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ABSTRACT: 

The Sasa-Satsuma equation is an integrable higher-order nonlinear Schrodinger equation. In this paper, two schemes are 

proposed to study numerical solutions of the Sasa-Satsuma nonlinear Schrödinger equation with initial conditions using the 

Adomian decomposition method and the variational iteration method. Both approaches produce quickly convergent series 

for each scheme with particularly important features. The present results have been displayed graphically and, in a table, to 

demonstrate the effectiveness and applicability of those techniques. The results obtained by the Adomian decomposition 

method are compared with the exact solution as well as the results obtained by variational iteration method. A comparison 

between the two approaches reveals that the Adomian decomposition approach is closer and more efficient than the 

variational iteration approach.  

KEYWORDS: Sasa-Satsuma Equation, Nonlinear Schrödinger Equation, Numerical Solution, Adomian Decomposition 
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1. INTRODUCTION 

        Due to its fundamental structure in soliton transmission 

technology, the optical soliton pulse has significant uses in the 

telecommunications and optical fiber industries (Agrawal & 

Kivshar, 2003). According to the nonlinear Schrödinger equation 

(NLSE), which describes the fundamental events, the nonlinear 

form of the refractive index is directly proportional to the light 

intensity (Hamasalh, Murad, & Ismael, 2024). Furthermore, only 

the self-phase modulation effects and group velocity dispersion 

are taken into account in the NLSE (Adams & Hughes, 2019).  

However, it is important to consider the effects of stimulated 

Raman scattering, self-steepening, and third-order dispersion for 

ultrashort pulses in optical fibers (J. P. Wu & Geng, 2017). 

Owing to these effects, the Sasa-Satsuma equation (SSE) can be 

used to describe the dynamics of the ultrashort pulses. 

        One of the nontrivial integrable extensions of the NLSE is 

the SSE (C. Wu et al., 2022). While looking for integrable 

examples of a higher-order NLSE that Kodama and Hasegawa 

had proposed, Sasa and Satsuma came across it (Sasa & Satsuma, 

1991). Due to its huge use, it received a lot of attention and has 

been thoroughly researched (Arnous , Hamasalh, Murad, et al., 

2024; Li et al., 2020;). Thus, the purpose of this article is to 

analyses the numerical solution of the issue using the variation 

iteration method (VIM) and the Adomian decomposition method 

(ADM) and show how each approach affects the equation. Semi-

analytic techniques are the key concept behind those approaches. 

Additionally, as the new methods do not require the discretization 

of variables, computation round-off errors are not introduced, and 
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large computer memory and time are not required. However, the 

ADM considers the approximate solution to be an infinite series, 

which typically converges to the exact solution (Dehghan & 

Salehi, 2011). Moreover, a comparison between the exact 

solution and the numerical approaches will be conducted. 

        Adomian first proposed the decomposition technique at the 

start of the 1980s (Tatari et al., 2011). The ADM offers an 

efficient method for the analytical solution of a broad and 

extensive class of dynamical systems that represent actual 

physical issues (Bera & Ray, 2005; Kumar & Malik, 2023). The 

ADM is a well-known systematic approach for the practical 

solution of operator equations that are linear or nonlinear, 

deterministic or stochastic, such as integral equations, integro-

differential equations, ordinary differential equations, and partial 

differential equations (Azzo & Manaa, 2022; Duan et al., 2012; 

Sabali et al., 2021). In order to construct the numerical solution 

of the differential equations, the ADM has been successfully used 

as Kuramoto Sivashinsky Equation (Manaa et al., 2014), the 

Bagley–Torvik equation (Bera & Ray, 2005), coupled Burger’s 

equations (An & Chen, 2008), Time-Fractional Coupled Klein-

Gordon Schrodinger Equation (Fotros & Hesameddini, 2012), 

Fokker–Planck equation (Tatari et al., 2007), and so also (Sabali 

et al., 2018). It offers an effective numerical solution with few 

computations and can be used to find approximation or even 

closed-form analytical solutions of differential equations without 

linearization or perturbation (An & Chen, 2008; Hesameddini & 

Fotros, 2012). 

