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ABSTRACT: 

Loop closure detection (LCD) remains a critical challenge in visual Simultaneous Localization and Mapping (SLAM), 

particularly in environments with repetitive structures or sparse textures where traditional methods suffer from perceptual 

aliasing and computational inefficiency. This paper presents a robust and scalable LCD framework that integrates a 

lightweight Convolutional Neural Network (CNN) with a dictionary-based voting mechanism, optimized for accuracy and 

real-time performance in resource-constrained settings. The proposed CNN architecture, featuring a single convolutional 

layer with 32 filters, achieves 98% classification accuracy on the Greenhouse Scene Dataset-a structured agricultural 

environment. Complementing the CNN, a dynamic dictionary tracks class frequencies to detect loop closures via adaptive 

thresholding, eliminating the need for complex feature matching or geometric verification. Experimental results demonstrate 

real-time operation (0.076 seconds per 70 frames) and resilience to spatial distortions, maintaining 92% accuracy under 

pixel-level shifts. Compared to state-of-the-art methods, our approach reduces computational overhead and memory usage. 

KEYWORDS: SLAM, Loop Closure,  Machine Learning,  CNN, Dictionary. 

1. INTRODUCTION 

        Autonomous navigation in unknown environments relies on 

the ability of robots to build accurate maps while correcting 

accumulated localization errors—a task central to Simultaneous 

Localization and Mapping (SLAM) (Placed, 2023). Among 

SLAM components, loop closure detection (LCD) is pivotal for 

recognizing previously visited locations to rectify trajectory drift, 

ensuring globally consistent maps. Despite advancements, LCD 

remains challenging in environments with repetitive visual 

patterns (e.g., ware-houses, greenhouses) or low-texture regions, 

where hand- crafted features-based methods or geometric 

verification often struggle due to perceptual aliasing and 

computational inefficiency (Soncini, 2024).  Recent work has 

explored deep learning to address these limitations, with 

Convolutional Neural Networks (CNNs) emerging as powerful 

tools for feature extraction and place recognition. Methods like 

NetVLAD (Arandjelovic, 2016).leverage large CNN architectures 

to generate global descriptors, while hybrid approaches such as 

SymBioLCD (Kim, 2021)fuse semantic and geometric data for 

robustness. However, these methods often prioritize accuracy at 

the expense of computational efficiency, rendering them im- 

practical for resource-constrained platforms. For instance, 

pretrained-based frameworks (Olid, 2018)require often GPU 

acceleration, and graph-based matching (Qin, 2021)introduces 

latency incompatible with real-time applications. Conversely, 

lightweight solutions like FAB-MAP ( C u m m i n s ,  

2 0 0 8 ) accuracy in repetitive environments, achieving only 75% 

precision on structured datasets. 
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        This study addresses these trade-offs by proposing a 

lightweight CNN combined with a dictionary-based voting 

mechanism, Optimized for accuracy and efficiency in repetitive, 

low-texture settings. 

        Our approach diverges from existing methods in two key 

ways: 

• Lightweight Architecture: A single-layer CNN with 32 filters 

achieves 98% classification accuracy on the Greenhouse Scene 

Dataset and maintains 92% accuracy under pixel-level 

distortions. 

• Dynamic Frequency Tracking: A dictionary mechanism 

replaces complex feature matching or geometric verification, 

enabling real-time loop closure detection (0.076s per 70 frames) 

without GPU reliance. 

•  The Greenhouse Scene Dataset (Xiao, n.d.),comprising 2,260 

images of a structured agricultural environment, serves as the 

testbed for our experiments. This dataset captures the challenges 

of repetitive visual patterns and sparse textures, providing a 

rigorous benchmark for evaluating LCD robustness, our 

contributions are as follows: 

• A computationally efficient LCD framework that com- bines 

CNN-based classification with dictionary-driven frequency 

counting, tailored for embedded systems. 

• Empirical validation demonstrating 98% accuracy on the 

Greenhouse dataset and superior real-time performance compared 

to GPU-based or high computational pretrained methods. 

