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ABSTRACT:

The Sasa-Satsuma equation is an integrable higher-order nonlinear Schrodinger equation. In this paper, two schemes are
proposed to study numerical solutions of the Sasa-Satsuma nonlinear Schrodinger equation with initial conditions using the
Adomian decomposition method and the variational iteration method. Both approaches produce quickly convergent series
for each scheme with particularly important features. The present results have been displayed graphically and, in a table, to
demonstrate the effectiveness and applicability of those techniques. The results obtained by the Adomian decomposition
method are compared with the exact solution as well as the results obtained by variational iteration method. A comparison
between the two approaches reveals that the Adomian decomposition approach is closer and more efficient than the

variational iteration approach.

KEYWORDS: Sasa-Satsuma Equation, Nonlinear Schrodinger Equation, Numerical Solution, Adomian Decomposition
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1. INTRODUCTION

Due to its fundamental structure in soliton transmission
technology, the optical soliton pulse has significant uses in the
telecommunications and optical fiber industries (Agrawal &
Kivshar, 2003). According to the nonlinear Schrédinger equation
(NLSE), which describes the fundamental events, the nonlinear
form of the refractive index is directly proportional to the light
intensity (Hamasalh, Murad, & Ismael, 2024). Furthermore, only
the self-phase modulation effects and group velocity dispersion
are taken into account in the NLSE (Adams & Hughes, 2019).
However, it is important to consider the effects of stimulated
Raman scattering, self-steepening, and third-order dispersion for
ultrashort pulses in optical fibers (J. P. Wu & Geng, 2017).
Owing to these effects, the Sasa-Satsuma equation (SSE) can be
used to describe the dynamics of the ultrashort pulses.

One of the nontrivial integrable extensions of the NLSE is
the SSE (C. Wu et al, 2022). While looking for integrable
examples of a higher-order NLSE that Kodama and Hasegawa
had proposed, Sasa and Satsuma came across it (Sasa & Satsuma,
1991). Due to its huge use, it received a lot of attention and has
been thoroughly researched (Arnous , Hamasalh, Murad, et al.,
2024; Li et al., 2020;). Thus, the purpose of this article is to
analyses the numerical solution of the issue using the variation
iteration method (VIM) and the Adomian decomposition method
(ADM) and show how each approach affects the equation. Semi-
analytic techniques are the key concept behind those approaches.
Additionally, as the new methods do not require the discretization
of variables, computation round-off errors are not introduced, and
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large computer memory and time are not required. However, the
ADM considers the approximate solution to be an infinite series,
which typically converges to the exact solution (Dehghan &
Salehi, 2011). Moreover, a comparison between the exact
solution and the numerical approaches will be conducted.

Adomian first proposed the decomposition technique at the
start of the 1980s (Tatari et al, 2011). The ADM offers an
efficient method for the analytical solution of a broad and
extensive class of dynamical systems that represent actual
physical issues (Bera & Ray, 2005; Kumar & Malik, 2023). The
ADM is a well-known systematic approach for the practical
solution of operator equations that are linear or nonlinear,
deterministic or stochastic, such as integral equations, integro-
differential equations, ordinary differential equations, and partial
differential equations (Azzo & Manaa, 2022; Duan et al., 2012;
Sabali et al., 2021). In order to construct the numerical solution
of'the differential equations, the ADM has been successfully used
as Kuramoto Sivashinsky Equation (Manaa et al., 2014), the
Bagley—Torvik equation (Bera & Ray, 2005), coupled Burger’s
equations (An & Chen, 2008), Time-Fractional Coupled Klein-
Gordon Schrodinger Equation (Fotros & Hesameddini, 2012),
Fokker—Planck equation (Tatari et al., 2007), and so also (Sabali
et al., 2018). It offers an effective numerical solution with few
computations and can be used to find approximation or even
closed-form analytical solutions of differential equations without
linearization or perturbation (An & Chen, 2008; Hesameddini &
Fotros, 2012).

Chinese mathematician Ji-Huan He proposed the VIM,
which has recently been the subject of extensive research by
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engineers and scientists and has been successfully applied to a
variety of nonlinear issues, like the Duffing equation (He, 1999),
the Schrodinger equation (Sadigh Behzadi, 2011), the self-
focusing NLSE (Wazwaz & Kaur, 2019), and the nonlinear
fractional differential equation (Odibat & Momani, 2006). Its
simplicity and ease of use are advantages, and it is based on the
Lagrange multiplier (Al-Bar, &Sweilam , 2007). The approach

2. MATHEMATICAL MODEL

The formulation of SSE in its dimensionless form is as follows:

has been demonstrated to solve a wide class of nonlinear
problems efficiently, simply, and precisely. Usually, very
accurate solutions are obtained after one or two iterations (Akram
Abdulqadr & Nawzad Mustafa, 2025; Ghorbani & Saberi-
Nadjafi, 2009).

ithe + 5 Pux + [WYIP + i@y + 61912, + 3(PI2)h) = 0. (1

where i = v—1.

