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ABSTRACT: 

Human errors during software development lead to many defects, which emphasizes the importance of early detection and 

minimization. However, existing approaches often fall short in delivering accurate, scalable, and generalizable predictions 

due to challenges such as class imbalance, feature extraction limitations, and computational inefficiencies. This study 

proposes a hybrid method using a Convolutional Neural Network (CNNs) + Long Short-Term Memory (LSTM) for feature 

extraction, addressing class imbalance with Adaptive Synthetic Sampling (ADASYN) and subsequent training using 

Extreme Gradient Boosting (XGboost), to predict software defects. The proposed approach was evaluated on five publicly 

available datasets (CM1, MC1, KC1, PC1, and PC4) and compared with state-of-the-art (SOTA) models. Experimental 

results demonstrated that the hybrid model significantly outperforms traditional XGBoost-based models in terms of recall, 

F1-score, and area under the receiver operating characteristic curve (AUC), addressing the shortcomings of existing 

methods. Results demonstrate the effectiveness of the proposed method, with notable performance metrics achieved across 

all datasets. For example, on the MC1 dataset, the model attained an accuracy of 0.9980, a precision of 0.9971, a recall of 

0.9988, an F1-score of 0.9980, and an AUC-ROC of 0.9999. On the KC1 dataset, it achieved an accuracy of 0.9344, a 

precision of 0.9265, a recall of 0.9375, an F1-score of 0.9320, and an AUC-ROC of 0.9839. The model achieves better 

performance than traditional machine learning methods and separate deep learning models, especially in the areas of recall 

and AUC-ROC. This research presents a robust solution through hybrid approaches that address class imbalance and 

maintain high predictive accuracy for software development process tasks, offering insights into the trade-offs between 

machine learning and deep learning methods. 

KEYWORDS: Software Defect Prediction (SDP), CNN, LSTM, Machine learning, Deep Learning, Hybrid Technique, 

XGboost 

1. INTRODUCTION 

        Software defects represent faults in computer programs that 

may lead to system failures, data loss, security vulnerabilities, 

and financial losses (Elentukh, 2023; Shafiq et al., 2023). While 

the terms 'defect', 'bug', and 'error' are sometimes used 

interchangeably, a defect generally refers to an imperfection in 

code functionality that may or may not result in a bug, which is 

an observable deviation from expected behavior during 

execution. An error, on the other hand, typically refers to a human 

mistake made during development that leads to defects in the 

code. 

        Defects not only affect runtime performance and reliability 

but also compromise key software design principles such as 
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modularity and separation of concerns. Faulty modules are less 

likely to be reused due to their instability or unclear functionality, 

which reduces maintainability and increases technical debt. In 

this study, the static code features extracted from the datasets 

(e.g., cyclomatic complexity, coupling, cohesion) reflect 

structural weaknesses that are closely tied to defect proneness 

and negatively influence reusability and modular design. 

        According to research by Krasner (2021), Mahmoud et al. 

(2024), and Mehmood et al. (2023), software defects account for 

half of project expenses, while also causing system breakdowns 

and security risks, with additional negative impacts on user 

satisfaction. Despite the advancement of machine learning, the 

current approaches to software defect prediction still struggle 

with issues such as the existence of imbalanced datasets (Saidani 
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et al., 2022; Giray et al, 2023), difficulties in comprehending 

intricate code forms (Daneshdoost & Feyzi, 2023; Wan et al., 

2024), poor project generalization (Nevendra & Singh, 2022), 

and insufficient explanation of the prediction (AL-Hadidi & 

Hasoon, 2024). The comprehension of software defects from a 

theoretical perspective has changed from mere bug tracking to 

more advanced predictive analytics, where scholars have sought 

to develop defect explanation frameworks and models that 

capture a number of attributes (Vogel-Heuser et al., 2015). There 

has been a shift from conventional statistical methods to more 

advanced ones based on machine learning (ML) in software 

defect prediction (SDP), with the use of algorithms and deep 

learning being more effective in dealing with complex code 

structures. (Kumar et al., 2023; Pachouly et al., 2022). 

Understanding the relationship between software complexity and 

the likelihood of defects occurring is a prominent theoretical 

perspective. Numerous measures have been proposed to quantify 

the complexity of software systems and their correlation with 

error occurrence, including object-oriented design metrics, 

Halstead's software science metrics, and McCabe's cyclomatic 

complexity (Kumar et al., 2023). Furthermore, external process-

related elements, including a change's history, a developer's 

experience, and the methodologies employed in the development, 

have been deemed important in forecasting software defects 

(Pachouly et al., 2022). There remain several research gaps and 

emerging trends; however, the advancement of software defect 

prediction methodologies has not kept pace with (Olaleye et al., 

2023). Although ML and deep learning (DL) models have 

improved prediction accuracy, their practical application is still 

hindered by the models’ inherent complexity and the resulting 

lack of understanding about them (Patil et al., 2024). Many 

current models show robust performance on particular datasets, 

but these models often fail to generalize across different projects 

and domains (Alzeyani & Szabó, 2024). Meeting the temporal 

dimensions of software development poses another critical 

challenge owing to the changes in software characteristics and 

defect patterns over time (Kaliraj & Thomas, 2024). The latest 

trend reported by Khan and Masum (2024) is the incorporation 

of software defect prediction tools within the continuous 

integration and deployment pipelines for the purpose of real-time 

feedback and proactive defect mitigation. This new direction of 

research in software defect prediction prepares the ground for 

further efforts that bound these limitations of accuracy, 

generalizability, and practicability of predictive software system 

defects for automation. Likewise, the integration of deep learning 

technologies into algorithms created for predicting software bugs 

has opened wider opportunities. Convolutional CNNs and 

LSTMs are outstanding examples of modern applicative deep 

learning models that have achieved significant breakthroughs in 

time series prediction, image recognition, and natural language 

processing (Goodfellow et al., 2016). Because these models 

automatically capture the structure of data as a hierarchy of 

features, they are particularly powerful for quite complex tasks 

where input variables interact with each other in many ways. 