        The organization of this study is as follows: The subsequent 

section 2 provides a detailed review of the related work in the field. 

This is followed by an in-depth description of the proposed 
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approach in Section 3. The subsequent sections 4 presents the 

experiments conducted and the results obtained. Finally, the study 

concludes with a discussion in Section 5 and summary of the 

findings and potential directions for future research in Section 6 

RELATED WORK 

        The evolution of loop closure detection (LCD) in visual 

SLAM has been shaped by three primary methodologies: 

handcrafted feature-based methods, deep learning-driven 

approaches, and hybrid techniques combining visual, se-mantic, 

and geometric data. Early LCD systems relied on handcrafted 

features such as SIFT, SURF, and ORB to generate visual 

descriptors (Barros, 2022).For instance, FAB-MAP (Cummins, 

2008) pioneered a probabilistic framework using Bag-of-Words 

(BoW) models and Chow-Liu trees for place recognition, 

achieving real-time performance. In another work, RB- SLAM3 

(Campos, n.d.)integrated ORB features with geometric 

verification (PnP/RANSAC) to improve robustness. However, 

such methods often struggle in repetitive or low-texture 

environments and incur high computational costs, limiting 

scalability on resource-constrained platforms (Chen, 2022)While 

these methods inspired early feature-matching paradigms, 

Their dependency on manual tuning and susceptibility to 

repetitive scenes motivated our shift toward learning-based 

frequency tracking. As for deep learning-driven approaches, 

CNNs have revolutionized LCD by automating feature extraction 

and improving robustness to environmental changes. For 

instance, (Arandjelovic, 2016) introduced, NetVLAD, a trainable 

VLAD layer atop CNNs for global descriptor learning, achieving 

state-of- the-art (SOTA) recall on large-scale datasets. 

However, its reliance on AlexNet (Krizhevsky, 2017)and 

VGG16 (Simonyan, 2024)necessitates GPU acceleration, 

rendering it impractical for embedded systems. Subsequent 

works, such as DenseLoop (Yu, 2019)employed DenseNet 

features with locality-sensitive hashing (LSH) to reduce matching 

complexity but their improved recognition accuracy inherently 

produces high-dimensional descriptors, which can increase 

memory demands even after dimensionality reduction techniques. 

These studies highlight the trade-off between accuracy and 

computational load. Our lightweight CNN (32 filters, single 

layer) addresses this by reducing parameters while maintaining 

98% accuracy, demonstrating that simpler architectures can suffice 

in structured environments. 

        In another studies, authors used hybrid approaches to fuse 

CNN features with spatial or semantic data to enhance robustness. 

For instance, SymBioLCD (Kim, 2021) combined CNN-derived 

object features with BoW, using temporal constraints to reduce 

false positives in dynamic scenes. 

        Finally, efforts to optimize LCD for constrained environments 

have focused on architectural efficiency. For instance, (Xu, 

2021)proposed a single- layer CNN (SCNN) for loop detection, 

with small number of parameters. Similarly, (Li, 2023) leveraged 

depth wise separable convolutions (DSC) to reduce computation, 

but their accuracy drops in repetitive settings. Our approach 

advances these efforts by tailoring the CNN to repetitive 

agricultural scenes (Greenhouse Dataset) and integrating a 

dynamic dictionary. This combination achieves higher accuracy 

(98%) while maintaining low computations cost. 

PROPOSED APPROACH 

        To address the challenges of loop closure detection in 

visually complex and repetitive environments, we propose a 

robust and scalable method that integrates Convolutional Neural 

Networks (CNNs) with a dictionary-based mechanism. This 

approach leverages the Greenhouse Scene Dataset, which 

provides a diverse and challenging testbed for evaluating loop 

closure detection methods in constrained settings. 

Figure 1 presents the integrated components of the proposed 

approach.

•  

• Figure 1: Flowchart of the loop closure detection process 

Classification by CNN 

Count > Threshold? 