        Chinese mathematician Ji-Huan He proposed the VIM, 

which has recently been the subject of extensive research by 
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engineers and scientists and has been successfully applied to a 

variety of nonlinear issues, like the Duffing equation (He, 1999), 

the Schrödinger equation (Sadigh Behzadi, 2011), the self-

focusing NLSE (Wazwaz & Kaur, 2019), and the nonlinear 

fractional differential equation (Odibat & Momani, 2006). Its 

simplicity and ease of use are advantages, and it is based on the 

Lagrange multiplier (Al-Bar, &Sweilam , 2007). The approach 

has been demonstrated to solve a wide class of nonlinear 

problems efficiently, simply, and precisely. Usually, very 

accurate solutions are obtained after one or two iterations (Akram 

Abdulqadr & Nawzad Mustafa, 2025; Ghorbani & Saberi-

Nadjafi, 2009).  

 

2. MATHEMATICAL MODEL 

The formulation of SSE in its dimensionless form is as follows:

                                                    𝑖𝜓𝑡 +
1

2
𝜓𝑥𝑥 + |𝜓|2𝜓 + 𝑖𝛼(𝜓𝑥𝑥𝑥 + 6|𝜓|2𝜓𝑥 + 3(|𝜓|2)𝑥𝜓) = 0.                                                                (1) 

where 𝑖 = √−1. 

The symbol for time in dimensionless form is 𝑡, and the non-

dimensional distance is represented by 𝑥. 𝜓(𝑥, 𝑡), often known 

as the soliton profile, is the dependent variable with complex 

values. For the integrable nonlinear Schrödinger perturbation, the 

positive real parameter 𝛼 is used. The exact soliton solution of 

equation (1), as in Akhmediev et al. (2015), is: 

  

                                                                      𝜓(𝑥, 𝑡) = 𝜁𝑡𝑎𝑛ℎ(𝜎𝑥 + 𝛾𝑡)𝑒𝑖(𝜃𝑥+𝜆𝑡),                                                                                  (2) 

and the initial condition is: 

                                                                              𝜓(𝑥, 0) = 𝜁𝑡𝑎𝑛ℎ(𝜎𝑥)𝑒𝑖𝜃𝑥 .                                                                                          (3) 

Where 𝜁 =
−𝑖√𝜔2(1+6𝜃𝛼−𝜔𝛼)

2√1+6𝜃𝛼−2𝜔𝛼
  , 𝜎 =

𝜔

2
,  𝛾 =

𝜂

2
 and 𝛼, 𝜔, 𝜂, 𝜃 ∈ ℝ.   

3. ADOMIAN DECOMPOSITION METHOD 

In this section, the fundamental concept of the ADM and the derivative of it on the SSE will be introduced.  

Basic Idea of the Adomian Decomposition Method: 

Consider the following nonlinear differential equation:

                                                                            ℓ(𝜓(𝑥, 𝑡)) = ℜ(𝜓) + ℵ(𝜓).                                                                                             (4) 

The operator of the higher-order derivatives is denoted by ℓ, ℵ(𝜓) is a nonlinear term and ℜ(𝜓) a linear term. Under the initial 

conditions:  

                                                                                    𝜓(𝑥, 0) = ℏ(𝑥).                                                                                                                 (5) 

Using the specified condition and applying the inverse operator ℓ𝑡
−1 = ∫ (. )𝑑𝑡

𝑡

0
 to both sides of equation (4), we get 

     𝜓(𝑥, 𝑡) = ℏ(𝑥) + ℓ𝑡
−1(ℜ(𝜓)) + ℓ𝑡

−1(ℵ(𝜓)).                                                                           (6) 

The sum of the generic solution to the following equation is 

       𝜓(𝑥, 𝑡) = ∑ 𝜓𝑛
∞
𝑛=0 .                                                                                                     (7) 

Also, ℵ(𝜓) which is usually represented by the sum of series, and it is the nonlinear operator 

                                                                                   ℵ(𝜓) = ∑ Α𝑛
∞
𝑛=0 .                                                                                                    (8) 

Where Α𝑛 is Adomian’s polynomial of 𝜓0(𝑥), 𝜓1(𝑥), 𝜓2(𝑥),…  which is defined as 

                                                                               Α𝑛 =
1

𝑛!
(

𝑑𝑛

𝑑𝜆𝑛
(ℵ(∑ 𝜆𝑖𝜓𝑖

𝑛
𝑖=0 )))