Even with their unparalleled advantages, deep learning models 

often require substantial computational power and large amounts 

of training data, which are not always readily available in 

software defect prediction scenarios (Wang et al., 2022). To 

achieve the objectives, experimental evaluations were conducted 

using multiple datasets commonly referenced in the field, 

including CM1 and MC1, as well as other datasets such as KC1, 

PC4, and PC1. The models’ performances were assessed using 

performance metrics. A significant contribution of this study is 

the development of a hybrid framework that combines the 

strengths of deep learning for capturing complex spatial and 

temporal dependencies in software metrics with the efficiency 

and robustness of XGboost for classification, particularly in 

imbalanced datasets. The proposed method demonstrates 

superior performance compared to traditional ML models and 

standalone DL architectures, particularly in terms of recall and 

AUC-ROC scores. These metrics are especially important in 

defect prediction, where identifying all defective modules (high 

recall) and achieving strong class separation (high AUC) are 

critical for practical deployment. The rest of the paper is 

structured: Related works are covered in Section 2. In contrast, 

section 3 materials and methods offer a thorough explanation of 

the approach, covering feature extraction, dataset preparation, 

data balancing, model assessment, and experimental setup. The 

experimental results are shown in Section 4, along with a 

discussion of the findings in relation to previous research and 

state-of-the-art models. The work is finally concluded, and future 

research concerns are outlined in Section 5. 

2. REVIEW OF RELATED WORK 

        Software engineering research has placed much emphasis 

on predicting software problems, with many papers examining 

different methods to increase forecast accuracy and 

dependability. This section looks at earlier research that has 

significantly advanced the field, with a focus on traditional ML 

methodology, deep learning techniques, and hybrid approaches. 

The study by (Ali et al., 2024) highlighted the importance of 

software defect prediction (SDP) in enhancing software quality 

and reducing testing costs by identifying and prioritizing 

defective modules for testing. Preprocessing (splitting, cleaning, 

and normalization), classification using four different supervised 

machine learning classifiers, ensemble modelling using a voting 

ensemble strategy, and data collection from seven historical 

defect datasets are all included in the methodology. The results 

demonstrated that the VESDP model outperformed twenty 

cutting-edge defect prediction methods with impressive accuracy 

of 86.87%, 79.12%, 68.42%, 89.33%, 92.16%, 87.97%, and 

87.14% across the CM1, JM1, MC2, MW1, PC1, PC3, and PC4 

datasets, respectively. The study also lacked detailed results on 

the computational complexity or scalability of the VESDP model, 

which are critical for large-scale projects, and does not 

extensively discuss the impact of data quality, including noise or 

missing values, on model performance. A modified Random 

Forest-based technique for software fault prediction was 

implemented using the JM1 dataset, which comprises various 

software metrics indicating the presence or no presence of a 

defect in a module (Kaliraj & Thomas, 2024). The study 

examined issues such as feature selection, imbalanced datasets, 

model overfitting, data scarcity, and interpretability challenges in 

software error prediction. Random Forest was used for feature 

selection, SMOTE was used to solve class imbalance, 

preprocessing was used to manage null values and data problems, 

and the Random Forest classifier was used to handle high-

dimensional datasets and reduce overfitting. However, the 

approach's generalizability to other datasets (AL-Hadidi & 

Hasoon, 2024) Alternatively, contexts are limited by their 

concentration on a single dataset, and they ignore potential 
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drawbacks such as computational cost, memory needs, or the 

demand for intensive hyperparameter adjustment. 

        A study by AL-Hadidi & Hasoon, (2024) Software defect 

prediction was implemented using XGboost with hyperparameter 

optimisation for their experimental analysis. The research study 

sought to enhance prediction accuracy and performance by 

applying ensemble learning methods together with optimization 

techniques. The research leverages advanced techniques such as 

XGboost and grid search with cross-validation for 

hyperparameter tuning while also addressing dataset imbalance 

using oversampling. The researchers employed several NASA 

MDP datasets to expand the applicability of their findings. The 

optimization process resulted in a notable performance increase 

for the model, with accuracy improving from 0.888 to 0.938 for 

the CM1 dataset and from 0.743 to 0.795 for the KC1 dataset.   

The study suffers from limitations, which include insufficient 

exploration of various data balancing strategies, along with an 

exclusive focus on XGboost without testing other advanced 

methods, and a lack of detailed analysis on the computational 

costs of hyperparameter adjustments. 

        Alkaberi & Assiri, (2024) focused on utilizing CNN and 

multilayer perceptron (MLP) to detect software errors in order to 

improve software quality. The data was pre-processed using 

SMOTEND oversampling, log transformation, and 

standardization, and they employed 12 datasets with 20 object-

oriented metrics from the PROMISE repository. Kendall’s 

correlation coefficient and mean squared error (MSE) were the 

evaluation metrics utilized. Before applying SMOTEND, CNN 

achieved MSE=1.316 and Kendall=0.162 on test data, while 

MLP achieved MSE=1.73 and Kendall=0.183. After addressing 

data imbalance with SMOTEND, performance improved 

significantly CNN achieved MSE=0.218 and Kendall=0.363, 

while MLP performed better with MSE=0.195 and 

Kendall=0.416 on test data. These were compared to baseline 

machine learning models: decision tree regression (DTR) 

achieved MSE=0.17 and Kendall=0.486, while support vector 

regression (SVR) showed poorer performance with MSE=0.257 

and Kendall=0.276 on balanced test data. The study validated the 

approach, but limitations include potential external validity 

constraints and a lack of ablation studies. Additional metrics, 

such as model complexity and inference time, could enhance the 

evaluation. Ponnala & Reddy, (2023) using method-level features 

from an open-source Java e-commerce project, developed an 

ensemble model for software defect prediction. The study 

combined random forest, SVM, and LightGBM algorithms using 

logistic stacking to improve prediction accuracy. Key strengths 

include the use of fine-grained method-level metrics (75 features 

reduced to 25 via PCA) and the ensemble approach, which 

outperformed individual models with an ROC AUC of 0.853 and 

81% accuracy. However, limitations include analysis of only one 

project, a lack of comparison with state-of-the-art ensemble 

techniques, and insufficient discussion of practical implications. 

The study demonstrated the potential of ensemble methods and 

method-level features for defect prediction, but further validation 

across diverse projects and exploration of feature importance 

would enhance its impact. Future work could focus on model 

interpretability and integration into development processes. 

Maddipati & Srinivas, (2021) reported a way to improve software 

fault prediction by tackling the issues of excessive dimensionality 

and class imbalance. The research employed dimensionality 

reduction through a statistical technique, that is to say, utilizing a 

method to simplify complex data structures, combining this with 

an ensemble approach paired with an adaptive fuzzy system. 

