

journals.uoz.edu.krd

Available online at sjuoz.uoz.edu.krd

Vol. 13, No.4 pp449–463October-December,2025

p-ISSN: 2663-628X

e-ISSN: 2663-6298

449

HYBRID TECHNIQUE FOR SOFTWARE DEFECT PREDICTION USING MACHINE

LEARNING TECHNIQUES

Darius T Chinyio 1, *, Martin E Irhebhude 1, and Muhammad Jumare Haruna2

1 Department of Computer Science, Nigerian Defence Academy, Kaduna, Nigeria.

2 Department of Computer Science, Federal University of Education, Zaria, Nigeria.

*Corresponding author email: dtchinyio@nda.edu.ng

Received: 29 Mar 2025 Accepted:15 Jun 2025 Published:1Oct 2025 https://doi.org/10.25271/sjuoz.2025.13.4.1532

ABSTRACT:

Human errors during software development lead to many defects, which emphasizes the importance of early detection and

minimization. However, existing approaches often fall short in delivering accurate, scalable, and generalizable predictions

due to challenges such as class imbalance, feature extraction limitations, and computational inefficiencies. This study

proposes a hybrid method using a Convolutional Neural Network (CNNs) + Long Short-Term Memory (LSTM) for feature

extraction, addressing class imbalance with Adaptive Synthetic Sampling (ADASYN) and subsequent training using

Extreme Gradient Boosting (XGboost), to predict software defects. The proposed approach was evaluated on five publicly

available datasets (CM1, MC1, KC1, PC1, and PC4) and compared with state-of-the-art (SOTA) models. Experimental

results demonstrated that the hybrid model significantly outperforms traditional XGBoost-based models in terms of recall,

F1-score, and area under the receiver operating characteristic curve (AUC), addressing the shortcomings of existing

methods. Results demonstrate the effectiveness of the proposed method, with notable performance metrics achieved across

all datasets. For example, on the MC1 dataset, the model attained an accuracy of 0.9980, a precision of 0.9971, a recall of

0.9988, an F1-score of 0.9980, and an AUC-ROC of 0.9999. On the KC1 dataset, it achieved an accuracy of 0.9344, a

precision of 0.9265, a recall of 0.9375, an F1-score of 0.9320, and an AUC-ROC of 0.9839. The model achieves better

performance than traditional machine learning methods and separate deep learning models, especially in the areas of recall

and AUC-ROC. This research presents a robust solution through hybrid approaches that address class imbalance and

maintain high predictive accuracy for software development process tasks, offering insights into the trade-offs between

machine learning and deep learning methods.

KEYWORDS: Software Defect Prediction (SDP), CNN, LSTM, Machine learning, Deep Learning, Hybrid Technique,

XGboost

1. INTRODUCTION

 Software defects represent faults in computer programs that

may lead to system failures, data loss, security vulnerabilities,

and financial losses (Elentukh, 2023; Shafiq et al., 2023). While

the terms 'defect', 'bug', and 'error' are sometimes used

interchangeably, a defect generally refers to an imperfection in

code functionality that may or may not result in a bug, which is

an observable deviation from expected behavior during

execution. An error, on the other hand, typically refers to a human

mistake made during development that leads to defects in the

code.

 Defects not only affect runtime performance and reliability

but also compromise key software design principles such as

modularity and separation of concerns. Faulty modules are less

likely to be reused due to their instability or unclear functionality,

which reduces maintainability and increases technical debt. In

* Corresponding author

This is an open access under a CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

this study, the static code features extracted from the datasets

(e.g., cyclomatic complexity, coupling, cohesion) reflect

structural weaknesses that are closely tied to defect proneness

and negatively influence reusability and modular design.

 According to research by Krasner (2021), Mahmoud et al.

(2024), and Mehmood et al. (2023), software defects account for

half of project expenses, while also causing system breakdowns

and security risks, with additional negative impacts on user

satisfaction. Despite the advancement of machine learning, the

current approaches to software defect prediction still struggle

with issues such as the existence of imbalanced datasets (Saidani

et al., 2022; Giray et al, 2023), difficulties in comprehending

intricate code forms (Daneshdoost & Feyzi, 2023; Wan et al.,

2024), poor project generalization (Nevendra & Singh, 2022),

and insufficient explanation of the prediction (AL-Hadidi &

Hasoon, 2024). The comprehension of software defects from a

http://journals.uoz.edu.krd/
http://sjuoz.uoz.edu.krd/
mailto:dtchinyio@nda.edu.ng
https://doi.org/10.25271/sjuoz.2025.13.4.1532
https://creativecommons.org/licenses/by-nc-sa/4.0/

Chinyio et al/ Science Journal of University of Zakho, 13(4), 449-463October-December, 2025

450

theoretical perspective has changed from mere bug tracking to

more advanced predictive analytics, where scholars have sought

to develop defect explanation frameworks and models that

capture a number of attributes (Vogel-Heuser et al., 2015). There

has been a shift from conventional statistical methods to more

advanced ones based on machine learning (ML) in software

defect prediction (SDP), with the use of algorithms and deep

learning being more effective in dealing with complex code

structures. (Kumar et al., 2023; Pachouly et al., 2022).

Understanding the relationship between software complexity and

the likelihood of defects occurring is a prominent theoretical

perspective. Numerous measures have been proposed to quantify

the complexity of software systems and their correlation with

error occurrence, including object-oriented design metrics,

Halstead's software science metrics, and McCabe's cyclomatic

complexity (Kumar et al., 2023). Furthermore, external process-

related elements, including a change's history, a developer's

experience, and the methodologies employed in the development,

have been deemed important in forecasting software defects

(Pachouly et al., 2022). There remain several research gaps and

emerging trends; however, the advancement of software defect

prediction methodologies has not kept pace with (Olaleye et al.,

2023). Although ML and deep learning (DL) models have

improved prediction accuracy, their practical application is still

hindered by the models’ inherent complexity and the resulting

lack of understanding about them (Patil et al., 2024). Many

current models show robust performance on particular datasets,

but these models often fail to generalize across different projects

and domains (Alzeyani & Szabó, 2024). Meeting the temporal

dimensions of software development poses another critical

challenge owing to the changes in software characteristics and

defect patterns over time (Kaliraj & Thomas, 2024). The latest

trend reported by Khan and Masum (2024) is the incorporation

of software defect prediction tools within the continuous

integration and deployment pipelines for the purpose of real-time

feedback and proactive defect mitigation. This new direction of

research in software defect prediction prepares the ground for

further efforts that bound these limitations of accuracy,

generalizability, and practicability of predictive software system

defects for automation. Likewise, the integration of deep learning

technologies into algorithms created for predicting software bugs

has opened wider opportunities. Convolutional CNNs and

LSTMs are outstanding examples of modern applicative deep

learning models that have achieved significant breakthroughs in

time series prediction, image recognition, and natural language

processing (Goodfellow et al., 2016). Because these models

automatically capture the structure of data as a hierarchy of

features, they are particularly powerful for quite complex tasks

where input variables interact with each other in many ways.

Even with their unparalleled advantages, deep learning models

often require substantial computational power and large amounts

of training data, which are not always readily available in

software defect prediction scenarios (Wang et al., 2022). To

achieve the objectives, experimental evaluations were conducted

using multiple datasets commonly referenced in the field,

including CM1 and MC1, as well as other datasets such as KC1,

PC4, and PC1. The models’ performances were assessed using

performance metrics. A significant contribution of this study is

the development of a hybrid framework that combines the

strengths of deep learning for capturing complex spatial and

temporal dependencies in software metrics with the efficiency

and robustness of XGboost for classification, particularly in

imbalanced datasets. The proposed method demonstrates

superior performance compared to traditional ML models and

standalone DL architectures, particularly in terms of recall and

AUC-ROC scores. These metrics are especially important in

defect prediction, where identifying all defective modules (high

recall) and achieving strong class separation (high AUC) are

critical for practical deployment. The rest of the paper is

structured: Related works are covered in Section 2. In contrast,

section 3 materials and methods offer a thorough explanation of

the approach, covering feature extraction, dataset preparation,

data balancing, model assessment, and experimental setup. The

experimental results are shown in Section 4, along with a

discussion of the findings in relation to previous research and

state-of-the-art models. The work is finally concluded, and future

research concerns are outlined in Section 5.