𝜆=0
.                                                                             (9) 

The following recursive relations are now available to us by the ADM: 

                                                                                  𝜓0(𝑥, 𝑡) = ℏ(𝑥).                                                                                                            (10)      

                                                                  𝜓𝑛+1(𝑥, 𝑡) = ℓ𝑡
−1(ℜ(𝜓𝑛)) + ℓ𝑡

−1(ℵ(𝜓𝑛)).                                                                                   (11) 

Derivative of Adomian Decomposition Method for Sasa-Satsuma Equation:  

Consider the SSE (1) in an operator form: 

                                    𝑖ℓ𝑡(𝜓) +
1

2
ℓ𝑥𝑥(𝜓) + |𝜓|2𝜓 + 𝑖𝛼(ℓ𝑥𝑥𝑥(𝜓) + 6|𝜓|2ℓ𝑥(𝜓) + 3𝜓ℓ𝑥(|𝜓|2)) = 0.                                             (12) 

Where,  ℓ𝑡 =
𝜕

𝜕𝑡
, ℓ𝑥 =

𝜕

𝜕𝑥
, ℓ𝑥𝑥 =

𝜕2

𝜕𝑥2, and ℓ𝑥𝑥𝑥 =
𝜕3

𝜕𝑥3. 

Applying the inverse operator ℓ𝑡
−1 to both sides of the equation (12) and using the initial condition (5), yields 

           𝜓(𝑥, 𝑡) = ℏ(𝑥) +
1

2
𝑖ℓ𝑡

−1(ℓ𝑥𝑥(𝜓)) + 𝑖ℓ𝑡
−1(|𝜓|2𝜓) − 𝛼 (ℓ𝑡

−1(ℓ𝑥𝑥𝑥(𝜓)) + 6ℓ𝑡
−1(|𝜓|2ℓ𝑥(𝜓)) + 3ℓ𝑡

−1(𝜓ℓ𝑥(|𝜓|2))).                (13) 

Usually, the solutions 𝜓(𝑥, 𝑡) defined as an infinite series 

∑ 𝜓𝑛
∞
𝑛=0 = ℏ(𝑥) +

1

2
𝑖ℓ𝑡

−1(ℓ𝑥𝑥(∑ 𝜓𝑛
∞
𝑛=0 )) + 𝑖ℓ𝑡

−1(∑ Α𝑛
∞
𝑛=0 ) − 𝛼 (ℓ𝑡

−1(ℓ𝑥𝑥𝑥(∑ 𝜓𝑛
∞
𝑛=0 )) + 6ℓ𝑡

−1(∑ Β𝑛
∞
𝑛=0 ) + 3ℓ𝑡

−1(∑ C𝑛
∞
𝑛=0 )).   (14) 

Then, we get  

                                                                                       𝜓0(𝑥, 𝑡) = ℏ(𝑥),                                                                                               (15) 

                              𝜓𝑛+1(𝑥, 𝑡) =
1

2
𝑖ℓ𝑡

−1(ℓ𝑥𝑥(𝜓𝑛)) + 𝑖ℓ𝑡
−1(Α𝑛) − 𝛼 (ℓ𝑡

−1(ℓ𝑥𝑥𝑥(𝜓𝑛)) + 6ℓ𝑡
−1(Β𝑛) + 3ℓ𝑡

−1(𝐶𝑛)).                              (16) 

Where Α = ℵ(𝜓) = 𝜓|𝜓|2, Β = ℵ(𝜓) = |𝜓|2 𝜕𝜓

𝜕𝑥
, and 𝐶 = ℵ(𝜓) = 𝜓

𝜕|𝜓|2

𝜕𝑥
, are the Adomian polynomial which is defined by (9), and 

can be de rived by 

Α0 = 𝜓0
2𝜓0

̅̅̅̅ , Α1 = 𝜓0
2𝜓1

̅̅̅̅ + 2𝜓0𝜓0
̅̅̅̅ 𝜓1, … 



Salih and manaa/ Science Journal of University of Zakho, 13(3), 400-407 July-September, 2025 

 

402 

 

Β0 = 𝜓0𝜓0
̅̅̅̅ 𝜕𝜓1

𝜕𝑥
, Β1 = 𝜓0𝜓0

̅̅̅̅ 𝜕𝜓1

𝜕𝑥
+ 𝜓0𝜓1

̅̅̅̅ 𝜕𝜓0

𝜕𝑥
+ 𝜓1𝜓0

̅̅̅̅ 𝜕𝜓0

𝜕𝑥
, ...  