When compared to current approaches, the methodology 

increased the AUC by 15%, indicating greater predictive 

accuracy. While the results were promising, demonstrating the 

model’s effectiveness in NASA datasets, the study’s reliance on 

specific datasets limits its generalizability. Additionally, it did not 

explore the impact of varying software projects or defect 

densities on performance. The study offered a significant 

advancement in balancing accuracy and cost-effectiveness in 

SDP, though further research is needed for broader applicability. 

Olorunshola et al., (2020) evaluated various machine learning 

classification algorithms to identify the best performer in 

predicting software defects, emphasizing the importance of 

minimizing misclassification to avoid wasted developer effort. 

Using WEKA version 3.8.3 and the JM1 dataset, the study 

assessed twelve algorithms from six categories. Standard 

Performance metrics included accuracy, false positive rate, 

Kappa statistic, RMSE, among others, with a primary assessment 

through 10-fold cross-validation. The study found that the 

Random Forest algorithm outperformed most others, while the 

Bayes Net classifier excelled in terms of the false positive rate, 

achieving the lowest FP-rate of 0.391. A comprehensive 

evaluation of various classification algorithms, including less 

commonly explored ones, is a notable strength. However, the 

study's drawback includes its focus on a single dataset, raising 

concerns about the generalizability of the results. The rationale 

for selecting specific algorithms and metrics was not clearly 

explained, and the study lacked detailed analysis beyond 

presenting numerical performance metrics. Recent literature in 

software defect prediction highlights several critical gaps in 

current methodologies. While studies have advanced predictive 

modelling capabilities, they often employ single-algorithm 

solutions that fail to address the multifaceted challenges in defect 

prediction comprehensively (AL-Hadidi & Hasoon, 2024; Wang 

et al., 2022). Key limitations include inadequate handling of class 

imbalance, computational inefficiency, and poor project 

generalizability (Jin, 2021; Khalid et al., 2023). The current state 

of software defect prediction still clearly lacks a fully 

comprehensive approach that might actually bring together many 

ensemble techniques, various optimization methods, and some 

data balancing procedures. Much of the existing research has just 

focused on individual components rather than addressing these 

elements in a more unified way, which has eventually led to many 

disconnected solutions that currently fail to fully maximize both 

predictive capabilities and real-world implementation (Shen & 

Chen, 2020; Tameswar et al., 2022). Additionally, to effectively 

balance accuracy, computational efficiency, and model 

generalization in SDP applications, the field clearly needs to 

develop a more holistic methodology 

3. MATERIALS AND METHODS 

        The current section explains how the study model was build 

using a hybrid-type approach that essentially combines both deep 

learning feature extraction with the XGboost algorithm to help 

with Software Defect Prediction. This particular approach uses a 

hybrid CNN-LSTM model to fully analyze many numerical 

software metrics Dataset. The CNNs identify some local patterns, 

while the LSTMs still process much of the sequential data 
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relationships. Additionally, the extracted features are eventually 

fed into XGboost for training to help with defect classification. 

Dataset Description and Preprocessing: 

        The study utilized five of the most established benchmark 

datasets (which include CM1, KC1, PC1, PC4, and MC1) that 

contain many static code measurements like cyclomatic 

complexity, some Halstead metrics, and various code line counts. 

These particular datasets, which are still widely used in much of 

the defect prediction research, include both the metric attributes 

and also the defect labels for each of the software modules (AL-

Hadidi & Hasoon, 2024; Ali et al., 2024; Menzies et al., 2015; 

Shepperd et al., 2018). 

Table 1: Dataset Description 

Dataset Type 
No of 

features 

Programming 

Language 
Instances 

Non-

Defective 
Defective 

CM1 Procedural 22 C 327 285 42 

MC1 
Object 

Oriented 
39 C++ 8737 8669 68 

PC1 Procedural 22 C 735 674 61 

PC4 Procedural 37 C 1379 1201 178 

KC1 
Object 

Oriented 
22 C++ 2095 1770 325 

 

The SDP model uses various data preprocessing steps to fully 

enhance both data quality and model effectiveness. Before 

feeding the features into the CNN-LSTM model, the following 

preprocessing steps were applied: 

        The process begins by importing the dataset and converting 

any missing values marked with "?" into the NaN format for 

much better processing. To handle these missing values, the 

model uses mean substitution, which helps to maintain more data 

consistency (Ghotra et al., 2017). Additionally, all features are 

converted to numeric format, and the target variable undergoes 

binary encoding (0 and 1) using LabelEncoder, with defective 1 

and non-defective 0, which aligns with established classification 

methods (Farabet et al., 2013). Further, feature scaling is 

implemented through StandardScaler, which basically 

normalizes the numerical features to a mean of 0 and standard 

deviation of 1, because this prevents any single feature from 

becoming too dominant in the model, hence improving model 

convergence (Ahmed et al., 2023). Due to the dataset imbalance 

between defective and non-defective instances, the Adaptive 

Synthetic Sampling technique creates synthetic minority class 

samples to achieve a much better balance. This resampling 

approach helps to enhance both the model's learning capabilities 

and detection accuracy (Jude & Uddin, 2024). Moreover, the 

process includes verification of balanced class distribution after 

resampling by comparing the defect and non-defect instances. 

These comprehensive preprocessing steps, which include 

missing value treatment, categorical encoding, feature scaling, 

and class balance correction, are clearly vital for achieving 

optimal model performance in defect prediction tasks (Goyal, 

2022; Hussein et al., 2020; Jude & Uddin, 2024). The dataset 

description after applying ADAYSN is reported in Table 2. 

 

Table 2: Data Description After Applying ADAYSN 

Dataset Instances Non–Defective Defective 

CM1 561 285 276 

MC1 17340 8669 8671 

PC1 1345 674 671 

PC4 2443 1201 1242 

KC1 3501 1770 1731 

Addressing Class Imbalance: 

        The issue of class imbalance commonly seen in software 

defect datasets was handled using the ADASYN approach, which 

created artificial samples for underrepresented categories. This 

improved prediction performance overall while enhancing the 

capability to learn from examples that are not well-represented 

(Hussein et al., 2020). The ADASYN method adapts to generate 

synthetic data points for minority classes (Hussein et al., 2020). 