2. REVIEW OF RELATED WORK

 Software engineering research has placed much emphasis

on predicting software problems, with many papers examining

different methods to increase forecast accuracy and

dependability. This section looks at earlier research that has

significantly advanced the field, with a focus on traditional ML

methodology, deep learning techniques, and hybrid approaches.

The study by (Ali et al., 2024) highlighted the importance of

software defect prediction (SDP) in enhancing software quality

and reducing testing costs by identifying and prioritizing

defective modules for testing. Preprocessing (splitting, cleaning,

and normalization), classification using four different supervised

machine learning classifiers, ensemble modelling using a voting

ensemble strategy, and data collection from seven historical

defect datasets are all included in the methodology. The results

demonstrated that the VESDP model outperformed twenty

cutting-edge defect prediction methods with impressive accuracy

of 86.87%, 79.12%, 68.42%, 89.33%, 92.16%, 87.97%, and

87.14% across the CM1, JM1, MC2, MW1, PC1, PC3, and PC4

datasets, respectively. The study also lacked detailed results on

the computational complexity or scalability of the VESDP model,

which are critical for large-scale projects, and does not

extensively discuss the impact of data quality, including noise or

missing values, on model performance. A modified Random

Forest-based technique for software fault prediction was

implemented using the JM1 dataset, which comprises various

software metrics indicating the presence or no presence of a

defect in a module (Kaliraj & Thomas, 2024). The study

examined issues such as feature selection, imbalanced datasets,

model overfitting, data scarcity, and interpretability challenges in

software error prediction. Random Forest was used for feature

selection, SMOTE was used to solve class imbalance,

preprocessing was used to manage null values and data problems,

and the Random Forest classifier was used to handle high-

dimensional datasets and reduce overfitting. However, the

approach's generalizability to other datasets (AL-Hadidi &

Hasoon, 2024) Alternatively, contexts are limited by their

concentration on a single dataset, and they ignore potential

drawbacks such as computational cost, memory needs, or the

demand for intensive hyperparameter adjustment.

 A study by AL-Hadidi & Hasoon, (2024) Software defect

prediction was implemented using XGboost with hyperparameter

optimisation for their experimental analysis. The research study

Chinyio et al/ Science Journal of University of Zakho, 13(4), 449-463October-December, 2025

451

sought to enhance prediction accuracy and performance by

applying ensemble learning methods together with optimization

techniques. The research leverages advanced techniques such as

XGboost and grid search with cross-validation for

hyperparameter tuning while also addressing dataset imbalance

using oversampling. The researchers employed several NASA

MDP datasets to expand the applicability of their findings. The

optimization process resulted in a notable performance increase

for the model, with accuracy improving from 0.888 to 0.938 for

the CM1 dataset and from 0.743 to 0.795 for the KC1 dataset.

The study suffers from limitations, which include insufficient

exploration of various data balancing strategies, along with an

exclusive focus on XGboost without testing other advanced

methods, and a lack of detailed analysis on the computational

costs of hyperparameter adjustments.

 Alkaberi & Assiri, (2024) focused on utilizing CNN and

multilayer perceptron (MLP) to detect software errors in order to

improve software quality. The data was pre-processed using

SMOTEND oversampling, log transformation, and

standardization, and they employed 12 datasets with 20 object-

oriented metrics from the PROMISE repository. Kendall’s

correlation coefficient and mean squared error (MSE) were the

evaluation metrics utilized. Before applying SMOTEND, CNN

achieved MSE=1.316 and Kendall=0.162 on test data, while

MLP achieved MSE=1.73 and Kendall=0.183. After addressing

data imbalance with SMOTEND, performance improved

significantly CNN achieved MSE=0.218 and Kendall=0.363,

while MLP performed better with MSE=0.195 and

Kendall=0.416 on test data. These were compared to baseline

machine learning models: decision tree regression (DTR)

achieved MSE=0.17 and Kendall=0.486, while support vector

regression (SVR) showed poorer performance with MSE=0.257

and Kendall=0.276 on balanced test data. The study validated the

approach, but limitations include potential external validity

constraints and a lack of ablation studies. Additional metrics,

such as model complexity and inference time, could enhance the

evaluation. Ponnala & Reddy, (2023) using method-level features

from an open-source Java e-commerce project, developed an

ensemble model for software defect prediction. The study

combined random forest, SVM, and LightGBM algorithms using

logistic stacking to improve prediction accuracy. Key strengths

include the use of fine-grained method-level metrics (75 features

reduced to 25 via PCA) and the ensemble approach, which

outperformed individual models with an ROC AUC of 0.853 and

81% accuracy. However, limitations include analysis of only one

project, a lack of comparison with state-of-the-art ensemble

techniques, and insufficient discussion of practical implications.

The study demonstrated the potential of ensemble methods and

method-level features for defect prediction, but further validation

across diverse projects and exploration of feature importance

would enhance its impact. Future work could focus on model

interpretability and integration into development processes.

Maddipati & Srinivas, (2021) reported a way to improve software

fault prediction by tackling the issues of excessive dimensionality

and class imbalance. The research employed dimensionality

reduction through a statistical technique, that is to say, utilizing a

method to simplify complex data structures, combining this with

an ensemble approach paired with an adaptive fuzzy system.

When compared to current approaches, the methodology

increased the AUC by 15%, indicating greater predictive

accuracy. While the results were promising, demonstrating the

model’s effectiveness in NASA datasets, the study’s reliance on

specific datasets limits its generalizability. Additionally, it did not

explore the impact of varying software projects or defect

densities on performance. The study offered a significant

advancement in balancing accuracy and cost-effectiveness in

SDP, though further research is needed for broader applicability.

Olorunshola et al., (2020) evaluated various machine learning

classification algorithms to identify the best performer in

predicting software defects, emphasizing the importance of

minimizing misclassification to avoid wasted developer effort.

Using WEKA version 3.8.3 and the JM1 dataset, the study

assessed twelve algorithms from six categories. Standard

Performance metrics included accuracy, false positive rate,

Kappa statistic, RMSE, among others, with a primary assessment

through 10-fold cross-validation. The study found that the

Random Forest algorithm outperformed most others, while the

Bayes Net classifier excelled in terms of the false positive rate,

achieving the lowest FP-rate of 0.391. A comprehensive

evaluation of various classification algorithms, including less

commonly explored ones, is a notable strength. However, the

study's drawback includes its focus on a single dataset, raising

concerns about the generalizability of the results. The rationale

for selecting specific algorithms and metrics was not clearly

explained, and the study lacked detailed analysis beyond

presenting numerical performance metrics. Recent literature in

software defect prediction highlights several critical gaps in

current methodologies. While studies have advanced predictive

modelling capabilities, they often employ single-algorithm

solutions that fail to address the multifaceted challenges in defect

prediction comprehensively (AL-Hadidi & Hasoon, 2024; Wang

et al., 2022). Key limitations include inadequate handling of class

imbalance, computational inefficiency, and poor project

generalizability (Jin, 2021; Khalid et al., 2023). The current state

of software defect prediction still clearly lacks a fully

comprehensive approach that might actually bring together many

ensemble techniques, various optimization methods, and some

data balancing procedures. Much of the existing research has just

focused on individual components rather than addressing these

elements in a more unified way, which has eventually led to many

disconnected solutions that currently fail to fully maximize both

predictive capabilities and real-world implementation (Shen &

Chen, 2020; Tameswar et al., 2022). Additionally, to effectively

balance accuracy, computational efficiency, and model

generalization in SDP applications, the field clearly needs to

develop a more holistic methodology

3. MATERIALS AND METHODS

 The current section explains how the study model was build

using a hybrid-type approach that essentially combines both deep

learning feature extraction with the XGboost algorithm to help

with Software Defect Prediction. This particular approach uses a

hybrid CNN-LSTM model to fully analyze many numerical

software metrics Dataset. The CNNs identify some local patterns,

while the LSTMs still process much of the sequential data

relationships. Additionally, the extracted features are eventually

fed into XGboost for training to help with defect classification.

