A module ℳ̂ℜ̂is R-ճ-𝒩ℒ𝒮-module if and only if 

Ω−1ℳ̂Ω−1ℜ̂ is a R-ճ-𝒩ℒ𝒮-module. 

Proof.(1) Assume ӽԏԟ = 𝑂 with ӽ = 𝓊̂−1𝒶̂, ԏ = 𝓋̂−1𝒷̂, ԟ =

𝓌̂−1𝒸̂, 𝓊̂, 𝓋̂, 𝓌̂ ∈ Ω and 𝒶̂ ∈ 𝚁⋄, 𝒷̂, 𝒸̂ ∈ 𝒩ℒ(ℜ̂). Since Ω is 

included in the centre of ℜ̂,  

we have 𝑂 = ӽԏԟ = 𝓊̂−1𝒶̂𝓋̂−1𝒷̂𝓌̂−1𝒸̂ =
(𝓊̂−1𝓋̂−1𝓌̂−1)𝒶̂𝒷̂𝒸̂ = (𝓊̂𝓋̂𝓌̂)−1𝒶̂𝒷̂𝒸̂ and so 𝓈𝒶̂𝒷̂𝒸̂ = 𝑂 for 

some 𝓈 ∈ Ω. But ℜ̂ is  R-ճ-𝒩ℒ𝒮-ring by the condition, so 

𝓈𝒶̂𝒸̂ճ(𝒷̂) = 𝑂 and 𝓈ӽԟճ(ԏ) =

𝓈(𝓊̂−1𝒶̂)(𝓌̂−1𝒸̂)ճ ((𝓋̂−1𝒷̂)) = 𝓈(𝓊̂𝓌̂𝓋̂)−1𝒶̂𝒸̂ճ(𝒷̂) = 𝑂. 

Hence Ω−1ℜ̂ is R-ճ-𝒩ℒ𝒮-ring.    

 (2) Since a submodule of a R-ճ-𝒩ℒ𝒮-module is likewise a R-ճ-

𝒩ℒ𝒮-module, it is sufficient to verify the required condition. 

Assume that ℳ̂ℜ̂is a R-ճ-𝒩ℒ𝒮-module and 

(ϥ−1ᶆ)(𝜇−1ῠ)(𝜎−1ῤ) = 𝑂 for ϥ−1ᶆ ∈ Ω−1ℳ̂Ω−1ℜ̂ and 

𝜇−1ῠ , 𝜎−1ῤ ∈ 𝒩ℒ(Ω−1ℜ̂) where ᶆ ∈ ℳ̂ℜ̂, ῠ, ῤ ∈ 𝒩ℒ(ℜ̂). 

Since Ω is included in the centre of ℜ̂, we have 𝑂 =
(ϥ−1ᶆ)(𝜇−1ῠ)(𝜎−1ῤ) = (𝓈̂𝓉̂𝓇̂)−1ᶆῠῤ and so 𝑂 = ᶆῠῤ. By 
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assumption ᶆῤճ(ῠ) = 𝑂. Therefore (ϥ−1ᶆ)(𝜎−1ῤ)ճ(𝜇−1ῠ) =

(ϥ−1ᶆ)(𝜎−1ῤ)(𝜇−1ճ(ῠ)) = 𝑂. Hence Ω−1ℳ̂Ω−1ℜ̂ is a R-ճ-

𝒩ℒ𝒮-module.      ∎ 

 

Corollary 5.18 (1) For a ring ℜ̂, ℜ̂[ͷ] is R-ճ-𝒩ℒ𝒮-ring if and 

only if is ℜ̂[ͷ; ͷ−1] a R-ճ-𝒩ℒ𝒮-ring. 

(2) For a ℜ̂-module ℳ̂ℜ̂, ℳ̂[ͷ]ℜ̂[𝓍] is R-ճ-𝒩ℒ𝒮-module if and 

only if ℳ̂[𝓍, 𝓍−1]ℜ̂[𝓍,𝓍
−1] is a R-ճ-𝒩ℒ𝒮-module. 