No 

Yes 

Image Acquisition 

                Loop Closure Detected 

Continue Monitoring 

Update Class Count in Dictionary 
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CNN-Based Classification Model 

        The cornerstone of our approach is a CNN-based 

classification model that identifies distinct visual classes within 

the dataset, which help a key-value dictionary to track the 

locations. The dataset comprises 2,260 images, we group the 

images into sequences of 60 consecutive frames, each 

representing a unique class or “spot” in the environment, except 

for the last class, which contains 40 frames. We deliberately left 

the last class as is to avoid making the model overly strict and to 

maintain simplicity. The CNN used is a lightweight architecture 

with a single convolutional layer, designed to balance 

computational efficiency and accuracy. The key parts are as 

follows: 

• Grouping of Images: The dataset is segmented into 

multiple classes, with most containing 60 consecutive frames, 

except the last class with 40 frames. 

• Training Process: The lightweight CNN is trained on 

these grouped sequences, achieving a classification accuracy of 

98% during testing. 

Key-Value Dictionary Mechanism: 

        Complementing the CNN model, we implement a dictionary- 

based mechanism to track and identify loop closures during 

deployment. This mechanism operates by maintaining a count 

of the frequency with which each class is detected in real time. 

More specifically, the dictionary is implemented 

as a simple key-value store in which each key corresponds to a 

class label predicted by the CNN, and each value is an integer 

counter representing the number of times that class has been 

detected during deployment. For every incoming frame, the 

CNN predicts a class, and the corresponding counter in the 

dictionary is incremented by one. If the count for any given class 

surpasses the threshold (set to 70 detections), a loop closure is 

declared. This update process is intentionally designed to be 

computationally lightweight and easy to maintain in real-time 

settings. 

The mathematical formulation of the dictionary mechanism is as 

follows: 

 Let: 

• C =  { 1, 2, ..., 𝑁} be the set of class labels (with 𝑁 = 

38 in our case), 

• 𝐷 ∶ C → ℤ≥0 be the dictionary, mapping each class label 

to its frequency count, 

• 𝑓𝑡 ∈ C be the class predicted by the CNN for the input frame 

at time 𝑡. 

The dictionary update rule is defined as: 

𝐷(𝑓𝑡) ← 𝐷(𝑓𝑡) + 1 

This operation is performed in real time for each incoming 

frame. 

Setting Thresholds: 

        Rather than comparing individual frames, we aggregate 

frames into distinct classes. This approach mitigates overfitting 

and reduces computational cost. In this study, we utilize 60 

frames per class, providing a balanced and comprehensive 

representation of each visual class 

• The selection of 60 frames per class, or ’spot’, was refined 

through trial and error, including manually checking the images to 

ensure sequences of this length properly captured distinct 

environmental locations. This approach is crucial for model 

performance. Using 60 frames per spot ensures each spot is well- 

represented in the dataset. This helps the CNN model learn the 

distinguishing features of each spot more effectively, leading to 

higher classification accuracy, as presented in Section 4. 

Additionally, utilizing this number of frames per spot captures 

more variability within each class, such as different angles and 

lighting conditions that might occur in real-world scenarios. This 

diversity aids the model in generalizing better to new, unseen data. 

• Using a sufficient number of frames per class helps prevent 

overfitting. Overfitting occurs when the model learns the training 

data too well, including noise and minor details, which can 

negatively impact its performance on new data. A larger dataset 

helps mitigate this risk. 

• Importantly, during the training phase, the model shows a 

classification accuracy of 96% (worst-case), and during testing 

with shifted pixels, it achieves 94% accuracy. This indicates a 

10% margin for potential misclassifications. Therefore, the 

threshold for loop closure detection is set to 70, even though the 

dataset contains 60 frames per class. 

If any class count exceeds the threshold of 70 detections, a loop 

closure is detected, signaling the robot’s re-encounter of a 

previously visited   region. The mathematical formulation is as 

follows: 

 Let 𝜏 denote the threshold for loop closure detection. A loop 

closure is declared when: 

∃ 𝑐 ∈ C such that 𝐷(𝑐) ≥ 𝜏 

In our implementation, we empirically set 𝜏 = 70, providing 

robustness to occasional misclassifications. 