Dataset Description and Preprocessing:

 The study utilized five of the most established benchmark

datasets (which include CM1, KC1, PC1, PC4, and MC1) that

contain many static code measurements like cyclomatic

Chinyio et al/ Science Journal of University of Zakho, 13(4), 449-463October-December, 2025

452

complexity, some Halstead metrics, and various code line counts.

These particular datasets, which are still widely used in much of

the defect prediction research, include both the metric attributes

and also the defect labels for each of the software modules (AL-

Hadidi & Hasoon, 2024; Ali et al., 2024; Menzies et al., 2015;

Shepperd et al., 2018).

Table 1: Dataset Description

Dataset Type
No of

features

Programming

Language
Instances

Non-

Defective
Defective

CM1 Procedural 22 C 327 285 42

MC1
Object

Oriented
39 C++ 8737 8669 68

PC1 Procedural 22 C 735 674 61

PC4 Procedural 37 C 1379 1201 178

KC1
Object

Oriented
22 C++ 2095 1770 325

The SDP model uses various data preprocessing steps to fully

enhance both data quality and model effectiveness. Before

feeding the features into the CNN-LSTM model, the following

preprocessing steps were applied:

 The process begins by importing the dataset and converting

any missing values marked with "?" into the NaN format for

much better processing. To handle these missing values, the

model uses mean substitution, which helps to maintain more data

consistency (Ghotra et al., 2017). Additionally, all features are

converted to numeric format, and the target variable undergoes

binary encoding (0 and 1) using LabelEncoder, with defective 1

and non-defective 0, which aligns with established classification

methods (Farabet et al., 2013). Further, feature scaling is

implemented through StandardScaler, which basically

normalizes the numerical features to a mean of 0 and standard

deviation of 1, because this prevents any single feature from

becoming too dominant in the model, hence improving model

convergence (Ahmed et al., 2023). Due to the dataset imbalance

between defective and non-defective instances, the Adaptive

Synthetic Sampling technique creates synthetic minority class

samples to achieve a much better balance. This resampling

approach helps to enhance both the model's learning capabilities

and detection accuracy (Jude & Uddin, 2024). Moreover, the

process includes verification of balanced class distribution after

resampling by comparing the defect and non-defect instances.

These comprehensive preprocessing steps, which include

missing value treatment, categorical encoding, feature scaling,

and class balance correction, are clearly vital for achieving

optimal model performance in defect prediction tasks (Goyal,

2022; Hussein et al., 2020; Jude & Uddin, 2024). The dataset

description after applying ADAYSN is reported in Table 2.

Table 2: Data Description After Applying ADAYSN

Dataset Instances Non–Defective Defective

CM1 561 285 276

MC1 17340 8669 8671

PC1 1345 674 671

PC4 2443 1201 1242

KC1 3501 1770 1731

Addressing Class Imbalance:

 The issue of class imbalance commonly seen in software

defect datasets was handled using the ADASYN approach, which

created artificial samples for underrepresented categories. This

improved prediction performance overall while enhancing the

capability to learn from examples that are not well-represented

(Hussein et al., 2020). The ADASYN method adapts to generate

synthetic data points for minority classes (Hussein et al., 2020).

The number of artificial samples generated depends on how

difficult it is to classify specific minority cases, meaning harder

cases get more synthetic examples. Figure 2 demonstrates the

Chinyio et al/ Science Journal of University of Zakho, 13(4), 449-463October-December, 2025

453

preprocessing approach applied to the dataset. Algorithm 1

(Hussein et al., 2020) outlines the process: to put it simply, the

method evaluates data distribution patterns first, then calculates

neighborhood relationships between samples, and finally

produces new instances proportionally based on the complexity

of classification tasks.

Algorithm 1

Step 1: Defining Classification Complexity:

 The classification challenge for underrepresented data

points is measured by examining the proportion of surrounding

examples that belong to dominant categories compared to all

nearby instances. In equation 1, let 𝑟𝑖 represent this ratio:

ri

=
Number of majority class neighbors of xi

Total number of neighbors of xi
 (1)

Where:

𝑟𝑖 Is the ratio, for instance 𝑥𝑖.

The number of neighbors is typically determined using k-nearest

neighbors (k-NN).

Step 2: Compute the Total Number of Synthetic Samples to

Generate:

 The total number of synthetic samples that need to be

created for the minority class is 𝑁syn Equation 2 is used to

calculate this.

Nsyn = Nmaj − Nmin (2)

Where:

𝑁maj: The majority class’s number of instances.

𝑁min: The minority class’s total number of instances.

Step 3: Determine the Number of Synthetic Samples for Each

Minority Instance:

 The quantity of synthetic samples 𝐺𝑖 t to be produced for

each minority case 𝑥𝑖 is directly proportional to its difficulty ratio

𝑟𝑖 as indicated in equation 3.

𝐺𝑖 = ⌊𝑁syn ⋅
⌊𝑟𝑖⌋

⌊∑ 𝑟𝑗
𝑁min

𝑗=1 ⌋
 (3)

Where:

𝐺𝑖: “Number of synthetic samples for instance 𝑥𝑖” .

𝑁syn: Total number of synthetic samples needed to balance the

dataset.

𝑟𝑖: Difficulty ratio of the minority instance 𝑥𝑖, which represents

the proportion of majority class neighbors among its k-nearest

neighbors.

∑ 𝑟𝑗
𝑁min

𝑗=1 : Sum of the difficulty ratios for all instancesin the

minority class.
𝑟𝑖

∑ 𝑟𝑗
𝑁min
𝑗=1

: Normalized difficulty ratio of 𝑥𝑖, indicating the relative

difficulty of learning 𝑥𝑖 compared to other minority instances.

Step 4: Generate Synthetic Samples:

Create 𝐺𝑖 synthetic samples for every minority instance 𝑥𝑖, by

interpolating with its closest neighbors. Equation 4 creates a

synthetic sample.

xsyn = xi + λ ⋅ (xz − xi) (4)

Where:

xsyn : The newly generated synthetic sample for the minority

class.

xi: The original minority instance for which synthetic samples are

being generated.

𝑥𝑧: A randomly selected neighbor of xi from its k-nearest

neighbors in the minority class.

𝜆: A random number drawn from the uniform distribution is

called Lambda. The synthetic sample’s location along the line

segment between xi and xz is determined by this parameter. By

varying 𝜆, the synthetic sample is interpolated to a location

between xi and xz, ensuring diversity in the generated data.

Hybrid CNN-LSTM Feature Extraction:

 For feature extraction, the hybrid approach makes use of

CNN and LSTM’s advantages. To extract spatial information

from the input data, a CNN is used. Equation 5 (Goodfellow et

al., 2016) Illustrates the general mathematical formulation for a

single convolutional layer:

𝑌 = 𝑓(𝑊 ∗ 𝑋 + 𝑏) (5)

Where:

𝑋 is the input feature map (e.g., a matrix representing an image

or software metric data).

𝑊 is the learnable convolutional kernel (or filter), which slides

over the input feature map to extract local patterns. Each filter

learns specific spatial features during training.

∗ denotes the convolution operation.

𝑏 is the bias term, is appended to the convolution operation’s

output to improve the model’s fit to the data.

𝑓 is the activation function, typically a non-linear function

applied element-wise to introduce non-linearity into the model. It

helps mitigate issues like vanishing gradients and improves

convergence during training (Goodfellow et al., 2016)

LSTM is used to model temporal dependencies and sequential

patterns. An LSTM (Long Short-Term Memory) cell updates its

hidden state ℎ𝑡 which represents the output of the LSTM cell at

time t, capturing the relevant information from the sequence up

to that point, and the memory cell 𝐶𝑡 which acts as the “memory”

of the LSTM, storing long-term dependencies across time steps.