Proof (1). Consider Ω = {1, ͷ, ͷ2, ⋯ }. Then clearly Ω is a 

multiplicatively closed subset of ℜ̂[ͷ]. Since ℜ̂[ͷ; ͷ−1] =

Ω−1ℜ̂[ͷ], it follows that ℜ̂[ͷ; ͷ−1] is right  ճ-𝒩ℒ𝒮-ring by 

proposition 5.17(1). 

(2) It is evident from proposition 5.17(2). if Ω = {1, ͷ, ͷ2, … }. 

Then Ω is a multiplicatively closed subset of ℜ̂[ͷ] consisting of 

regular central element of ℜ̂[ͷ]. Since Ω−1ℳ̂[ͷ]ℜ̂[ͷ] =

ℳ̂[ͷ, ͷ−1]ℜ̂[ͷ,ͷ
−1] and Ω−1ℜ̂[ͷ] = ℜ̂[ͷ; ͷ−1].                                ∎ 

 

Ǭ(ℜ̂) is a classical right quotient for ℜ̂ if every regular element 

of ℜ̂ is invertible in Ǭ and every element of Ǭ  can be written in 

the form a𝑏−1  with 𝑎, 𝑏 ∈ ℜ̂ and 𝑏 regular. 

        A right Ore ring is a ring ℜ̂ where, for any 𝑎, 𝑏 ∈ ℜ̂ with 𝑏 

being regular, ∃𝑎1, 𝑏1 ∈ ℜ̂ with 𝑏1 also regular, such that 𝑎𝑏1 =

𝑏𝑎1. It is well known that ℜ̂ is a right ore ring if and only if  its 

classical right quotient ring Ǭ(ℜ̂) exists. Now, suppose ℜ̂ is a 

ring with the classical right quotient ring Ǭ(ℜ̂). Then any 

automorphism ճ of ℜ̂ extends to Ǭ(ℜ̂) by defining its action on 

fractions as ճ(𝑎𝑏−1) = ճ(𝑎)(ճ(𝑏))−1 for all 𝑎, 𝑏 ∈ ℜ̂, provided 

that ճ(𝑏) remains regular whenever 𝑏 is a regular element in ℜ̂. 
 

Theorem 5.19 Consider ℜ̂ is Ore ring with an endo ճ of ℜ̂ and 

Ǭ(ℜ̂) 𝑖𝑠 the classical right quotient ring 𝒩ℐ ring of ℜ̂. Then  

(1) ℜ̂ is a R-ճ-𝒩ℒ𝒮-ring if and only if Ǭ(ℜ̂)is a R-ճ-𝒩ℒ𝒮-ring. 

(2)  ℳ̂ℜ̂ is a R-ճ-𝒩ℒ𝒮-module if and only if Ǭ(ℳ̂) is a R-ճ-

𝒩ℒ𝒮-module. 