The symbol for time in dimensionless form is ¢, and the non-
dimensional distance is represented by x. (x,t), often known
as the soliton profile, is the dependent variable with complex

values. For the integrable nonlinear Schrodinger perturbation, the
positive real parameter a is used. The exact soliton solution of
equation (1), as in Akhmediev et al. (2015), is:

Y(x,t) = (tanh(ox + yt)el6x+at) @

and the initial condition is:
P(x,0) = {tanh(ox)ef*. 3)
_ —iyw?(1+60a-wa) _w
Where ¢ = Witeda—zea ° " 2
3. ADOMIAN DECOMPOSITION METHOD

y =§anda,w,n,6 eR.

In this section, the fundamental concept of the ADM and the derivative of it on the SSE will be introduced.

Basic Idea of the Adomian Decomposition Method:

Consider the following nonlinear differential equation:

2(p(x, 1)) = R(W) + R(@). “)
The operator of the higher-order derivatives is denoted by ¢, X() is a nonlinear term and R(p) a linear term. Under the initial
conditions:

Y(x,0) = alx). ®)
Using the specified condition and applying the inverse operator £z = [ Ot (.)dt to both sides of equation (4), we get
P(x, ) = h(x) + &1 (RW)) + £ (R@W)). (6)
The sum of the generic solution to the following equation is
Y(x,t) = Xnzo Yn- O
Also, X(3p) which is usually represented by the sum of series, and it is the nonlinear operator
R(Y) = Yo An. ®
Where A, is Adomian’s polynomial of 1y (x), 1 (x), P, (x),... which is defined as
An =5 (3@ 2 w)) ©)
The following recursive relations are now available to us by the ADM:
Po(x, 1) = h(x). 10)
Ynar (6 1) = £ (RW) + €21 (RWn)- an
Derivative of Adomian Decomposition Method for Sasa-Satsuma Equation:
Consider the SSE (1) in an operator form:
£ (Y) + %’gxx(w) + Y12 + i@ (Lax () + 61912, () + 3L, (19]D) = 0. (12)

here, £, =2 6, =2 ¢ =2 andt,,, =2
Where, t = optx T op xx_ﬁ,an xxx T 3t

Applying the inverse operator £z ! to both sides of the equation (12) and using the initial condition (5), yields

Y, 6) = h() + 3181 (e (@) + 187 (129) — @ (€7 (L)) + 6£57 (110120 (W) + 322 (W (1P17))). (13)
Usually, the solutions 1(x, t) defined as an infinite series
ot = 100) + 217 (Lax (Do W)) + 105 (D0 An) — & (£ (Baex (Do W) + 677 (T By) + 36 (B0 C) ). (14)
Then, we get

Po(x, t) = h(x), 15)
Ynea (6 8) = 208 (L () + 187 (An) = @ (£ (Bax () + 687 (B) +3£77(C))- (16)
20¢ ayI?

Where A = R() = Y[Y[?, B = RY) = ]
can be de rived by
Ao = Pgo, Ay = W51 + 2oty -

3 and C = X@WY) =y 5, are the Adomian polynomial which is defined by (9), and
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By = o %a B, = 1!’0410 a¢1 + 11101,01 81/10 + 1P, a(;/:,
Co = oo (Woibo). C1 = a(lpolﬁo) + zpo = (o) + Yo o= (1 o).

Similar methods can be used to construct other polynomials. The first few elements of 1, (x, t) appear right away after establishing