The number of artificial samples generated depends on how 

difficult it is to classify specific minority cases, meaning harder 

cases get more synthetic examples. Figure 2 demonstrates the 

preprocessing approach applied to the dataset. Algorithm 1 

(Hussein et al., 2020) outlines the process: to put it simply, the 

method evaluates data distribution patterns first, then calculates 

neighborhood relationships between samples, and finally 

produces new instances proportionally based on the complexity 

of classification tasks. 
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Algorithm 1 

Step 1: Defining Classification Complexity: 

The classification challenge for underrepresented data points is 

measured by examining the proportion of surrounding examples 

that belong to dominant categories compared to all nearby 

instances. In equation 1, let 𝑟𝑖 represent this ratio: 

ri

=
Number of majority class neighbors of xi

Total number of neighbors of xi
                           (1) 

Where: 

𝑟𝑖 Is the ratio, for instance 𝑥𝑖. 

The number of neighbors is typically determined using k-nearest 

neighbors (k-NN). 

Step 2: Compute the Total Number of Synthetic Samples to 

Generate: 

The total number of synthetic samples that need to be created for 

the minority class is 𝑁syn Equation 2 is used to calculate this. 

Nsyn = Nmaj − Nmin                       (2) 

Where: 

𝑁maj: The majority class’s number of instances. 

𝑁min: The minority class’s total number of instances. 

Step 3: Determine the Number of Synthetic Samples for Each 

Minority Instance: 

The quantity of synthetic samples 𝐺𝑖 t to be produced for each 

minority case 𝑥𝑖 is directly proportional to its difficulty ratio 𝑟𝑖 

as indicated in equation 3. 

𝐺𝑖 = ⌊𝑁syn ⋅
⌊𝑟𝑖⌋

⌊∑ 𝑟𝑗
𝑁min

𝑗=1 ⌋
                         (3) 

Where: 

𝐺𝑖: “Number of synthetic samples for instance 𝑥𝑖” . 

𝑁syn: Total number of synthetic samples needed to balance the 

dataset. 

𝑟𝑖: Difficulty ratio of the minority instance 𝑥𝑖, which represents 

the proportion of majority class neighbors among its k-nearest 

neighbors. 

∑ 𝑟𝑗
𝑁min

𝑗=1 : Sum of the difficulty ratios for all instances in the 

minority class. 

𝑟𝑖

∑ 𝑟𝑗
𝑁min
𝑗=1

: Normalized difficulty ratio of 𝑥𝑖, indicating the relative 

difficulty of learning 𝑥𝑖 compared to other minority instances. 

Step 4: Generate Synthetic Samples: 

Create  𝐺𝑖 synthetic samples for every minority instance 𝑥𝑖, by 

interpolating with its closest neighbors. Equation 4 creates a 

synthetic sample. 

xsyn = xi + λ ⋅ (xz − xi)                        (4) 

Where: 

xsyn : The newly generated synthetic sample for the minority 

class. 

xi: The original minority instance for which synthetic samples are 

being generated. 

𝑥𝑧: A randomly selected neighbor of xi from its k-nearest 

neighbors in the minority class. 

𝜆: A random number drawn from the uniform distribution is 

called Lambda. The synthetic sample’s location along the line 

segment between xi  and xz is determined by this parameter. By 

varying 𝜆, the synthetic sample is interpolated to a location 

between xi and xz, ensuring diversity in the generated data. 

Hybrid CNN-LSTM Feature Extraction: 

For feature extraction, the hybrid approach makes use of CNN 

and LSTM’s advantages. To extract spatial information from the 

input data, a CNN is used. Equation 5 (Goodfellow et al., 2016) 

Illustrates the general mathematical formulation for a single 

convolutional layer: 

𝑌 = 𝑓(𝑊 ∗ 𝑋 + 𝑏)                          (5) 

Where: 

𝑋 is the input feature map (e.g., a matrix representing an image 

or software metric data). 

𝑊 is the learnable convolutional kernel (or filter), which slides 

over the input feature map to extract local patterns. Each filter 

learns specific spatial features during training. 

∗ denotes the convolution operation. 

𝑏 is the bias term, is appended to the convolution operation’s 

output to improve the model’s fit to the data. 

𝑓 is the activation function, typically a non-linear function 

applied element-wise to introduce non-linearity into the model. It 

helps mitigate issues like vanishing gradients and improves 

convergence during training (Goodfellow et al., 2016) 

LSTM is used to model temporal dependencies and sequential 

patterns. An LSTM (Long Short-Term Memory) cell updates its 

hidden state ℎ𝑡 which represents the output of the LSTM cell at 

time t, capturing the relevant information from the sequence up 

to that point, and the memory cell 𝐶𝑡  which acts as the “memory” 

of the LSTM, storing long-term dependencies across time steps. 

This is shown using the following mathematical functions: 

Forget Gate Activation (𝑓𝑡  ) 

𝑓𝑡   =  𝜎(𝑊𝑓  ⋅  [ℎ𝑡−1,  𝑥𝑡] + 𝑏𝑓)                      (6) 

The amount of information from the preceding memory cell 𝐶𝑡−1  

that should be remembered or forgotten is decided by the forget 

gate. The bias term is 𝑏𝑓 and while the forget gate’s weight matrix 

𝑊𝑓. The sigmoid activation function, or 𝜎, produces values 

ranging from 0 to 1, signifying the extent to which each 

component of the cell state is forgotten 
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Input Gate Activation (𝑖𝑡 ) 

𝑖𝑡  =  𝜎(𝑊𝑖   ⋅  [ℎ𝑡−1,  𝑥𝑡] + 𝑏𝑖)                            (7) 

The input gate determines the amount of new data that should be 

added to the memory cell from the current input 𝑥𝑡. 𝑏𝑖 is the bias 

term and 𝑊𝑖 is the input gate's weight matrix. 

Information flow is controlled by the sigmoid function, which 

makes sure the gate outputs values between 0 and 1. 

Candidate Memory Cell ( 𝐶𝑡̃) 

𝐶𝑡̃ = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)                     (8) 

The candidate memory cell computes a potential update to the 

memory cell 𝐶𝑡. The bias term is 𝑏𝐶, while the weight matrix for 

the candidate memory cell 𝑊𝐶 . The updates are bounded because 

the hyperbolic tangent (tanh) activation function generates values 

in the[−1, 1] range. 