Proof. (1) Consider ℜ̂ is a R-ճ-𝒩ℒ𝒮-ring. Assume 𝐴 = 𝑎𝜇−1 ∈

Ǭ(ℜ̂) and 𝐵 = 𝑏𝑣−1, 𝐶 = 𝑐𝜔−1 ∈ 𝒩ℒ(Ǭ(ℜ̂))with 𝐴𝐵𝐶 =

𝑎𝜇−1 𝑏𝑣−1𝑐𝜔−1 where 𝑎, 𝜇 ∈ ℜ̂ and 𝑏, 𝑣, 𝑐, 𝜔 ∈ 𝒩ℒ(ℜ̂) with 

𝜇, 𝑣, 𝜔 regular. Let Ǭ(ℜ̂)be an 𝒩ℐ ring Then ℜ̂ is 𝒩ℐ and so 

𝑏, 𝑐 ∈ 𝒩ℒ(ℜ̂). ∃ 𝑐1, 𝑏1 ∈ ℜ̂ with 𝑏1 regular such that 𝑏𝑐1 = 𝑐𝑏1 

and 𝑐1𝑏1
−1 = 𝑏−1𝑐.  Now ∃ 𝜇1, 𝑏1 ∈ ℜ̂ with 𝜇1 regular such that 

𝑏𝜇1 = 𝜇𝑏1 , 𝜇
−1𝑏 = 𝑏1𝜇1

−1. Hence 𝐴𝐵𝐶 =   𝑎𝜇−1𝑏𝑣−1𝑐𝜔−1 =

 𝑎𝑏1𝜇1
−1𝑣−1𝑐𝜔−1 = 𝑂. Let 𝐼 and 𝐽 be the ideals in Ǭ(ℜ̂), 

generated by 𝐵 and 𝐶 within 𝒩ℒ(Ǭ(ℜ̂)), respectively. Then each 

of 𝐼 and 𝐽 are 𝒩ℒ with 𝑏 = 𝐵𝑣 ∈ 𝐼, 𝑐 = 𝐶𝜔 ∈ 𝐽,  Since ℜ̂ is right 

Ore, for 𝑐, 𝑣 ∈ 𝒩ℒ(ℜ̂) ∃ 𝑐1, 𝑣1 ∈ 𝒩
ℒ(ℜ̂)  with 𝑣1 regular such 

that 𝑐𝑣1 = 𝑣𝑐1 , 𝑣
−1𝑐 = 𝑐1𝑣1

−1 .Here note that 𝑐1 ∈ 𝒩
ℒ(ℜ̂). 

Indeed, 𝑣𝑐1 = 𝑐𝑣1 ∈ 𝐽 and so 𝑐1 = 𝑣
−1(𝑣𝑐1) ∈ 𝐽. So 𝐴𝐵𝐶 =

𝑎𝑏1𝜇1
−1𝑐1𝑣1

−1 𝜔−1 = 𝑂.  

Similarly, also there exists 𝑐2 ∈ 𝒩
ℒ(ℜ̂) and 𝜇2 ∈ ℜ̂ with 𝜇2 

regular such that 𝑐1𝜇2 = 𝜇1𝑐2, 𝜇1
−1𝑐1 = 𝑐2𝜇2

−1, Thus, we obtain 

that 𝐴𝐵𝐶 = 𝑎𝑏1𝑐2 𝜇2
−1𝑣1

−1𝜔−1 = 𝑂 and hence 𝑎𝑏1𝑐2 = 𝑂. This 

implies 𝑂 = 𝑎𝑏1𝑐2𝜇 = 𝑎𝜇𝑏1𝑐2 = 𝑎𝑏𝜇1𝑐2 = 𝑎𝑏𝑐2𝜇1, and 𝑂 =
𝑎𝑏𝑐2 = 𝑎𝑏𝑐2𝜇1 = 𝑎𝑏𝜇1𝑐2 = 𝑎𝑏𝑐1𝜇1. So we have 𝑂 = 𝑎𝑏𝑐1 =

𝑎𝑏𝑐1𝑣 = 𝑎𝑏𝑣𝑐1 = 𝑎𝑏𝑐𝑣. It follows that 𝑎𝑐ճ(𝑏) = 𝑂, since ℜ̂ is 

a R-ճ-𝒩ℒ𝒮-ring. 

Similar, there exists 𝑐3, 𝑏2, 𝜔2, 𝑏4 ∈ 𝒩
ℒ(ℜ̂) and 𝜇3, 𝜇4 ∈ ℜ̂ with 

𝜇3, 𝜔2, 𝜇4 regular such that 𝑐𝜇3 = 𝜇𝑐3 , 𝜇
−1𝑐 = 𝑐3𝜇3

−1 , 𝑏𝜔2 =
𝜔𝑏2, 𝜔

−1𝑏 = 𝑏2𝜔2
−1, 𝑏2𝜇4 = 𝜇3𝑏4, and, 𝐴𝐶ճ(𝐵) =

𝑎𝑐3𝜇3
−1𝜔−1ճ(𝑏)ճ(𝑣)−1 = 𝑎𝑐3𝜇3

−1𝑏2𝜔2
−1ճ(𝑣)−1 =

𝑎𝑐3𝑏4𝜇4
−1𝜔2

−1ճ(𝑣)−1. Form 𝑎𝑐ճ(𝑏) = 𝑂. We have 𝑂 =
𝑎𝑐ճ(𝑏)𝜔2 = 𝑎𝑐𝜔𝑏2 = 𝑎𝑐𝑏2𝜔, and hence 𝑂 = 𝑎𝑐𝑏2 =
𝑎𝑐𝑏2𝜇4 = 𝑎𝑐𝜇3𝑏4 = 𝑎𝑐𝑏4𝜇3. It follows that,  