𝐶0 = 𝜓0
𝜕

𝜕𝑥
(𝜓0𝜓0

̅̅̅̅ ), 𝐶1 = 𝜓1
𝜕

𝜕𝑥
(𝜓0𝜓0

̅̅̅̅ ) + 𝜓0
𝜕

𝜕𝑥
(𝜓0𝜓1

̅̅̅̅ ) + 𝜓0
𝜕

𝜕𝑥
(𝜓1𝜓0

̅̅̅̅ ). 

Similar methods can be used to construct other polynomials. The first few elements of 𝜓𝑛(𝑥, 𝑡) appear right away after establishing 

                                                                                 𝜓0 = ℏ(𝑥),                                                                                                             (17) 

                                      𝜓1 =
1

2
𝑖ℓ𝑡

−1(ℓ𝑥𝑥(𝜓0)) + 𝑖ℓ𝑡
−1(Α0) − 𝛼 (ℓ𝑡

−1(ℓ𝑥𝑥𝑥(𝜓0)) + 6ℓ𝑡
−1(Β0) + 3ℓ𝑡

−1(𝐶0)),                                    (18) 

                                       𝜓2 =
1

2
𝑖ℓ𝑡

−1(ℓ𝑥𝑥(𝜓1)) + 𝑖ℓ𝑡
−1(Α1) − 𝛼 (ℓ𝑡

−1(ℓ𝑥𝑥𝑥(𝜓1)) + 6ℓ𝑡
−1(Β1) + 3ℓ𝑡

−1(𝐶1)).                                     (19) 

Then    

                                                      𝜓(𝑥, 𝑡) = ∑ 𝜓𝑛
∞
𝑛=0 = 𝜓0(𝑥, 𝑡) + 𝜓1(𝑥, 𝑡) + 𝜓2(𝑥, 𝑡) + ⋯.                                                            (20) 

VARIATIONAL ITERATION METHOD 

This section aims to introduce the fundamental concept of the VIM and its application to the SSE. 

Basic Idea of the Variational Iteration Method: 

Examine a nonlinear differential equation in its generic form: 

                                                                            ℓ(𝜓(𝑥, 𝑡)) = ℜ(𝜓) + ℵ(𝜓).                                                                                            (21) 

The VIM permits the application of a correction functional like 

                                                 𝜓𝑛+1(𝑥, 𝑡) = 𝜓𝑛(𝑥, 𝑡) + ∫ 𝜆(𝜏) (ℓ(𝜓(𝑥, 𝑡)) − ℜ(𝜓) − ℵ(𝜓)) 𝑑𝜏
𝑡

0
.                                                           (22) 

where 𝜆 is a general Lagrange multiplier. Be aware that the 

Lagrange multiplier 𝜆 can be either a function or a constant and 

that 𝜓̃𝑛  is a limited value, meaning it acts like a constant, this 

leads to 𝛿𝜓̃𝑛 = 0, where 𝛿 is the variational derivative. It has 

been demonstrated in the literature that the variational theory 

provides the best way to identify the Lagrange multiplier 𝜆. The 

successive approximations 𝜓𝑛+1(𝑥, 𝑡), 𝑛 ≥ 0 of the solution 

𝜓(𝑥, 𝑡) can be easily obtained using the resulting Lagrange 

multiplier and any function 𝜓0. Consequently, the remedy is

                                                                               𝜓(𝑥, 𝑡) = lim
𝑛→∞

𝜓𝑛(𝑥, 𝑡).                                                                                           (23) 

Derivative of Variational Iteration Method for Sasa-Satsuma Equation: 