Memory Cell Update (𝐶𝑡) 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶𝑡̃                              (9) 

The new information is combined with the prior memory state 

𝐶𝑡−1 to update the memory cell 𝐶𝑡 

𝑓𝑡 ⊙ 𝐶𝑡−1: The amount of the prior memory 𝐶𝑡−1 that is kept is 

decided by the forget gate 𝑓𝑡 

𝑖𝑡 ⊙ 𝐶𝑡̃:  𝑖𝑡 controls how much of the new candidate memory 𝐶𝑡̃ 

is added to the memory cell. ⊙ denotes element-wise 

multiplication, allowing fine-grained control over the memory 

updates. 

 Output Gate Activation (𝑜𝑡) 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                            (10) 

How much of the updated memory cell 𝐶𝑡 will be shown as the 

hidden state ℎ𝑡 is decided by the output gate. 𝑏𝑜 is the bias term, 

and 𝑊𝑜 is the output gate’s weight matrix The sigmoid function 

ensures that the output gate outputs values between 0 and 1, 

controlling the exposure of the memory cell. 

Hidden State Update (ℎ𝑡) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡)                                          (11) 

The hidden state ℎ𝑡 is computed based on the updated memory 

cell 𝐶𝑡 and the output gate 𝑜𝑡. 

        tanh(𝐶𝑡): The hyperbolic tangent function applies a non-

linear transformation to the memory cell, ensuring that the output 

is bounded between -1 and 1. 𝑜𝑡 ⊙ tanh(𝐶𝑡): The output gate 𝑜𝑡 

modulates the transformed memory cell, determining the final 

hidden state 

        Combining both of these models, as shown in Figure 1, 

enables a thorough representation of the input data, which can 

improve XGboost’s performance (D. Wang et al., 2022; H. Wang 

et al., 2021; S. Wang et al., 2022). Each dataset is pre-processed 

to ensure consistency in feature scaling and encoding. Missing 

values are handled using imputation techniques, and categorical 

variables are encoded using one-hot encoding. Spatial features 

are extracted from the input data using a convolutional layer. 

Three (3) filter levels were applied to the data in order to capture 

the various degrees of abstraction. To capture sequential 

dependencies, an LSTM layer is applied to the CNN layer’s 

output. This step is particularly useful for datasets with time-

series or ordered features. The outputs from the CNN are passed 

to the LSTM layers, which serves as input for the subsequent ML 

models. Given that software defect datasets primarily contain 

numerical attributes, the CNN-LSTM model extracts statistical 

and temporal features (Khleel & Nehéz, 2022). The architecture 

implements a sophisticated sequential processing pipeline for 

defect prediction. The model begins by accepting a one-

dimensional input vector of shape (100,) this means each input 

instance is a single row vector containing 100 values (features) 

which is then reshaped to (100,1) to accommodate the 

convolutional operations. A Conv1D layer with 64 filters and a 

kernel size of 3 performs the first feature extraction. It uses ReLU 

activation to identify non-linear patterns in the input data and to 

identify spatial correlations between software metrics. A 

MaxPooling1D layer with a pool size of two comes next, which 

minimizes the spatial dimensions without sacrificing important 

features. To produce a compact feature representation, a second 

convolutional block with the same configuration as the first one 

further processes the down-sampled features. This is followed by 

another MaxPooling1D layer. To reduce overfitting, a dropout 

layer (rate=0.5) is incorporated (Charles, 2024). The processed 

features then flow through a dual LSTM structure, where the first 

LSTM layer maintains temporal sequences by returning an output 

of shape (49, 50), while the second LSTM layer consolidates this 

information into a final feature vector of shape (50,). This models 

the sequential dependencies inherent in software defect metrics. 

The architecture culminates in a Dense layer with Sigmoid 

activation, producing a binary classification output of shape (1, 

0), effectively predicting the presence or absence of defects, the 

features extracted are then used to for subsequent model training 

using machine learning algorithm XGboost. 

        The hyperparameters were selected based on empirical 

experimentation and performance validation across multiple 

datasets. Initial values were selected following commonly used 

configurations in similar sequence modeling tasks (e.g., time-

series classification and NLP), with further refinements made 

through iterative training and validation to optimize recall and 

AUC-ROC performance. The Conv1D layer with 64 filters and a 

kernel size of 3 was chosen for its ability to capture local patterns 

without excessive computational cost. ReLU activation was used 

to introduce non-linearity while avoiding vanishing gradients. A 

dropout rate of 0.5 was applied to reduce overfitting during 

training. The dual LSTM structure was selected to model 

sequential dependencies effectively, where the first.  

LSTM layer preserves temporal information (output shape: (49, 

50)), and the second layer produces a compact feature vector 

(output shape: (50,)) for final classification and subsequent 

feature representation. 
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Figure 1: CNN LSTM Architecture 

  

Figure 2: Proposed Methodology 

Types of Features Extracted:  

        Each dataset includes numerical features that quantify 

different characteristics of the software modules. These features 

can be broadly categorized into the following groups: 

Cyclomatic Complexity Metrics: They measure the complexity 

of a program by counting the number of linearly independent 

paths through the source code. Higher values often correlate with 

an increased likelihood of defects due to the difficulty in testing 

and maintaining such code. 

Halstead Metrics: These are based on the number of operators 

and operands in the code, including: Program length, Vocabulary 

size, Volume, Difficulty and Effort. These metrics estimate the 

effort required to understand or debug the code and are useful 

indicators of potential defects. 

Lines of Code (LOC): 

        This feature represents the total number of lines in a module, 

which may indicate the size and complexity of the code. Larger 

modules tend to have more defects due to increased maintenance 

and readability challenges. 

Object-Oriented Metrics (for OO datasets like KC1 and 

MC1): These include: Number of classes, Number of methods 

per class, Depth of inheritance tree, Coupling between objects, 

and Response for a class. These metrics help assess the design 

quality and potential fault-proneness of object-oriented systems.  

Code Churn or Change Frequency: 

 Some datasets include historical data on how frequently a 

module has been changed or modified, which is a known 

indicator of instability and potential defects. 

 

Figure 3: Feature Importance 

Training and Evaluation: 

        The XGboost classifier machine learning model was 

employed in this study. In order to guarantee thorough analysis, 

every dataset was methodically divided into training and testing 

sets using an 80-20 split ratio, which enabled reliable model 

evaluation and validation. While the paper emphasizes the use of 

static code metrics such as cyclomatic complexity, Halstead 

metrics, lines of code, coupling, and cohesion for software defect 

prediction, it is important to clarify the nature and strength of the 

relationship between these metrics and the model's predictions. 