𝑂 = 𝑎𝑐𝑏4 = 𝑎𝑐𝑏4𝜇3 = 𝑎𝑐𝜇3𝑏4 = 𝑎𝜇𝑐3𝑏4 = 𝑎𝑐3𝑏4𝜇, and hence 

𝑎𝑐3𝑏4 = 𝑂. Now we have 𝐴𝐶ճ(𝐵) = 𝑂, therefore Ǭ(ℜ̂) is a R-

ճ-𝒩ℒ𝒮-ring.                                                                                                

(2) Assume that ℳ̂ℜ̂ is a R-ճ-𝒩ℒ𝒮-module. Let 𝐴 = 𝑎𝜇−1 ∈

Ǭ(ℳ̂) and 𝐵 = 𝑏𝑣−1, 𝐶 = 𝑐𝜔−1 ∈ 𝒩ℒ(Ǭ(ℜ̂)) with 𝐴𝐵𝐶 =

𝑎𝜇−1 𝑏𝑣−1𝑐𝜔−1 where 𝑎, 𝜇 ∈ ℳ̂ℜ̂ and 𝑏, 𝑣, 𝑐, 𝜔 ∈ 𝒩ℒ(ℜ̂) with 

𝜇, 𝑣, 𝜔 regular. Let Ǭ(ℜ̂) be an 𝒩ℐ ring Then ℜ̂ is 𝒩ℐ and so 

𝑏, 𝑐 ∈ 𝒩ℒ(ℜ̂). then ∃ 𝑐1, 𝑏1 ∈ ℜ̂ with 𝑏1 regular such that 𝑏𝑐1 =

𝑐𝑏1 and 𝑐1𝑏1
−1 = 𝑏−1𝑐.  Now ∃ 𝜇1 ∈ ℳ̂

ℜ̂, 𝑏1 ∈ ℜ̂ with 𝜇1 regular 

such that 𝑏𝜇1 = 𝜇𝑏1 , 𝜇
−1𝑏 = 𝑏1𝜇1

−1. Hence 𝐴𝐵𝐶 =
  𝑎𝜇−1𝑏𝑣−1𝑐𝜔−1 =  𝑎𝑏1𝜇1

−1𝑣−1𝑐𝜔−1 = 𝑂.  Let 𝐼 and 𝐽 be the 

ideals in Ǭ(ℜ̂), generated by 𝐵 and 𝐶 within 𝒩ℒ(Ǭ(ℜ̂)), 
respectively. Then each of 𝐼 and 𝐽 are 𝒩ℒ with 𝑏 = 𝐵𝑣 ∈ 𝐼 and 

𝑐 = 𝐶𝜔 ∈ 𝐽,  Since ℜ̂ is right Ore, for 𝑐, 𝑣 ∈ 𝒩ℒ(ℜ̂) ∃ 𝑐1, 𝑣1 ∈

𝒩ℒ(ℜ̂)  with 𝑣1 regular such that 𝑐𝑣1 = 𝑣𝑐1 , 𝑣
−1𝑐 = 𝑐1𝑣1

−1 

.Here note that 𝑐1 ∈ 𝒩
ℒ(ℜ̂) . Indeed, 𝑣𝑐1 = 𝑐𝑣1 ∈ 𝐽 and so 𝑐1 =

𝑣−1(𝑣𝑐1) ∈ 𝐽. So 𝐴𝐵𝐶 = 𝑎𝑏1𝜇1
−1𝑐1𝑣1

−1 𝜔−1 = 𝑂.  