This is shown using the following mathematical functions:

Forget Gate Activation (𝑓𝑡  )

𝑓𝑡   =  𝜎(𝑊𝑓  ⋅  [ℎ𝑡−1,  𝑥𝑡] + 𝑏𝑓) (6)

 The amount of information from the preceding memory cell

𝐶𝑡−1 that should be remembered or forgotten is decided by the

forget gate. The bias term is 𝑏𝑓 and while the forget gate’s weight

matrix 𝑊𝑓. The sigmoid activation function, or 𝜎, produces

values ranging from 0 to 1, signifying the extent to which each

component of the cell state is forgotten

Chinyio et al/ Science Journal of University of Zakho, 13(4), 449-463October-December, 2025

454

Input Gate Activation (𝑖𝑡 )

𝑖𝑡  =  𝜎(𝑊𝑖   ⋅  [ℎ𝑡−1,  𝑥𝑡] + 𝑏𝑖) (7)

 The input gate determines the amount of new data that

should be added to the memory cell from the current input 𝑥𝑡. 𝑏𝑖

is the bias term and 𝑊𝑖 is the input gate's weight matrix.

 Information flow is controlled by the sigmoid function,

which makes sure the gate outputs values between 0 and 1.

Candidate Memory Cell (𝐶𝑡̃)

𝐶𝑡̃ = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (8)

 The candidate memory cell computes a potential update to

the memory cell 𝐶𝑡. The bias term is 𝑏𝐶, while the weight matrix

for the candidate memory cell 𝑊𝐶 . The updates are bounded

because the hyperbolic tangent (tanh) activation function

generates values in the[−1, 1] range.

Memory Cell Update (𝐶𝑡)

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶𝑡̃ (9)

The new information is combined with the prior memory state

𝐶𝑡−1 to update the memory cell 𝐶𝑡

𝑓𝑡 ⊙ 𝐶𝑡−1: The amount of the prior memory 𝐶𝑡−1 that is kept is

decided by the forget gate 𝑓𝑡

𝑖𝑡 ⊙ 𝐶𝑡̃: 𝑖𝑡 controls how much of the new candidate memory 𝐶𝑡̃

is added to the memory cell. ⊙ denotes element-wise

multiplication, allowing fine-grained control over the memory

updates.

 Output Gate Activation (𝑜𝑡)

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (10)

 How much of the updated memory cell 𝐶𝑡 will be shown as

the hidden state ℎ𝑡 is decided by the output gate. 𝑏𝑜 is the bias

term, and 𝑊𝑜 is the output gate’s weight matrix The sigmoid

function ensures that the output gate outputs values between 0

and 1, controlling the exposure of the memory cell.

Hidden State Update (ℎ𝑡)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡) (11)

 The hidden state ℎ𝑡 is computed based on the updated

memory cell 𝐶𝑡 and the output gate 𝑜𝑡.

 tanh(𝐶𝑡): The hyperbolic tangent function applies a non-

linear transformation to the memory cell, ensuring that the output

is bounded between -1 and 1. 𝑜𝑡 ⊙ tanh(𝐶𝑡): The output gate 𝑜𝑡

modulates the transformed memory cell, determining the final

hidden state

 Combining both of these models, as shown in Figure 1,

enables a thorough representation of the input data, which can

improve XGboost’s performance (D. Wang et al., 2022; H. Wang

et al., 2021; S. Wang et al., 2022). Each dataset is pre-processed

to ensure consistency in feature scaling and encoding. Missing

values are handled using imputation techniques, and categorical

variables are encoded using one-hot encoding. Spatial features

are extracted from the input data using a convolutional layer.

Three (3) filter levels were applied to the data in order to capture

the various degrees of abstraction. To capture sequential

dependencies, an LSTM layer is applied to the CNN layer’s

output. This step is particularly useful for datasets with time-

series or ordered features. The outputs from the CNN are passed

to the LSTM layers, which serves as input for the subsequent ML

models. Given that software defect datasets primarily contain

numerical attributes, the CNN-LSTM model extracts statistical

and temporal features (Khleel & Nehéz, 2022). The architecture

implements a sophisticated sequential processing pipeline for

defect prediction. The model begins by accepting a one-

dimensional input vector of shape (100,) this means each input

instance is a single row vector containing 100 values (features)

which is then reshaped to (100,1) to accommodate the

convolutional operations. A Conv1D layer with 64 filters and a

kernel size of 3 performs the first feature extraction. It uses ReLU

activation to identify non-linear patterns in the input data and to

identify spatial correlations between software metrics. A

MaxPooling1D layer with a pool size of two comes next, which

minimizes the spatial dimensions without sacrificing important

features. To produce a compact feature representation, a second

convolutional block with the same configuration as the first one

further processes the down-sampled features. This is followed by

another MaxPooling1D layer. To reduce overfitting, a dropout

layer (rate=0.5) is incorporated (Charles, 2024). The processed

features then flow through a dual LSTM structure, where the first

LSTM layer maintains temporal sequences by returning an output

of shape (49, 50), while the second LSTM layer consolidates this

information into a final feature vector of shape (50,). This models

the sequential dependencies inherent in software defect metrics.

The architecture culminates in a Dense layer with Sigmoid

activation, producing a binary classification output of shape (1,

0), effectively predicting the presence or absence of defects, the

features extracted are then used to for subsequent model training

using machine learning algorithm XGboost

 The hyperparameters were selected based on empirical

experimentation and performance validation across multiple

datasets. Initial values were selected following commonly used

configurations in similar sequence modeling tasks (e.g., time-

series classification and NLP), with further refinements made

through iterative training and validation to optimize recall and

AUC-ROC performance. The Conv1D layer with 64 filters and a

kernel size of 3 was chosen for its ability to capture local patterns

without excessive computational cost. ReLU activation was used

to introduce non-linearity while avoiding vanishing gradients. A

dropout rate of 0.5 was applied to reduce overfitting during

training. The dual LSTM structure was selected to model

sequential dependencies effectively, where the first. LSTM layer

preserves temporal information (output shape: (49, 50)), and the

second layer produces a compact feature vector (output shape:

(50,)) for final classification and subsequent feature

representation.

Chinyio et al/ Science Journal of University of Zakho, 13(4), 449-463October-December, 2025

455

Figure 1: CNN LSTM Architecture

Figure 2: Proposed Methodology

Types of Features Extracted:

 Each dataset includes numerical features that quantify

different characteristics of the software modules. These features

can be broadly categorized into the following groups:

Cyclomatic Complexity Metrics: They measure the complexity

of a program by counting the number of linearly independent

paths through the source code. Higher values often correlate with

an increased likelihood of defects due to the difficulty in testing

and maintaining such code.

Halstead Metrics: These are based on the number of operators

and operands in the code, including: Program length, Vocabulary

size, Volume, Difficulty and Effort. These metrics estimate the

effort required to understand or debug the code and are useful

indicators of potential defects.

Lines of Code (LOC):

 This feature represents the total number of lines in a module,

which may indicate the size and complexity of the code. Larger

modules tend to have more defects due to increased maintenance

and readability challenges.

Object-Oriented Metrics (for OO datasets like KC1 and

MC1): These include: Number of classes, Number of methods

per class, Depth of inheritance tree, Coupling between objects,

and Response for a class. These metrics help assess the design

quality and potential fault-proneness of object-oriented systems.

Code Churn or Change Frequency:

 Some datasets include historical data on how frequently a

module has been changed or modified, which is a known

indicator of instability and potential defects.

Chinyio et al/ Science Journal of University of Zakho, 13(4), 449-463 October-December, 2025

456

Figure 3: Feature Importance

Training and Evaluation:

 The XGboost classifier machine learning model was

employed in this study. In order to guarantee thorough analysis,

every dataset was methodically divided into training and testing

sets using an 80-20 split ratio, which enabled reliable model

evaluation and validation. While the paper emphasizes the use of

static code metrics such as cyclomatic complexity, Halstead

metrics, lines of code, coupling, and cohesion for software defect

prediction, it is important to clarify the nature and strength of the

relationship between these metrics and the model's predictions.