Consider the SSE (1), The function for rectification is supplied by 

                       𝜓𝑛+1(𝑥, 𝑡) = 𝜓𝑛(𝑥, 𝑡) + ∫ 𝜆(𝜏) (
𝜕𝜓𝑛

𝜕𝜏
− 𝑖

1

2

𝜕2𝜓𝑛

𝜕𝑥2
− 𝑖|𝜓𝑛|2𝜓𝑛 + 𝛼 (

𝜕3𝜓𝑛

𝜕𝑥3
+ 6|𝜓𝑛|2 𝜕𝜓𝑛

𝜕𝑥
+ 3𝜓𝑛

𝜕|𝜓𝑛|2

𝜕𝑥
)) 𝑑𝜏

𝑡

0
.                 (24) 

where we used 𝜆(𝜏) = −1. Adding to the correction function equation (24)          

                          𝜓𝑛+1(𝑥, 𝑡) = 𝜓𝑛(𝑥, 𝑡) − ∫
𝜕𝜓𝑛

𝜕𝜏
− 𝑖

1

2

𝜕2𝜓𝑛

𝜕𝑥2
− 𝑖|𝜓𝑛|2𝜓𝑛 + 𝛼 (

𝜕3𝜓𝑛

𝜕𝑥3
+ 6|𝜓𝑛|2 𝜕𝜓𝑛

𝜕𝑥
+ 3𝜓𝑛

𝜕|𝜓𝑛|2

𝜕𝑥
) 𝑑𝜏

𝑡

0
.                           (25) 

The initial condition can be used to choose option 𝜓0 = 𝑓(𝑥). The subsequent approximations obtained by including this selection into 

the correction function are as follows: 

                                                                                        𝜓0(𝑥, 𝑡) = ℏ(𝑥),                                                                                             (26) 

                              𝜓1(𝑥, 𝑡) = 𝜓0(𝑥, 𝑡) − ∫
𝜕𝜓0

𝜕𝜏
− 𝑖

1

2

𝜕2𝜓0

𝜕𝑥2 − 𝑖|𝜓0|2𝜓0 + 𝛼 (
𝜕3𝜓0

𝜕𝑥3 + 6|𝜓0|2 𝜕𝜓0

𝜕𝑥
+ 3𝜓0

𝜕|𝜓0|2

𝜕𝑥
) 𝑑𝜏

𝑡

0
,                            (27) 

                              𝜓2(𝑥, 𝑡) = 𝜓1(𝑥, 𝑡) − ∫
𝜕𝜓1

𝜕𝜏
− 𝑖

1

2

𝜕2𝜓1

𝜕𝑥2 − 𝑖|𝜓1|2𝜓1 + 𝛼 (
𝜕3𝜓1

𝜕𝑥3 + 6|𝜓1|2 𝜕𝜓1

𝜕𝑥
+ 3𝜓1

𝜕|𝜓1|2

𝜕𝑥
) 𝑑𝜏

𝑡

0
.                              (28) 

In a similar way, we can find others. Then, the approximate solutions will take the forms:                                

                                                                             𝜓(𝑥, 𝑡) = lim
𝑛→∞

𝜓𝑛(𝑥, 𝑡) ≈ 𝜓𝑛.                                                                                   (29) 

where 𝑛 is the closing iteration step. 

APPLICATION WITH NUMERICAL RESULT 

This section compares the findings of the current research with the exact answer by using the method covered in the previous section 

to determine the numerical solution of the SSE.  

The numerical result of equation (1) when  𝜂 = 6, 𝜔 = 4, 𝛼 = 1, 𝜆 = 3, 𝑎𝑛𝑑 𝜃 = 2 obtained by ADM can be seen below 

                                                                                 𝜓0 = −
6 √5 tanh(2 𝑥) e2 𝑥 i i

5
.                                                                                      (30) 

      𝜓1 = −
6 √5 tanh(2𝑥) e2𝑥 i i

5
−

12 √5 𝑡 e2 𝑥 i 

25
(552 tanh4(2𝑥) i + 308 tanh3(2𝑥) − 642 tanh2(2𝑥) i − 125 tanh(2𝑥) + 90 i).           (31) 