Specifically for the threshold selection justification, the notations 

are as follows: 

Let: 

• 𝐿 be the number of frames per class (typically 𝐿 =   60), 

• 𝜖 be the expected misclassification rate (empirically 

observed as 𝜖 = 0.10 in the worst case), 

• Δ be a safety buffer to tolerate classification noise. 

We estimate the expected number of correct detections in a single 

traversal as: 

(1 − 𝜖) ⋅ 𝐿 = 0.9 ⋅ 60 = 54 

To ensure a reliable loop closure signal that surpasses the number 

of correct detections in a single traversal (even with partial 

overlap), we define the threshold as: 

𝜏 = 𝐿 + Δ = 60 + 10 = 70 

This formulation is supported by empirical tests shown in Table 

1 (Section 4), where the 60-frame class size with a 10-frame 

margin (𝜏 =70) produced the highest classification accuracy and 

most reliable loop detection performance. 

Integration of Components Thresholds: 

The proposed approach works as follows: 

• Image Classification: As the robot navigates the 

environment, each captured image is classified into one of the 

predefined classes by the trained CNN. 

• Class Frequency Count: The dictionary dynamically 

updates a count for each detected class based on CNN’s 

predictions. 

• Thresholding for Loop Detection: If the count for any class 

exceeds a predefined threshold of detections, the system identifies 

a loop closure. 
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EXPERIMENTS AND RESULTS 

        The experiments were executed in the jupyter notebook in 

the Python programming environment utilizing the Pan- das, 

NumPy, Pillow, scikit-learn, TensorFlow, Keras, and OpenCV 

libraries on a laptop with 16GB of ram. The dataset comprises 

2,260 RGB images, each with a resolution of 640x480 pixels, 

representing repetitive and visually complex environments. 

Preprocessing procedures involved converting the images to 

grayscale and resizing them to 32x32 pixels. The dataset was 

categorized into 38 distinct classes, with each class containing 60 

images, except for the final class, which contained 40 images. To 

ensure consistency, pixel values were normalized to a range of 

[0, 1]. 

         Furthermore, the dataset was partitioned into training (80%) 

and testing (20%) subsets. To ensure this split result is not an 

artefact of a particular training run, we repeated the entire training 

and evaluation process several times with different random 

initializations. In every run the test accuracy converged to 98% 

on the original images, mirroring the stable learning curves. The 

experimental procedures are depicted in Figure 2.This choice for 

using 60 frames per spot ensures each spot is well-represented in 

the dataset and was further validated by empirical results from a 

comparative analysis of classification accuracy on original test 

images. As presented in Table 1, which compared using 50, 60, 

and 70 frames per spot. The findings indicated that the 60-frame 

configuration achieved 98% accuracy on original images, 

outperforming both a 50-frame configuration (97%) and a 40-

frame setup (96%). With regards to class size, the 60-frame 

configuration consistently outperformed the others, yielding the 

highest accuracy because it balances two opposing factors (1) 

Shorter class windows (e.g., 50 frames) may increase the 

number of classes, but may not capture enough intra- class 

variation, reducing the model’s ability to generalize (2) Longer 

class windows (e.g., 70 frames) reduce the number of classes, but 

may inadvertently include transitional scenes or overlapping 

visual regions, increasing intra-class variability and reducing 

separability. Therefore, the 60-frame configuration provides an 

optimal balance between within-class consistency and between-

class distinctiveness, which is essential in highly repetitive 

environments like greenhouses. 

        A lightweight Convolutional Neural Network (CNN) 

architecture was designed to balance computational efficiency with 

high classification accuracy. The architecture comprised a single 

convolutional layer with 32 filters, a kernel size of (3, 3), and 

ReLU activation, followed by a flattening layer to convert feature 

maps into a one-dimensional vector. This was succeeded by a 

dense hidden layer with 68 neurons and ReLU activation, and an 

output layer employing softmax activation for multi-class 

classification across 38 classes. The model was trained using the 

Adam optimizer with a learning rate of 0.001, categorical cross-

entropy as the loss function, 200 epochs, and a batch size of 32. 