To address this, a post-hoc feature importance analysis was

conducted using the trained XGBoost classifier, which provides

insights into how each metric contributes to the final

classification decision, as shown in Figure 3. Table 3 reports the

training time on each dataset.

Table 3: Model Training Time.

Dataset Training Time (CNN-LSTM) Inference Time (per sample) XGBoost Training Time

CM1 ~7 min ~0.8 ms ~15 sec

KC1 ~9 min ~0.9 ms ~20 sec

PC1 ~10 min ~0.95 ms ~18 sec

PC4 ~12 min ~1.0 ms ~22 sec

MC1 ~15 min ~1.1 ms ~25 sec

Evaluation Metrics:

 The five-performance metrics used in the study to assess the

performance of the developed model were Accuracy, precision,

recall, F1 score, and AUC-ROC. In the relevant research, these

metrics are frequently used to assess SDP performance.

 The following metrics are calculated in equations 12, 13, 14,

15, and 16.

 𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =
M+P

M+P+O+N
 (12)

𝐑𝐞𝐜𝐚𝐥𝐥 =
M

M+N
 (13)

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =
M

M+O
 (14)

𝐅𝟏 𝐒𝐜𝐨𝐫𝐞 = 2 ×
Precision × Recall

Precision+Recall
 (15)

𝑨𝑼𝑪 = ∑
(𝑄𝑖+1−𝑄𝑖) × (𝑅𝑖+1+ 𝑅𝑖

2

𝑛−1
𝑖−1 (16)

Where:

True Positive (M): when a defective instance is accurately

identified as defects.

True Negative (P): when a non-defective instance is accurately

identified as non-defects.

False Positive (Q): when a non-defective instance is mistakenly

identified as defects.

False Negative (P): when a defective instance is mistakenly

identified as non-defects.

Experimental Setup:

 Python 3.9 was used for the study, along with well-known

libraries including Matplotlib, Scikit-learn, and TensorFlow. An

Apple Silicon processor, 16GB of RAM, and an 8 Core GPU for

faster calculations were all part of the hardware setup.

4. RESULTS AND DISCUSSION

 This section discussed the XGboost model’s performance in

predicting software defects on five datasets. ROC Curves and

Chinyio et al/ Science Journal of University of Zakho, 13(4), 449-463October-December, 2025

457

Confusion matrix were additionally used to determine the

findings. It also talks about how effective the hybrid technique is.

However, the proposed model demonstrates strong overall

performance across all datasets, although some variation in

accuracy is observed between them. For instance, the CM1

dataset achieved an accuracy of 0.8938, while the PC4 dataset

reached 0.9918.

 This difference can be attributed to several factors like Class

imbalance which CM1 has fewer defective instances even after

applying ADASYN, making defect detection more challenging.

Dataset size of CM1 contains only 327 instances, limiting the

model’s learning capability compared to larger datasets like PC4.

And also, feature relevance and noise with some datasets may

contain less informative or noisier features, affecting prediction

accuracy. Despite these variations, the model consistently

achieves high recall and AUC-ROC scores across all datasets,

indicating robust defect discrimination ability. These results

suggest that while the model performs exceptionally well on

balanced and larger datasets, it remains effective for smaller or

imbalanced codebases, especially in terms of minimizing missed

defects. This supports the generalizability of the proposed

method across different software environments, provided that

sufficient and representative data are available.

Figure 4: CM1 Dataset Confusion Matrix

 The proposed approach works well on the CM1 dataset,

achieving accuracy, precision, recall, F1-score of 0.8938,

0.8033, 1.0000, 0.8909, respectively and AUC-ROC of 0.9662.

The perfect recall for defective modules ensures no potential

defects are missed, while the high AUC-ROC value highlights

the model’s effective discrimination between classes. However,

the precision of 0.8033 indicates a trade-off with false positives,

as 20 non-defective modules were incorrectly classified as

defective. The confusion matrix in Figure 4 reveals 49 true

positives out of 64 actual defective modules and 52 true negatives

out of 49 non-defective modules, showcasing the model’s ability

to minimize false negatives but pointing to an opportunity for

reducing false positives. The hybrid approach offers superior

performance in terms of recall and AUC-ROC while maintaining

computational efficiency.

Figure 5: KC1 Dataset Confusion Matrix

 With an accuracy, precision, recall, and F1-score of 0.9344,

0.9265, 0.9375, and 0.9320, respectively, and an AUC-ROC of

0.9839, the proposed approach performs well on the KC1 dataset.

As seen by the high AUC-ROC value, these results demonstrate

the model’s efficacy in differentiating between defect and non-

defect modules. Defective modules earn 0.94, 0.93, and F1-score,

Chinyio et al/ Science Journal of University of Zakho, 13(4), 449-463October-December, 2025

458

whereas non-defective modules achieve 0.93, 0.94, and F1-score,

respectively, according to the classification report, which shows

balanced performance across both classes. This balanced

performance indicates the model effectively reduces incorrect

classifications, that is to say, both false positives, where non-

defective items get flagged wrongly, and false negatives, where

actual issues go undetected, while delivering consistent outcomes

across categories. These findings gain further support from the

confusion matrix shown in Figure 5, which demonstrates that

among 365 defective modules, 340 were identified correctly true

positives, to put it simply whereas 25 slipped through as non-

defective cases, what we call false negatives. Similarly, the model

achieved notable true negative rates by mistakenly labelling only

21 out of 336 defect-free modules as problematic, known as false

positives. When evaluated against the KC1 dataset, the combined

approach shows accuracy levels matching those of standalone

deep learning systems while outperforming conventional

machine learning models in overall performance metrics,

illustrating its strength in detecting complex data patterns without

demanding excessive computational resources, so to speak. This

balanced approach proves particularly valuable given how it

maintains operational efficiency while handling intricate

classification tasks, a crucial consideration given the real-world

constraints often present in such implementations. The findings

demonstrate the hybrid approach’s value as a practical, real-

world tool for enhancing software quality by confirming its

robustness and dependability in SDP.

Figure 6: MC1 Dataset Confusion Matrix

 With an accuracy, precision, recall, and F1-score of 0.9980,

0.9971, 0.9988, and 0.9980, respectively, and an AUC-ROC of

0.9999, the hybrid approach performs exceptionally well on the

MC1 dataset. As evidenced by the nearly flawless AUC-ROC

score, these results show the model’s remarkable capacity to

discriminate between defective and non-defective modules. With

precision, recall, and F1-scores of 1.00 for both defect and non-

defect modules, the classification report shows almost perfect

performance for both classes. The recall was 1.00, with only 5

false negatives. Specifically, 1752 of the 1757 real problematic

modules were accurately discovered (true positives). A precision

of 1.00 and a recall of 1.00 were obtained by misclassifying only

2 out of 1711 non-defective modules as defective (false

positives). The model’s excellent accuracy is further supported

by the confusion matrix in Figure 6, which displays few errors:

only five defective modules were mistakenly categorized as non-

defective, while two non-defective modules were mistakenly

classified as defective. The hybrid technique performs better on

the MC1 dataset than either standalone deep learning approaches

or ML models, especially in terms of recall and AUC-ROC, while

still being computationally efficient. The proposed approach is

highly suitable for practical software defect prediction

applications due to its exceptional accuracy and balanced

performance between recall and precision metrics. These results

validate the hybrid approach’s effectiveness in providing

accurate and dependable predictions, making a substantial

contribution to the advancement of software defect identification

techniques.