Similarly, also ∃ 𝑐2 ∈ 𝒩
ℒ(ℜ̂) and 𝜇2 ∈ ℳ̂

ℜ̂ with 𝜇2 regular 

such that 𝑐1𝜇2 = 𝜇1𝑐2, 𝜇1
−1𝑐1 = 𝑐2𝜇2

−1, Thus, we obtain that 

𝐴𝐵𝐶 = 𝑎𝑏1𝑐2 𝜇2
−1𝑣1

−1𝜔−1 = 𝑂 and hence 𝑎𝑏1𝑐2 = 𝑂. This 

implies 𝑂 = 𝑎𝑏1𝑐2𝜇 = 𝑎𝜇𝑏1𝑐2 = 𝑎𝑏𝜇1𝑐2 = 𝑎𝑏𝑐2𝜇1, and 𝑂 =
𝑎𝑏𝑐2 = 𝑎𝑏𝑐2𝜇1 = 𝑎𝑏𝜇1𝑐2 = 𝑎𝑏𝑐1𝜇1. So we have 𝑂 = 𝑎𝑏𝑐1 =

𝑎𝑏𝑐1𝑣 = 𝑎𝑏𝑣𝑐1 = 𝑎𝑏𝑐𝑣. It follows that 𝑎𝑐ճ(𝑏) = 𝑂, since ℳ̂ℜ̂ 

is a R-ճ-𝒩ℒ𝒮-module. 

        Similar, ∃𝑐3, 𝑏2, 𝜔2, 𝑏4 ∈ 𝒩
ℒ(ℜ̂) and 𝜇3, 𝜇4 ∈ ℳ̂

ℜ̂ with 

𝜇3, 𝜔2, 𝜇4 regular such that 𝑐𝜇3 = 𝜇𝑐3 , 𝜇
−1𝑐 = 𝑐3𝜇3

−1 , 𝑏𝜔2 =
𝜔𝑏2, 𝜔

−1𝑏 = 𝑏2𝜔2
−1, 𝑏2𝜇4 = 𝜇3𝑏4, and, 𝐴𝐶ճ(𝐵) =

𝑎𝑐3𝜇3
−1𝜔−1ճ(𝑏)ճ(𝑣)−1 = 𝑎𝑐3𝜇3

−1𝑏2𝜔2
−1ճ(𝑣)−1 =

𝑎𝑐3𝑏4𝜇4
−1𝜔2

−1ճ(𝑣)−1. Form 𝑎𝑐ճ(𝑏) = 𝑂. We have 𝑂 =
𝑎𝑐ճ(𝑏)𝜔2 = 𝑎𝑐𝜔𝑏2 = 𝑎𝑐𝑏2𝜔, and hence 𝑂 = 𝑎𝑐𝑏2 =
𝑎𝑐𝑏2𝜇4 = 𝑎𝑐𝜇3𝑏4 = 𝑎𝑐𝑏4𝜇3. It follows that, 𝑂 = 𝑎𝑐𝑏4 =
𝑎𝑐𝑏4𝜇3 = 𝑎𝑐𝜇3𝑏4 = 𝑎𝜇𝑐3𝑏4 = 𝑎𝑐3𝑏4𝜇, and hence 𝑎𝑐3𝑏4 = 𝑂. 

Now we have 𝐴𝐶ճ(𝐵) = 𝑂, therefore Ǭ(ℳ̂) is a R-ճ-𝒩ℒ𝒮-

module.             ∎ 

CONCLUSION 

        This article introduced the concept right ճ -𝒩ℒ symmetric 

rings and then extends it to right ճ-𝒩ℒ symmetric modules, 

which serve as generalizations of both ճ-symmetric rings and ճ-

symmetric modules. Several results were founded as the 

characterization of ճ-𝒩ℒ-symmetric rings in section 2, also for 

ճ-𝒩ℒ-symmetric modules in section 5. In addition to that we 

investigated the concept of an ճ-𝒩ℒ-symmetric rings on some of 

ring extensions and localizations in section 3 and 4, also for ճ-

𝒩ℒ-symmetric modules in section. As a proposal for a future 

work, the following questions are presented; 

 1. Are all right ճ-𝒩ℒ-symmetric rings and ճ-𝒩ℒ-symmetric 

modules necessarily non-commutative?  

2. Is there a relationship between ճ-𝒩ℒ-symmetric module and 

ճ-semi-commutative? 

3.Are there a class of modules which are 𝒩ℒ-symmetric over 

their endomorphism? 
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