𝜓2 =
6 √5 e2 𝑥 i 

125 cosh(2 𝑥)7
(66978 i sinh(2 𝑥) 𝑡2 cosh6(2 𝑥) + 1210440 𝑡2 cosh5(2 𝑥) + 492800 i sinh(2 𝑥) 𝑡2 cosh4(2 𝑥) −

4111680 𝑡2 cosh3(2 𝑥) − 4611696 i sinh(2 𝑥) 𝑡2 𝑐𝑜𝑠ℎ2(2 𝑥) + 3141600 𝑡2 cosh(2 𝑥) + 5511168 i sinh(2 𝑥) 𝑡2 −

1830 sinh(2 𝑥) 𝑡 cosh6(2 𝑥) + 4620 𝑡 cosh5(2 𝑥) i + 3080 sinh(2 𝑥) 𝑡 cosh4(2 𝑥) − 5520 𝑡 cosh3(2 𝑥) i −

25 i sinh(2 𝑥) cosh6(2 𝑥)).                                                                                                                                                                     (32) 

The numerical result of equation (1) obtained by VIM can be seen below 

                                                                                   𝜓0 = −
6 √5 tanh(2 𝑥) e2 𝑥 i i

5
.                                                                                    (33)                                     

𝜓1 = −
6 √5 tanh(2 𝑥) e2 𝑥 i i

5
−

12 √5 𝑡 e2 𝑥 i 

25
(552 tanh4(2 𝑥) i + 308 tanh3(2 𝑥) − 642 tanh2(2 𝑥) i − 125 tanh(2 𝑥) + 90 i).                (34) 
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𝜓2 = −
6 √5 e2 𝑥 i 

3125
(1162574954496 𝑡4 tanh13(2𝑥) i + 700809449472 𝑡4 𝑡𝑎𝑛ℎ12(2𝑥) − 4300513191936 𝑡4 𝑡𝑎𝑛ℎ11(2𝑥) i −

2135661244416 𝑡4 𝑡𝑎𝑛ℎ10(2𝑥) + 6284349960192 𝑡4 𝑡𝑎𝑛ℎ9(2𝑥) i + 2511944593920 𝑡4 𝑡𝑎𝑛ℎ8(2𝑥) −

4553215075584 𝑡4 𝑡𝑎𝑛ℎ7(2𝑥) i − 1398917039616 𝑡4 𝑡𝑎𝑛ℎ6(2𝑥) + 1662345013248 𝑡4 𝑡𝑎𝑛ℎ5(2𝑥) i +

360541279440 𝑡4 𝑡𝑎𝑛ℎ4(2𝑥) − 277954213320 𝑡4 𝑡𝑎𝑛ℎ3(2𝑥) i − 40169206800 𝑡4 𝑡𝑎𝑛ℎ2(2𝑥) + 17558791200 𝑡4 tanh(2 𝑥) i +

1452168000 𝑡4 + 15795855360 𝑡3 tanh10(2𝑥) i + 7799362560 𝑡3 tanh9(2𝑥) − 44178232320 𝑡3 tanh8(2𝑥) i −

17265465600 𝑡3 tanh7(2𝑥) + 42959669760 𝑡3 tanh6(2𝑥) i + 12078782400 𝑡3 tanh5(2𝑥) − 16543569600 𝑡3 tanh4(2𝑥) i −

2685620400 𝑡3 tanh3(2𝑥) + 2012932800 𝑡3 tanh2 (2𝑥)i + 161352000 𝑡3 tanh(2 𝑥) − 46656000 𝑡3 i +

137779200 𝑡2 tanh7(2𝑥) i + 78540000 𝑡2 tanh6(2𝑥) − 298045200 𝑡2 tanh5(2𝑥) i − 132828000 𝑡2 tanh4(2𝑥) +

195072800 𝑡2 tanh3(2𝑥) i + 60297000 𝑡2 tanh2(2𝑥) − 36481250 𝑡2 tanh(2 𝑥) i − 6009000 𝑡2 + 138000 𝑡 tanh4 (2𝑥)i +

77000 𝑡 tanh3(2𝑥) − 160500 𝑡 tanh2(2𝑥) i − 31250 𝑡 tanh(2 𝑥) + 22500 𝑡 i + 625 tanh(2𝑥) i).                                                  (35) 

 

Table 1: Exact solution and approximation solution of the methods:  ADM, and VIM as 𝑡 = 0.0001  and −4 ≤ 𝑥 ≤ 4. 