Chinyio et al/ Science Journal of University of Zakho, 13(4), 449-463 October-December, 2025

459

Figure 7: PC1 Dataset Confusion Matrix

 The hybrid approach performs exceptionally well on the

PC1 dataset, with accuracy, precision, recall, and F1-score of

0.9591, 0.9478, 0.9695, and 0.9585, respectively, and an AUC-

ROC of 0.9961. Given the high AUC-ROC value, these results

demonstrate the

odel's great ability to discriminate between defective and non-

defective modules. The classification report shows that both

classes perform equally, with non-defective modules obtaining a

precision of 0.95, a recall of 0.97, and an F1-score of 0.96, and

defective modules obtaining a precision of 0.97, a recall of 0.95,

and an F1-score of 0.96. To put it simply, this balanced state

indicates the model successfully reduces both incorrect rejections

and false alarms. These findings align with the confusion matrix

shown in Figure 7, which reveals that 131 out of 138 actual

defective cases were correctly identified, achieving a detection

rate of 0.95 while only missing 7 instances. The precision and

recall were 0.95 and 0.97, respectively, with just 4 out of 131 non-

defective modules being incorrectly categorized as defective

(false positives). On the PC1 dataset, the hybrid technique

demonstrates its efficacy in collecting intricate patterns while

preserving computing economy by achieving competitive

accuracy and higher AUC-ROC when compared to independent

deep learning approaches or traditional machine learning models.

The findings validate the hybrid approach’s effectiveness and

dependability for SDP, establishing it as a valuable resource for

improving software quality in real-world applications.

Figure 8: PC4 Dataset Confusion Matrix

 The proposed approach demonstrates exceptional

performance on the PC4 dataset, achieving an accuracy,

precision, recall, F1-Score of 0.9918, 0.9876, 0.9958, 0.9917,

respectively and AUC-ROC of 0.9990. The near-perfect AUC-

ROC value highlights the model’s outstanding ability to

distinguish between defective and non-defective modules. The

classification report further confirms the model’s robustness,

with precision, recall, and F1-scores of approximately 0.99 for

both defective and non-defective classes. In particular, 247 of the

250 real problematic modules were effectively detected (true

positives), yielding a 0.99 recall and few false negatives (3).

Similarly, among 239 non-defective modules, only 1 was

misclassified, yielding a precision of 0.99 and a recall of 1.00.

Figure 8 confusion matrix supports these results, demonstrating

the model’s high accuracy with minimal errors: only 3 defective

modules were misclassified as non-defective, and just 1 non-

defective module was incorrectly identified as defective in the

PC4 dataset, the hybrid technique outperforms standalone deep

learning approaches or classical machine learning models,

especially in terms of recall and AUC-ROC, while retaining

computational efficiency. Because of its high accuracy and ability

to balance precision and recall, the proposed approach is ideal for

real-world SDP applications.

Comparison with State of Art Models:

 In this section, Table 4 compares the proposed technique to

different present techniques using the performance metrics used

for the study.

 It should be noted that some of the methods compared in

Table 4 were evaluated on different datasets (e.g., PROMISE,

bug report datasets, GHPR). These datasets differ in terms of size,

language, and feature composition, which can impact model

performance. Therefore, while the comparison provides a general

sense of the proposed method’s effectiveness relative to existing

Chinyio et al/ Science Journal of University of Zakho, 13(4), 449-463October-December, 2025

460

 approaches, it should be interpreted with caution due to the

lack of uniformity in data sources.

Table 4: Comparison with State of Art models

Techniques Datasets Accuracy Precision Recall F1 Score AUC

CBIL model (Farid

et al., 2021)

PROMISE

datasets (Jedit,

Lucene, Synapse,

Xalan, Xerces,

Camel, Poi)

0.91,

0.83,

0.95,

0.76,

0.98,

0.96,

0.95

CNN and Random

Forest with

Boosting

(Kukkar et al.,

2019)

Bug report

datasets (JBoss,

Eclipse, Open

FOAM, Firefox,

Mozilla,)

0.98,

0.95,

0.94,

0.97,

0.94

(CNN, BI- LSTM)

(Khleel & Nehéz,

2022)

GHPR Dataset

0.80,

0.80

0.77

,0.77

0.84,

0.85

0.81,

0.80

0.83,

0.84

VESDP (Ali et al.,

2024)

CM1, JM1, MC2,

PC1, PC4

86.87,

79.92,

68.42,

92.16,

 87.14

XGboost+ Under

sampling

(AL-Hadidi &

Hasoon, 2024)

CM1, MC1, KC1,

PC1, PC4

0.88,

0.97,

0.74,

0.93,

0.93

0.84,

0.95,

0.75,

0.92,

0.92

0.93,

0.99,

0.72,

0.94,

0.96

0.88,

0.97,

0.74,

0.93,

0.94

-

ADAYSN+ CNN

+ LSTM XGboost

(This Study)

CM1, MC1, KC1,

PC1, PC4

0.89,

0.99,

0.93,

0.95,

0.99

0.80,

0.99,

0.92,

0.94,

0.98

1.0,

0.99,

0.93

,0.95,

0.99

0.89,

0.99,

0.93,

0.95,

0.99

0.96,

0.99,

0.98,

0.99,

0.99

 A comprehensive analysis of different software defect

prediction techniques across several datasets is given in Table 3,

which assesses each method’s performance using metrics like

accuracy, precision, recall, F1 score, and AUC. Strong AUC

values between 0.76 and 0.98 are reported by the CBIL model

(Farid et al., 2021), which focusses on PROMISE datasets and

shows good discriminative capability. The lack of additional

measures, however, makes it more difficult to evaluate its overall

efficacy. Similar to this, the CNN and Random Forest with

Boosting approach (Kukkar et al., 2019), which was tested on

Chinyio et al/ Science Journal of University of Zakho, 13(4), 449-463October-December, 2025

461

bug report datasets from JBoss, Eclipse, OpenFOAM, Firefox,

and Mozilla, achieves high accuracy values (0.94–0.98) but is

hard to compare with other methods because it does not provide

information on precision, recall, F1 score, or AUC. Using the

GHPR dataset, the CNN + BI-LSTM approach (Khleel & Nehéz,

2022), shows balanced performance with accuracy values of

0.80, precision around 0.77, recall between 0.84 and 0.85, and F1

scores near 0.81. Its moderate to strong classification skill is

reported by its AUC values, which range from 0.83 to 0.84. On

the other hand, accuracy values for the VESDP approach [24],

which was evaluated on the CM1, JM1, MC2, PC1, and PC4

datasets, range from 68.42% to 92.16%. However, a thorough

assessment of its effectiveness is hampered by the absence of

precision, recall, F1 score, and AUC measures. The XGboost +

Under Sampling approach (AL-Hadidi & Hasoon, 2024) shows

competitive results on CM1, MC1, KC1, PC1, and PC4 datasets

(refer to Figure 9), achieving accuracy values of 0.88–0.97,

precision ranging from 0.75–0.95, and recall between 0.72–0.99.

While it performs well in terms of F1 scores (0.88–0.97), the

absence of AUC values leaves a gap in understanding its

classification capability. The proposed ADASYN + CNN +

LSTM + XGboost technique stands out by delivering superior

performance across all metrics. Evaluated on the same datasets

(CM1, MC1, KC1, PC1, and PC4), it achieves accuracy values

of 0.89–0.99, precision ranging from 0.80–0.99, near-perfect

recall (1.0–0.99), and F1 scores between 0.89–0.99. Additionally,

the AUC values remain notably high (0.96–0.99), demonstrating

strong discriminatory power between defective and non-

defective cases, that is to say, showing the model's effectiveness

in differentiation. The combination of balancing techniques for

dataset categories with feature extraction methods and

classification approaches effectively addresses issues like uneven

data distribution and complex pattern recognition.

 The currently available methods actually show some good

results in certain specific areas, but this study’s hybrid approach

clearly provides a much more comprehensive solution to predict

software defects. By combining both deep learning along with

more traditional machine learning techniques, the approach ends

up achieving excellent performance across many different

metrics. Additionally, the method shows particularly strong

results in both recall and AUC, especially when dealing with

uneven datasets like MC1 and PC4. Because of its improved

accuracy and reliability, this new method has become particularly

valuable for eventually enhancing software quality in many real-

world applications if deployed.