To address this, a post-hoc feature importance analysis was 

conducted using the trained XGBoost classifier, which provides 

insights into how each metric contributes to the final 

classification decision, as shown in Figure 3. Table 3 reports the 

training time on each dataset. 
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Table 3: Model Training Time. 

Dataset Training Time (CNN-LSTM) Inference Time (per sample) XGBoost Training Time 

CM1 ~7 min ~0.8 ms ~15 sec 

KC1 ~9 min ~0.9 ms ~20 sec 

PC1 ~10 min ~0.95 ms ~18 sec 

PC4 ~12 min ~1.0 ms ~22 sec 

MC1 ~15 min ~1.1 ms ~25 sec 

Evaluation Metrics: 

        The five-performance metrics used in the study to assess the 

performance of the developed model were Accuracy, precision, 

recall, F1 score, and AUC-ROC. In the relevant research, these 

metrics are frequently used to assess SDP performance.  

        The following metrics are calculated in equations 12, 13, 14, 

15, and 16. 

 𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =
M+P

M+P+O+N
     (12) 

𝐑𝐞𝐜𝐚𝐥𝐥 =
M

M+N
   (13) 

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =
M

M+O
   (14) 

𝐅𝟏 𝐒𝐜𝐨𝐫𝐞 = 2 ×
Precision × Recall

Precision+Recall
  (15) 

𝑨𝑼𝑪 = ∑
(𝑄𝑖+1−𝑄𝑖) × (𝑅𝑖+1+ 𝑅𝑖

2

𝑛−1
𝑖−1   (16) 

Where: 

True Positive (M): when a defective instance is accurately 

identified as defects. 

True Negative (P): when a non-defective instance is accurately 

identified as non-defects. 

False Positive (Q): when a non-defective instance is mistakenly 

identified as defects. 

False Negative (P): when a defective instance is mistakenly 

identified as non-defects. 

Experimental Setup: 

        Python 3.9 was used for the study, along with well-known 

libraries including Matplotlib, Scikit-learn, and TensorFlow. An 

Apple Silicon processor, 16GB of RAM, and an 8 Core GPU for 

faster calculations were all part of the hardware setup. 

 

  

4. RESULTS AND DISCUSSION 

        This section discussed the XGboost model’s performance in 

predicting software defects on five datasets. ROC Curves and 

Confusion matrix were additionally used to determine the 

findings. It also talks about how effective the hybrid technique is. 

However, the proposed model demonstrates strong overall 

performance across all datasets, although some variation in 

accuracy is observed between them. For instance, the CM1 

dataset achieved an accuracy of 0.8938, while the PC4 dataset 

reached 0.9918. 

        This difference can be attributed to several factors like Class 

imbalance which CM1 has fewer defective instances even after 

applying ADASYN, making defect detection more challenging. 

Dataset size of CM1 contains only 327 instances, limiting the 

model’s learning capability compared to larger datasets like PC4. 

And also, feature relevance and noise with some datasets may 

contain less informative or noisier features, affecting prediction 

accuracy. Despite these variations, the model consistently 

achieves high recall and AUC-ROC scores across all datasets, 

indicating robust defect discrimination ability. These results 

suggest that while the model performs exceptionally well on 

balanced and larger datasets, it remains effective for smaller or 

imbalanced codebases, especially in terms of minimizing missed 

defects. This supports the generalizability of the proposed 

method across different software environments, provided that 

sufficient and representative data are available. 
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Figure 4: CM1 Dataset Confusion Matrix 

 

        The proposed approach works well on the CM1 dataset, 

achieving accuracy, precision, recall, F1-score  of 0.8938, 

0.8033, 1.0000, 0.8909, respectively and AUC-ROC of 0.9662. 

The perfect recall for defective modules ensures no potential 

defects are missed, while the high AUC-ROC value highlights 

the model’s effective discrimination between classes. However, 

the precision of 0.8033 indicates a trade-off with false positives, 

as 20 non-defective modules were incorrectly classified as 

defective. The confusion matrix in Figure 4 reveals 49 true 

positives out of 64 actual defective modules and 52 true negatives 

out of 49 non-defective modules, showcasing the model’s ability 

to minimize false negatives but pointing to an opportunity for 

reducing false positives. The hybrid approach offers superior 

performance in terms of recall and AUC-ROC while maintaining 

computational efficiency. 

 

 

Figure 5: KC1 Dataset Confusion Matrix 

        With an accuracy, precision, recall, and F1-score of 0.9344, 

0.9265, 0.9375, and 0.9320, respectively, and an AUC-ROC of 

0.9839, the proposed approach performs well on the KC1 dataset. 

As seen by the high AUC-ROC value, these results demonstrate 

the model’s efficacy in differentiating between defect and non-

defect modules. Defective modules earn 0.94, 0.93, and F1-score, 

whereas non-defective modules achieve 0.93, 0.94, and F1-score, 

respectively, according to the classification report, which shows 

balanced performance across both classes. This balanced 

performance indicates the model effectively reduces incorrect 

classifications, that is to say, both false positives, where non-

defective items get flagged wrongly, and false negatives, where 

actual issues go undetected, while delivering consistent outcomes 

across categories. These findings gain further support from the 

confusion matrix shown in Figure 5, which demonstrates that 

among 365 defective modules, 340 were identified correctly true 

positives, to put it simply whereas 25 slipped through as non-

defective cases, what we call false negatives. Similarly, the model 

achieved notable true negative rates by mistakenly labelling only 

21 out of 336 defect-free modules as problematic, known as false 

positives. When evaluated against the KC1 dataset, the combined 

approach shows accuracy levels matching those of standalone 

deep learning systems while outperforming conventional 

machine learning models in overall performance metrics, 

illustrating its strength in detecting complex data patterns without 

demanding excessive computational resources, so to speak. This 

balanced approach proves particularly valuable given how it 

maintains operational efficiency while handling intricate 

classification tasks, a crucial consideration given the real-world 

constraints often present in such implementations. The findings 

demonstrate the hybrid approach’s value as a practical, real-

world tool for enhancing software quality by confirming its 

robustness and dependability in SDP. 