𝑥 Exact ADM VIM 

-4 7.19999675704251 7.19999687520657 7.19999687147890 

-3.1 7.19988131443288 7.19988570020443 7.19988569647741 

-2.2 7.19565759196166 7.19581796926491 7.19581796556179 

-1.3 7.04276818063409 7.04838142211047 7.04838142057263 

-0.4 3.17319894806841 3.20804302110690 3.20804311584250 

0.5 4.17756629096868 4.13432907550746 4.13432909999134 

1.4 7.09434775438805 7.09042053762901 7.09042053517082 

2.3 7.19709239790624 7.19698151480717 7.19698151109463 

3.2 7.19992053788026 7.19991750374966 7.19991750002243 

4 7.19999676093172 7.19999663559850 7.19999663187084 

 

Table 2: The absolute error of exact solution, ADM, and VIM as 𝑡 = 0.0001  and −4 ≤ 𝑥 ≤ 4. 

|𝜓𝐴𝐷𝑀 − 𝜓𝐸𝑥𝑎𝑐𝑡| |𝜓𝑉𝐼𝑀 − 𝜓𝐸𝑥𝑎𝑐𝑡| 

1.18164058982018e-07 1.14436392806283e-07 

4.38577155392750e-06 4.38204453612201e-06 

1.60377303251025e-04 1.60373600129660e-04 

5.61324147637698e-03 5.61323993853691e-03 

3.48440730384874e-02 3.48441677740858e-02 

4.32372154612253e-02 4.32371909773401e-02 

3.92721675904717e-03 3.92721921722838e-03 

1.10883099069703e-04 1.10886811606647e-04 

3.03413060009916e-06 3.03785782840293e-06 

1.25333221134838e-07 1.29060884646037e-07 

Total 

|𝜓𝐴𝐷𝑀 − 𝜓𝐸𝑥𝑎𝑐𝑡| |𝜓𝑉𝐼𝑀 − 𝜓𝐸𝑥𝑎𝑐𝑡| 

8.790067053689166e-02 8.790074171856954e-02 



Salih and manaa/ Science Journal of University of Zakho, 13(3), 400-407 July-September, 2025 

 

404 

 

 

 

 

(a) Exact solution of SSE. 

 

(b) ADM of SSE. 

 

(c) VIM of SSE. 

Figure 1: The 3D mesh of the exact solution, ADM, and VIM for SSE

.
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(a) The curves of ADM and VIM to the exact solution. 

 
(b) The zooming curves of ADM and VIM to the exact solution. 

Figure 2: The curves show how ADM, and VIM are closer to the exact solution for SSE. While selecting 𝜓3 from both methods, 

when −4 ≤ x ≤ 4 and 𝑡 = 0.0001. 

CONCLUSION 

        In several applications, including optics, higherorder and 

multicomponent versions of the NLSE are significant. One of 

these equations, the integrable SSE, has particularly interesting 

soliton solutions. In this study, the numerical solution of this 

equation was developed for the first time by both numerical 

methods, ADM and VIM. Both methods for computing series or 

exact solutions are significant in applied sciences due to their 

direct application to all differential and integral equations, 

reducing computational work while maintaining high numerical 

accuracy. Both methods demonstrate effectiveness in finding 

exact solutions to nonlinear problems. Moreover, the VIM 

requires the evaluation of the Lagrange multiplier, whereas ADM 

requires the evaluation of the Adomian polynomials that mostly 

require tedious algebraic calculations. Furthermore, the 

numerical results that are obtained are compared with the exact 

solution while choosing 𝜓3 from both methods. The results 

indicate that the absolute error of the ADM is smaller than the 

VIM, as shown in table (2) and figure (2). As a result, the ADM 

produces more accurate results compared with the VIM. The high 

agreement of the approximation of 𝜓(𝑥) between the methods 

makes them an alternative for solving the NLSEs. Further work 
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will focus on comparing the results obtained with a new 

numerical method and those obtained using the current methods.   
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