Yo = h(x), 17
Y1 = 2067 (Lx (o)) + 187 (Ao) — @ (7 (£xrx(h0)) + 672 (Bo) + 3£:2(Co) ). (18)
Yy = 208 (L hr)) + 1271 (Ar) — @ (€7 (LraaGhr)) + 6671 (By) +3£.1(C1))- (19)
Then
Y, t) = Xnzo¥n = Po(x, ) + 1 (x,0) + o (x, 1) + - (20)
VARIATIONAL ITERATION METHOD
This section aims to introduce the fundamental concept of the VIM and its application to the SSE.
Basic Idea of the Variational Iteration Method:
Examine a nonlinear differential equation in its generic form:
£(Y(x, ) = R@W) + RW). @1
The VIM permits the application of a correction functional like
Yrea (6 8) = PG ) + [ 20) (€((x, ) = REP) — K@) d. 22)

where A is a general Lagrange multiplier. Be aware that the
Lagrange multiplier A can be either a function or a constant and
that ¥, is a limited value, meaning it acts like a constant, this
leads to 81, = 0, where & is the variational derivative. It has

been demonstrated in the literature that the variational theory
provides the best way to identify the Lagrange multiplier A. The
successive approximations P,41(x,t),n =0 of the solution
P(x,t) can be easily obtained using the resulting Lagrange

multiplier and any function ¥,. Consequently, the remedy is

P(x,t) = lim P (x, 0). (23)

Derivative of Variational Iteration Method for Sasa-Satsuma Equation:
Consider the SSE (1), The function for rectification is supplied by
Py, 10%yYy . %Yy, oPn dln
Yrea (6, 8) = P (6, 8) + [ (D) ( Un 1800 iy |2y + (S lap 2 2L 4 3y, P )) dr.
where we used A(7) = —1. Adding to the correction function equation (24)
) dr.

2 dx2
t 0y, 10%yY, . Yy
Yrea (0 0) = P 0) — [T 22— i 2000y 12y, + o (224 6]y, 12 222 + 3y, (25)
The initial condition can be used to choose optlon Yo = f(x). The subsequent approx1mat10ns obtamed by mcluding this selection into

24

3Py, alllin

2 9x?

the correction function are as follows:

Po(x, t) = h(x), (26
a a 33 a a
Y100 0) = o) — fy 2o — 2280 2y + (2L 4 6y |2 22 + 3 AL ar, 27)
oY, 2y, . 3, P, Ay,
Yoo ) =y 0o ) = 2 — 280y 2, + o (Tt )y |22 4 3y, “” MWL) . (28)
In a similar way, we can find others. Then, the approximate solutions will take the forms:
P06, 6) = lim Yo (6,6) = . 29)

where n is the closing iteration step.

APPLICATION WITH NUMERICAL RESULT

This section compares the findings of the current research with the exact answer by using the method covered in the previous section
to determine the numerical solution of the SSE.

The numerical result of equation (1) when n = 6,w = 4,a = 1,4 = 3,and 6 = 2 obtained by ADM can be seen below
6+/5tanh(2x)e2*1j

P = — St (30)
65 tanh(2x) e?*1i 125 te?*! 4 . 3 2 . .
P =— - - = (552 tanh*(2x) i + 308 tanh?(2x) — 642 tanh?(2x) i — 125 tanh(2x) + 901). 31)
_ _6y5e?* i 2 6 2 5 i 2 4 _
Y, = 25 cosh (2 2)7 (66978lsmh(2 x) t% cosh®(2 x) + 1210440 t* cosh>(2 x) + 492800 i sinh(2 x) t* cosh*(2 x)
4111680 t2 cosh3(2 x) — 46116961 sinh(2 x) t? cosh?(2 x) + 3141600 t2 cosh(2 x) + 5511168isinh(2 x) t% —
1830 5sinh(2 x) t cosh®(2 x) + 4620 t cosh®(2 x) i + 3080 sinh(2 x) t cosh*(2 x) — 5520t cosh3(2x) i —
25isinh(2 x) cosh®(2x) ). (32)
The numerical result of equation (1) obtained by VIM can be seen below
Do = _6\/§tanh22x)e2’“i. (33)
65 tanh(2x) e2¥1i  125te?*} 4 . 3 2 . .
P =— S - — (552tanh*(2 x)i+ 308tanh’(2 x) — 642 tanh*(2 x) i — 125 tanh(2 x) + 901i). (34)
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2xi
P, = — "flzs (1162574954496 t* tanh®(2x) i + 700809449472 t* tanh'?(2x) — 4300513191936 t* tanh' (2x) i —

2135661244416 t* tanh'®(2x) + 6284349960192 t* tanh®(2x) i + 2511944593920 t* tanh®(2x) —

4553215075584 t* tanh” (2x) i — 1398917039616 t* tank®(2x) + 1662345013248 t* tankh®(2x) i +

360541279440 t* tanh*(2x) — 277954213320 t* tanh?(2x) i — 40169206800 t* tanh?(2x) + 17558791200 t* tanh(2 x) i +
1452168000 t* + 15795855360 ¢3 tanh'®(2x) i + 7799362560 t3 tanh®(2x) — 44178232320 ¢3 tanh®(2x) i —