 

 

 

Figure 6: MC1 Dataset Confusion Matrix 

        With an accuracy, precision, recall, and F1-score of 0.9980, 

0.9971, 0.9988, and 0.9980, respectively, and an AUC-ROC of 

0.9999, the hybrid approach performs exceptionally well on the 

MC1 dataset. As evidenced by the nearly flawless AUC-ROC 
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score, these results show the model’s remarkable capacity to 

discriminate between defective and non-defective modules. With 

precision, recall, and F1-scores of 1.00 for both defect and non-

defect modules, the classification report shows almost perfect 

performance for both classes. The recall was 1.00, with only 5 

false negatives. Specifically, 1752 of the 1757 real problematic 

modules were accurately discovered (true positives). A precision 

of 1.00 and a recall of 1.00 were obtained by misclassifying only 

2 out of 1711 non-defective modules as defective (false 

positives). The model’s excellent accuracy is further supported 

by the confusion matrix in Figure 6, which displays few errors: 

only five defective modules were mistakenly categorized as non-

defective, while two non-defective modules were mistakenly 

classified as defective. The hybrid technique performs better on 

the MC1 dataset than either standalone deep learning approaches 

or ML models, especially in terms of recall and AUC-ROC, while 

still being computationally efficient. The proposed approach is 

highly suitable for practical software defect prediction 

applications due to its exceptional accuracy and balanced 

performance between recall and precision metrics. These results 

validate the hybrid approach’s effectiveness in providing 

accurate and dependable predictions, making a substantial 

contribution to the advancement of software defect identification 

techniques. 

 

 

Figure 7: PC1 Dataset Confusion Matrix 

        The hybrid approach performs exceptionally well on the 

PC1 dataset, with accuracy, precision, recall, and F1-score of 

0.9591, 0.9478, 0.9695, and 0.9585, respectively, and an AUC-

ROC of 0.9961. Given the high AUC-ROC value, these results 

demonstrate the model's great ability to discriminate between 

defective and non-defective modules. The classification report 

shows that both classes perform equally, with non-defective 

modules obtaining a precision of 0.95, a recall of 0.97, and an F1-

score of 0.96, and defective modules obtaining a precision of 

0.97, a recall of 0.95, and an F1-score of 0.96. To put it simply, 

this balanced state indicates the model successfully reduces both 

incorrect rejections and false alarms. These findings align with 

the confusion matrix shown in Figure 7, which reveals that 131 

out of 138 actual defective cases were correctly identified, 

achieving a detection rate of 0.95 while only missing 7 instances. 

The precision and recall were 0.95 and 0.97, respectively, with 

just 4 out of 131 non-defective modules being incorrectly 

categorized as defective (false positives). On the PC1 dataset, the 

hybrid technique demonstrates its efficacy in collecting intricate 

patterns while preserving computing economy by achieving 

competitive accuracy and higher AUC-ROC when compared to 

independent deep learning approaches or traditional machine 

learning models. The findings validate the hybrid approach’s 

effectiveness and dependability for SDP, establishing it as a 

valuable resource for improving software quality in real-world 

applications. 

 

 

Figure 8: PC4 Dataset Confusion Matrix 

        The proposed approach demonstrates exceptional 

performance on the PC4 dataset, achieving an accuracy, 

precision, recall, F1-Score of 0.9918, 0.9876, 0.9958, 0.9917, 

respectively and AUC-ROC of 0.9990. The near-perfect AUC-

ROC value highlights the model’s outstanding ability to 
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distinguish between defective and non-defective modules. The 

classification report further confirms the model’s robustness, 

with precision, recall, and F1-scores of approximately 0.99 for 

both defective and non-defective classes. In particular, 247 of the 

250 real problematic modules were effectively detected (true 

positives), yielding a 0.99 recall and few false negatives (3). 

Similarly, among 239 non-defective modules, only 1 was 

misclassified, yielding a precision of 0.99 and a recall of 1.00. 

Figure 8 confusion matrix supports these results, demonstrating 

the model’s high accuracy with minimal errors: only 3 defective 

modules were misclassified as non-defective, and just 1 non-

defective module was incorrectly identified as defective in the 

PC4 dataset, the hybrid technique outperforms standalone deep 

learning approaches or classical machine learning models, 

especially in terms of recall and AUC-ROC, while retaining 

computational efficiency. Because of its high accuracy and ability 

to balance precision and recall, the proposed approach is ideal for 

real-world SDP applications.  

Comparison with State of Art Models: 

        In this section, Table 4 compares the proposed technique to 

different present techniques using the performance metrics used 

for the study. 

        It should be noted that some of the methods compared in 

Table 4 were evaluated on different datasets (e.g., PROMISE, 

bug report datasets, GHPR). These datasets differ in terms of size, 

language, and feature composition, which can impact model 

performance. Therefore, while the comparison provides a general 

sense of the proposed method’s effectiveness relative to existing  

approaches, it should be interpreted with caution due to the lack 

of uniformity in data sources. 

Table 4: Comparison with State of Art models 

Techniques Datasets Accuracy Precision Recall F1 Score AUC 

CBIL model 

(Farid et al., 

2021) 

PROMISE 

datasets (Jedit, 

Lucene, Synapse, 

Xalan, Xerces, 

Camel, Poi) 

    

0.91, 

0.83, 

0.95, 

0.76, 

0.98, 

0.96, 

0.95 

CNN and 

Random Forest 

with Boosting 

(Kukkar et al., 

2019) 

Bug report 

datasets (JBoss, 

Eclipse, Open 

FOAM, Firefox, 

Mozilla,) 

0.98, 

0.95, 

0.94, 

0.97, 

0.94 

    

(CNN, BI- 

LSTM) (Khleel & 

Nehéz, 2022) 

GHPR Dataset 

 

0.80, 

0.80 

0.77 

,0.77 

0.84, 

0.85 

0.81, 

0.80 

0.83, 

0.84 

 

VESDP (Ali et 

al., 2024) 

CM1, JM1, 

MC2, PC1, PC4 

86.87, 

79.92, 

68.42,  

92.16, 

 87.14 

    

XGboost+ Under 

sampling 

(AL-Hadidi & 

Hasoon, 2024) 

CM1, MC1, 

KC1, PC1, PC4 

0.88, 

0.97, 

0.74, 

0.93, 

0.93 

0.84,  

0.95, 

0.75, 

0.92, 

0.92 

0.93, 

0.99, 

0.72, 

0.94, 

0.96 

0.88, 

0.97, 

0.74, 

0.93, 

0.94 

- 

ADAYSN+ CNN 

+ LSTM XGboost 

(This Study) 