 However, several state-of-the-art methods compared in

Table 3 were evaluated on different datasets or reported only

partial metrics (e.g., accuracy or AUC-ROC without

corresponding precision, recall, or F1-scores). These

inconsistencies limit the depth of direct comparisons. However,

based on the available data, the proposed hybrid method

demonstrates consistently strong performance across all reported

metrics and datasets, particularly in terms of recall and AUC-

ROC, which are crucial in imbalanced software defect prediction

tasks.

Figure 9: Comparative performance with (AL-Hadidi & Hasoon, 2024)

CONCLUSION

 The hybrid CNN-LSTM model with ADASYN balancing

and XGboost training actually ends up providing a much more

effective approach to software defect prediction. This particular

method clearly helps to strengthen the overall software quality

because it fully addresses many class imbalance issues and

eventually helps detect more complex patterns in software

metrics that might otherwise just go unnoticed.

 Using the benchmark dataset of CM1, KC1, PC1, PC4, and

MC1. The model achieves high performance in key evaluation

metrics, with average accuracy of 0.958 recall of 0.993, and

AUC-ROC of 0.987, significantly outperforming traditional

machine learning and standalone deep learning methods.

Notably, it achieves perfect recall on the CM1 dataset and near-

perfect AUC-ROC scores across all datasets, highlighting its

ability to detect defective modules with minimal false negatives,

which is crucial in real-world applications. The testing currently

shows that the hybrid approach performs much better than many

traditional machine learning methods, delivering more improved

accuracy and still maintains resilience in predictive modelling.

Additionally, the method’s effectiveness is fully demonstrated

through comparative analysis with some current models,

Chinyio et al/ Science Journal of University of Zakho, 13(4), 449-463October-December, 2025

462

particularly in terms of the AUC-ROC and recall metrics.

Moreover, further validation across different types of software

systems and some exploration of optimization techniques would

help to establish this method’s broader applicability in the field

of software engineering. These important innovations in software

defect prediction ultimately provide a more comprehensive

solution that effectively addresses many of the challenges that are

currently faced in modern software development. To further

validate the observed improvement, future work should include

statistical significance testing, like the Wilcoxon signed-rank test

or bootstrapping approaches, to guarantee the performance gains

are not random. A more detailed ablation study is recommended

to quantify the impact of each component on performance

metrics such as recall and AUC-ROC. This would provide deeper

insight into the effectiveness of the hybrid architecture and guide

future model optimization. Furthermore, exploring

hyperparameter optimization, model interpretability using XAI

techniques, and cross-project generalization can improve both

the practical utility and theoretical understanding of the model.

This study provides a reliable and scalable solution for software

defect prediction, offering valuable insights into how hybrid deep

learning and machine learning methods can be integrated to

improve predictive accuracy and assist automated quality

assurance in software development.

Acknowledgments:

 Special appreciation goes to the Biology Department at the

University of Zakho for providing the necessary facilities and

academic environment.

Author Contributions:

 The authors conducted all parts of this article.

Ethical Approval:

 This research did not require ethical approval because it

did not involve humans or animals.

Funding:

 None.

REFERENCES

Ahmed, S. F., Alam, M. S. B., Hassan, M., Rozbu, M. R., Ishtiak, T., Rafa,

N., & Gandomi, A. H. (2023). Deep Learning Modelling

Techniques: Current Progress, Applications, Advantages, and

Challenges. Artificial Intelligence Review, 56(11), 13521–

13617. https://doi.org/10.1007/s10462-023-10409-2

AL-Hadidi, T. N., & Hasoon, S. O. (2024). Software Defect Prediction

Using Extreme Gradient Boosting (XGBoost) with Optimization

Hyperparameter. Al-Rafidain Journal of Computer Sciences and

Mathematics (RJCM), 18(1), 22–29. https://doi.org

/10.33899/csmj.2023.142739.1081

Ali, M., Mazhar, T., Arif, Y., Al-Otaibi, S., Ghadi, Y. Y., Shahzad, T.,

Khan, M. A., & Hamam, H. (2024). Software Defect Prediction

Using an Intelligent Ensemble-Based Model. IEEE Access.

https://doi.org/10.1109/ACCESS.2024.3358201

Alkaberi, W., & Assiri, F. (2024). Predicting the Number of Software

Faults using Deep Learning. Engineering, Technology &

Applied Science Research, 14(2), 13222–13231.

https://doi.org/10.48084/etasr.6798

Alzeyani, E. M. M., & Szabó, C. (2024). Comparative Evaluation of

Model Accuracy for Predicting Selected Attributes in Agile

Project Management. Mathematics, 12(16), 2529.

https://doi.org/10.3390/math12162529

Charles, J. (2024). Revolutionizing Software Project Development: A

CNN-LSTM Hybrid Model for Effective Defect Prediction.

International Journal of Advanced Computer Science &

Applications, 15(1).

https://doi.org/10.14569/ijacsa.2024.0150158

Elentukh, A. (2023). People Make Mistakes–A Survey of Common

Causes of Software Defects. International Conference on

Computer Science and Education in Computer Science, 117–

133. https://doi.org/10.1007/978-3-031-44668-9_9

Farabet, C., Couprie, C., Najman, L., & LeCun, Y. (2013). Learning

Hierarchical Features for Scene Labeling. IEEE Transactions on

Pattern Analysis & Machine Intelligence, 8, 1915–1929.

https://doi.org/10.1109/TPAMI.2012.231

Farabet, C., Couprie, C., Najman, L., & LeCun, Y. (2013). Learning

Hierarchical Features for Scene Labeling. IEEE Transactions on

Pattern Analysis & Machine Intelligence, 8, 1915–1929.

https://doi.org/10.1109/TPAMI.2012.231

Farid, A. B., Fathy, E. M., Eldin, A. S., & Abd-Elmegid, L. A. (2021).

Software Defect Prediction Using Hybrid Model (CBIL) of

Convolutional Neural Network (CNN) and Bidirectional Long

Short-Term Memory (Bi-LSTM). PeerJ Computer Science, 7,

e739. https://doi.org/10.7717/peerj-cs.739

Feyzi, F., & Daneshdoost, A. (2023). Studying the effectiveness of deep

active learning in software defect prediction. International

Journal of Computers and Applications, 45(7–8), 534–552.

https://doi.org/10.1080/1206212X.2023.2252117

Ghotra, B., McIntosh, S., & Hassan, A. E. (2017). A large-scale study of

the impact of feature selection techniques on defect

classification models. 2017 IEEE/ACM 14th International

Conference on Mining Software Repositories (MSR), 146–157.

https://doi.org/10.1109/MSR.2017.18

Giray, G., Bennin, K. E., Köksal, Ö., Babur, Ö., & Tekinerdogan, B.

(2023). On the use of deep learning in software defect

prediction. Journal of Systems and Software, 195, 111537.

https://doi.org/10.1016/j.jss.2022.111537

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep feedforward

networks. Deep learning, 1, 161-217.

Goyal, S. (2022). Handling class-imbalance with KNN (neighbourhood)

under-sampling for software defect prediction. Artificial

Intelligence Review, 55(3), 2023–2064.

https://doi.org/10.1007/s10462-021-10044-w

Hussein, A. S., Li, T., Abd Ali, D. M., Bashir, K., & Yohannese, C. W.

(2020). A modified adaptive synthetic sampling method for

learning imbalanced datasets. Developments of Artificial

Intelligence Technologies in Computation and Robotics:

Proceedings of the 14th International FLINS Conference

(FLINS 2020), 76–83.

https://doi.org/10.1142/9789811223334_0010

Jin, C. (2021). Cross-project software defect prediction based on domain

adaptation learning and optimization. Expert Systems with

Applications, 171. https://doi.org/10.1016/j.eswa.2021.114637

Jude, A., & Uddin, J. (2024). Explainable Software Defects Classification

Using SMOTE and Machine Learning. Annals of Emerging

Technologies in Computing (AETiC), 8(1).

https://doi.org/10.33166/AETiC.2024.01.00

https://doi.org/10.1016/j.jss.2022.111537
https://doi.org/10.1142/9789811223334_0010

Chinyio et al/ Science Journal of University of Zakho, 13(4), 449-463October-December, 2025

463

Khalid, A., Badshah, G., Ayub, N., Shiraz, M., & Ghouse, M. (2023).