17265465600 ¢ tanh’ (2x) + 42959669760 t tanh®(2x) i + 12078782400 t3 tanh®(2x) — 16543569600 ¢3 tanh*(2x) i —
2685620400 3 tanh®(2x) + 2012932800 ¢3 tanh? (2x)i + 161352000 3 tanh(2 x) — 46656000 3 i +

137779200 2 tanh” (2x) i + 78540000 2 tanh® (2x) — 298045200 ¢2 tanh®(2x) i — 132828000 t2 tanh* (2x) +

195072800 t2 tanh?(2x) i + 60297000 t2 tanh?(2x) — 36481250 t2 tanh(2 x) i — 6009000 t2 + 138000 t tanh* (2x)i +
77000 t tanh®(2x) — 160500 ¢t tanh?(2x) i — 31250 t tanh(2 x) + 22500 ti + 625 tanh(2x) i). (35)

Table 1: Exact solution and approximation solution of the methods: ADM, and VIM as t = 0.0001 and —4 < x < 4.

x Exact ADM VIM

-4 7.19999675704251 7.19999687520657 7.19999687147890
-3.1 7.19988131443288 7.19988570020443 7.19988569647741
2.2 7.19565759196166 7.19581796926491 7.19581796556179
-1.3 7.04276818063409 7.04838142211047 7.04838142057263
-0.4 3.17319894806841 3.20804302110690 3.20804311584250
0.5 4.17756629096868 4.13432907550746 4.13432909999134
1.4 7.09434775438805 7.09042053762901 7.09042053517082
2.3 7.19709239790624 7.19698151480717 7.19698151109463
32 7.19992053788026 7.19991750374966 7.19991750002243

4 7.19999676093172 7.19999663559850 7.19999663187084

Table 2: The absolute error of exact solution, ADM, and VIM as t = 0.0001 and —4 < x < 4.

|[WADM — YExact|

[YVIM —YExact|

1.18164058982018e-07

1.14436392806283e-07

4.38577155392750e-06

4.38204453612201e-06

1.60377303251025¢e-04

1.60373600129660e-04

5.61324147637698e-03

5.61323993853691e-03

3.48440730384874e-02

3.48441677740858e-02

4.32372154612253e-02

4.32371909773401e-02

3.92721675904717¢-03

3.92721921722838e-03

1.10883099069703¢e-04

1.10886811606647¢-04

3.03413060009916¢-06

3.03785782840293e-06

1.25333221134838e-07

1.29060884646037¢e-07

Total

|[WADM — YExact|

[YVIM —YExact|

8.790067053689166¢-02

8.790074171856954¢e-02
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Exact for (x,t)
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(a) Exact solution of SSE.
VIM for w(x.t)
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(b) ADM of SSE.
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(c) VIM of SSE.
Figure 1: The 3D mesh of the exact solution, ADM, and VIM for SSE
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Plot of Different Methods for t = 0.0001
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(a) The curves of ADM and VIM to the exact solution.
Plot of Different Methods for t = 0.0001
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(b) The zooming curves of ADM and VIM to the exact solution.
Figure 2: The curves show how ADM, and VIM are closer to the exact solution for SSE. While selecting 13 from both methods,
when —4 < x < 4andt = 0.0001.

CONCLUSION

In several applications, including optics, higherorder and
multicomponent versions of the NLSE are significant. One of
these equations, the integrable SSE, has particularly interesting
soliton solutions. In this study, the numerical solution of this
equation was developed for the first time by both numerical
methods, ADM and VIM. Both methods for computing series or
exact solutions are significant in applied sciences due to their
direct application to all differential and integral equations,
reducing computational work while maintaining high numerical
accuracy. Both methods demonstrate effectiveness in finding
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exact solutions to nonlinear problems. Moreover, the VIM
requires the evaluation of the Lagrange multiplier, whereas ADM
requires the evaluation of the Adomian polynomials that mostly
require tedious algebraic calculations. Furthermore, the
numerical results that are obtained are compared with the exact
solution while choosing Y3 from both methods. The results
indicate that the absolute error of the ADM is smaller than the
VIM, as shown in table (2) and figure (2). As a result, the ADM
produces more accurate results compared with the VIM. The high
agreement of the approximation of Y (x) between the methods
makes them an alternative for solving the NLSEs. Further work
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will focus on comparing the results obtained with a new
numerical method and those obtained using the current methods.
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