CM1, MC1, 

KC1, PC1, PC4 

0.89, 

0.99, 

0.93, 

0.95, 

0.99 

0.80, 

0.99,  

0.92,  

0.94,  

0.98 

1.0, 

0.99, 

0.93 

,0.95, 

0.99 

0.89, 

0.99, 

0.93, 

0.95, 

0.99 

0.96, 

0.99,  

0.98,  

0.99, 

0.99 

 

        A comprehensive analysis of different software defect 

prediction techniques across several datasets is given in Table 3, 

which assesses each method’s performance using metrics like 

accuracy, precision, recall, F1 score, and AUC. Strong AUC 

values between 0.76 and 0.98 are reported by the CBIL model 

(Farid et al., 2021), which focusses on PROMISE datasets and 

shows good discriminative capability. The lack of additional 

measures, however, makes it more difficult to evaluate its overall 

efficacy. Similar to this, the CNN and Random Forest with 

Boosting approach (Kukkar et al., 2019), which was tested on 

bug report datasets from JBoss, Eclipse, OpenFOAM, Firefox, 

and Mozilla, achieves high accuracy values (0.94–0.98) but is 

hard to compare with other methods because it does not provide 

information on precision, recall, F1 score, or AUC. Using the 

GHPR dataset, the CNN + BI-LSTM approach (Khleel & Nehéz, 

2022), shows balanced performance with accuracy values of 

0.80, precision around 0.77, recall between 0.84 and 0.85, and F1 

scores near 0.81. Its moderate to strong classification skill is 

reported by its AUC values, which range from 0.83 to 0.84. On 

the other hand, accuracy values for the VESDP approach [24], 

which was evaluated on the CM1, JM1, MC2, PC1, and PC4 

datasets, range from 68.42% to 92.16%. However, a thorough 

assessment of its effectiveness is hampered by the absence of 

precision, recall, F1 score, and AUC measures. The XGboost + 

Under Sampling approach (AL-Hadidi & Hasoon, 2024) shows 

competitive results on CM1, MC1, KC1, PC1, and PC4 datasets 
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(refer to Figure 9), achieving accuracy values of 0.88–0.97, 

precision ranging from 0.75–0.95, and recall between 0.72–0.99. 

While it performs well in terms of F1 scores (0.88–0.97), the 

absence of AUC values leaves a gap in understanding its 

classification capability. The proposed ADASYN + CNN + 

LSTM + XGboost technique stands out by delivering superior 

performance across all metrics. Evaluated on the same datasets 

(CM1, MC1, KC1, PC1, and PC4), it achieves accuracy values 

of 0.89–0.99, precision ranging from 0.80–0.99, near-perfect 

recall (1.0–0.99), and F1 scores between 0.89–0.99. Additionally, 

the AUC values remain notably high (0.96–0.99), demonstrating 

strong discriminatory power between defective and non-

defective cases, that is to say, showing the model's effectiveness 

in differentiation. The combination of balancing techniques for 

dataset categories with feature extraction methods and 

classification approaches effectively addresses issues like uneven 

data distribution and complex pattern recognition. 

        The currently available methods actually show some good 

results in certain specific areas, but this study’s hybrid approach 

clearly provides a much more comprehensive solution to predict 

software defects. By combining both deep learning along with 

more traditional machine learning techniques, the approach ends 

up achieving excellent performance across many different 

metrics. Additionally, the method shows particularly strong 

results in both recall and AUC, especially when dealing with 

uneven datasets like MC1 and PC4. Because of its improved 

accuracy and reliability, this new method has become particularly 

valuable for eventually enhancing software quality in many real-

world applications if deployed. 

        However, several state-of-the-art methods compared in 

Table 3 were evaluated on different datasets or reported only 

partial metrics (e.g., accuracy or AUC-ROC without 

corresponding precision, recall, or F1-scores). These 

inconsistencies limit the depth of direct comparisons. However, 

based on the available data, the proposed hybrid method 

demonstrates consistently strong performance across all reported 

metrics and datasets, particularly in terms of recall and AUC-

ROC, which are crucial in imbalanced software defect prediction 

tasks.

 

Figure 9: Comparative performance with (AL-Hadidi & Hasoon, 2024) 

CONCLUSION 

        The hybrid CNN-LSTM model with ADASYN balancing 

and XGboost training actually ends up providing a much more 

effective approach to software defect prediction. This particular 

method clearly helps to strengthen the overall software quality 

because it fully addresses many class imbalance issues and 

eventually helps detect more complex patterns in software 

metrics that might otherwise just go unnoticed.  

       Using the benchmark dataset of CM1, KC1, PC1, PC4, and 

MC1. The model achieves high performance in key evaluation 

metrics, with average accuracy of 0.958 recall of 0.993, and 

AUC-ROC of 0.987, significantly outperforming traditional 

machine learning and standalone deep learning methods. 

Notably, it achieves perfect recall on the CM1 dataset and near-

perfect AUC-ROC scores across all datasets, highlighting its 

ability to detect defective modules with minimal false negatives, 

which is crucial in real-world applications. The testing currently 

shows that the hybrid approach performs much better than many 

traditional machine learning methods, delivering more improved 

accuracy and still maintains resilience in predictive modelling. 

Additionally, the method’s effectiveness is fully demonstrated 

through comparative analysis with some current models, 

particularly in terms of the AUC-ROC and recall metrics. 

Moreover, further validation across different types of software 

systems and some exploration of optimization techniques would 

help to establish this method’s broader applicability in the field 

of software engineering. These important innovations in software 

defect prediction ultimately provide a more comprehensive 
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solution that effectively addresses many of the challenges that are 

currently faced in modern software development. To further 

validate the observed improvement, future work should include 

statistical significance testing, like the Wilcoxon signed-rank test 

or bootstrapping approaches, to guarantee the performance gains 

are not random. A more detailed ablation study is recommended 

to quantify the impact of each component on performance 

metrics such as recall and AUC-ROC. This would provide deeper 

insight into the effectiveness of the hybrid architecture and guide 

future model optimization. Furthermore, exploring 

hyperparameter optimization, model interpretability using XAI 

techniques, and cross-project generalization can improve both 

the practical utility and theoretical understanding of the model. 

This study provides a reliable and scalable solution for software 

defect prediction, offering valuable insights into how hybrid deep 

learning and machine learning methods can be integrated to 

improve predictive accuracy and assist automated quality 

assurance in software development. 
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