Software Defect Prediction Analysis Using Machine Learning

Techniques. Sustainability, 15(6).

https://doi.org/10.3390/su15065517

Khan, M. F. I., & Masum, A. K. M. (2024). Predictive Analytics and

Machine Learning for Real-Time Detection of Software Defects

and Agile Test Management. Educational Administration:

Theory and Practice, 30(4), 1051–1057.

Khleel, N. A. A., & Nehéz, K. (2022). A New Approach to Software

Defect Prediction Based on Convolutional Neural Network and

Bidirectional Long Short-Term Memory. Production Systems

and Information Engineering, 10(3), 1–18.

https://doi.org/10.32968/psaie.2022.3.1

Krasner, H. (2021). The cost of poor software quality in the US: A 2020

report. Proc. Consortium Inf. Softw. QualityTM (CISQTM), 2.

Kukkar, A., Mohana, R., Nayyar, A., Kim, J., Kang, B. G., & Chilamkurti,

N. (2019). A Novel Deep-Learning-Based Bug Severity

Classification Technique Using Convolutional Neural Networks

and Random Forest with Boosting. Sensors, 19(13), 2964.

https://doi.org/10.3390/s19132964

Kumar, L., Singh, V., Neti, L. B. M., Misra, S., & Krishna, A. (2023). An

Empirical Framework for Software Aging-Related Bug

Prediction using Weighted Extreme Learning Machine. FedCSIS

(Communication Papers), 181–188.

https://doi.org/10.15439/2023F9248

Maddipati, S., & Srinivas, M. (2021). A Hybrid Approach for Cost

Effective Prediction of Software Defects. International Journal

of Advanced Computer Science and Applications, 12.

https://doi.org/10.14569/IJACSA.2021.0120219

Mahmoud, A. N., Abdelaziz, A., Santos, V., & Freire, M. M. (2024). A

proposed model for detecting defects in software projects.

Indonesian Journal of Electrical Engineering and Computer

Science, 33(1), 290–302. https://doi.org /10.11591/ijeecs.v33.i1

Mehmood, I., Shahid, S., Hussain, H., Khan, I., Ahmad, S., Rahman, S.,

Ullah, N., & Huda, S. (2023). A Novel Approach to Improve

Software Defect Prediction Accuracy Using Machine Learning.

IEEE Access. https://doi.org /10.1109/ACCESS.2023.3287326

Menzies, T., Krishna, R., & Pryor, D. (2015). The Promise Repository of

Empirical Software Engineering Data.

http://openscience.us/repo

Nevendra, M., & Singh, P. (2022). A survey of software defect prediction

based on deep learning. Archives of Computational Methods in

Engineering, 29(7), 5723–5748.

https://doi.org/10.1007/s11831-022-09787-8

Olaleye, T. O., Arogundade, O. T., Misra, S., Abayomi-Alli, A., & Kose,

U. (2023). Predictive analytics and software defect severity: A

systematic review and future directions. Scientific

Programming, 2023(1), 6221388.

https://doi.org/10.1155/2023/6221388

Olorunshola, O. E., Irhebhude, M. E., Evwiekpaefe, A. E., & Ogwueleka,

F. N. (2020). Evaluation of machine learning classification

techniques in predicting software defects. Trans. Mach. Learn.

Artif. Intel, 8, 1–15.

Pachouly, J., Ahirrao, S., Kotecha, K., Selvachandran, G., & Abraham, A.

(2022). A systematic literature review on software defect

prediction using artificial intelligence: Datasets, Data Validation

Methods, Approaches, and Tools. Engineering Applications of

Artificial Intelligence, 111,

104773.https://doi.org/10.1016/j.engappai.2022.104773

Patil, D., Rane, N. L., Desai, P., & Rane, J. (2024). Machine learning and

deep learning: Methods, techniques, applications, challenges,

and future research opportunities. Trustworthy Artificial

Intelligence in Industry and Society, 28–81.

https://doi.org/10.70593/978-81-981367-4-9

Ponnala, R., & Reddy, C. (2023). Ensemble Model for Software Defect

Prediction Using Method Level Features of Spring Framework

Open Source Java Project for E-Commerce. Shu Ju Cai Ji Yu

Chu Li/Journal of Data Acquisition and Processing, 38, 1645–

1650. https://doi.org/10.5281/zenodo.7749985

Saidani, I., Ouni, A., & Mkaouer, M. W. (2022). Improving the prediction

of continuous integration build failures using deep learning.

Automated Software Engineering, 29(1), 21.

https://doi.org/10.1007/s10515-021-00319-5

Shafiq, M., Alghamedy, F. H., Jamal, N., Kamal, T., Daradkeh, Y. I., &

Shabaz, M. (2023). Retracted: Scientific programming using

optimized machine learning techniques for software fault

prediction to improve software quality. IET Software, 17(4),

694–704. https://doi.org/10.1155/2020/8858010

Shen, Z., & Chen, S. (2020). A survey of automatic software vulnerability

detection, program repair, and defect prediction techniques.

Security and Communication Networks, 2020(1), 8858010.

https://doi.org/10.1155/2020/8858010

Shepperd, M., Song, Q., Sun, Z., & Mair, C. (2018). NASA MDP Software

Defects Data Sets. figshare.

https://doi.org/10.6084/m9.figshare.c.4054940.v1

Tameswar, K., Suddul, G., & Dookhitram, K. (2022). A hybrid deep

learning approach with genetic and coral reefs metaheuristics for

enhanced defect detection in software. International Journal of

Information Management Data Insights, 2(2), 100105.

https://doi.org/10.1016/j.jjimei.2022.100105

Thomas, N. S., & Kaliraj, S. (2024). An Improved and Optimized

Random Forest Based Approach to Predict the Software Faults.

SN Computer Science, 5(5), 530.

https://doi.org/10.1007/s42979-024-02764-x

Vogel-Heuser, B., Fay, A., Schaefer, I., & Tichy, M. (2015). Evolution of

software in automated production systems: Challenges and

research directions. Journal of Systems and Software, 110, 54–

84. https://doi.org/10.1016/j.jss.2015.08.026

Wan, X., Zheng, Z., Qin, F., & Lu, X. (2024). Data complexity: A new

perspective for analyzing the difficulty of defect prediction

tasks. ACM Transactions on Software Engineering and

Methodology. https://doi.org/10.1145/3649596

Wang, D., Zhang, B., & Zhu, M. (2022). A survey on convolutional neural

network with its applications. Comput. Math. Appl., 83(3), 186–

206. https://doi.org/10.1016/j.camwa.2021.11.025

Wang, H., Zhuang, W., & Zhang, X. (2021). Software defect prediction

based on gated hierarchical LSTMs. IEEE Transactions on

Reliability, 70(2), 711–727.

https://doi.org/10.1109/TR.2020.3047396

Wang, S., Huang, L., Gao, A., Ge, J., Zhang, T., Feng, H., Satyarth, I., Li,

M., Zhang, H., & Ng, V. (2022). Machine/deep learning for

software engineering: A systematic literature review. IEEE

Transactions on Software Engineering, 49(3), 1188–1231.

https://doi.org/10.1109/TSE.2022.3173346

http://dx.doi.org/10.15439/2023F9248
https://doi.org/10.1155/2023/6221388
https://doi.org/10.1016/j.engappai.2022.104773
https://doi.org/10.1155/2020/8858010
https://doi.org/10.1155/2020/8858010
https://doi.org/10.1016/j.jjimei.2022.100105
https://doi.org/10.1016/j.jss.2015.08.026
https://doi.org/10.1145/3649596