The training process yielded a classification accuracy of 98% on 

the test set, demonstrating the effectiveness of the lightweight 

CNN architecture. Notably, the model reached an accuracy of 

approximately 98% by the 45th epoch, as shown in Figure 3. To 

enhance the interpretability of the results presented in Figure 4, a 

logarithmic scale was applied. Throughout the training process, 

the model’s accuracy consistently remained above 96%, even by 

the 200th epoch, indicating stable performance. Consequently, an 

accuracy threshold of 96% is adopted for further analysis. 

        The model was trained on 1,808 images and tested on 452 

images, following 80:20 split ratio. Notably, we avoided equal 

class distribution in train-test splits which aligns with real-world 

scenarios where class imbalances are common. The performance 

metrics, including precision, recall, and F1-score, per class are 

presented in Table 2. Moreover, as present in Figure 5, the 

confusion matrix exhibits a very low degree of false alarms (10 

out 0f 452), as indicated by the substantial values along the 

diagonal. The pattern is consistent across all classes, with most 

misclassifications occurring between adjacent or similar classes. 

In an additional experiment, we shuffled the 2,260 training images 

and shifted them by 1 pixel to the right, setting the vacated leftmost 

column to zero, thereby altering 32 pixels per image. In this 

experiment, we use the entire dataset, given they all will change, 

as presented in Table 3. This manipulation aimed to test the 

robustness of the classifier. Despite this modification, the CNN 

achieved 92% accuracy, demonstrating its resilience to slight 

spatial distortions. The model exhibited the high-performance 

metrics per class, as presented in Table 4, even after the shifting. 

The dictionary is implemented as a key-value store, where each 

key corresponds to a class label predicted by the CNN, and each 

value is an integer count representing the number of times that 

class has been detected during runtime. Moreover, the update 

process is straightforward and computationally inexpensive. For 

every incoming frame, the CNN outputs a predicted class label. 

The corresponding count in the dictionary is incremented by 1. If 

any class’s count exceeds the pre-defined threshold (e.g., 70 

detections), a loop closure is declared. This mechanism avoids 

temporal matching or probabilistic reasoning, enabling efficient 

up- dates in real time with minimal computational overhead.
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Table 1:Empirical comparison of classification performance using different numbers of frames per spot (50, 60, and 70), showing 

accuracy trade-offs and number of resulting classes. 

 50 60 70 

Original (%) 97% 98% 97% 

Spots/Classes (#) 46 38 33 

   

Split data into 80:20 

 

           Normalize Data 

 Dataset 

Categorization into classes 

Evaluate (Accuracy: 98%) 

Train lightweight CNN with 80% 

Convert to Grayscale                      Resize to 32x32 Pixels 

Evaluate and Analyze metrics 

Accuracy: 94% 

Shift all images by 1 pixel 

Figure 2: Block diagram of the loop closure detection process. 
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Figure 5: Matrix of the model on the test set where the x-axis represents Predicted Class and the y-axis represents True Class. 

 

Figure 3: The accuracy during training, validation accuracy, 

loss function during training, and loss function during 

validation in 200 epochs. 

Figure 4: The accuracy during training, validation accuracy, 

loss function during training, and loss function during 

validation, when values were logged in 200 epochs. 
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Table 3: Accuracy of CNN across all classes on the original test dataset vs. the whole dataset subjected to a 1-pixel shift. 

Condition Number of Samples Accuracy 

No shifts (Original Image) 452 98% 

Shift by 1 pixel 2260 92% 

2. DISCUSSION 

        The single-layer Convolutional Neural Network (CNN) 

achieved an impressive accuracy of 98% on the Greenhouse Scene 

Dataset, utilizing 32 filters and a relatively simple architecture. 

This high performance can be attributed to the structured nature 

of the greenhouse environment, characterized by repetitive 

patterns and controlled lighting conditions. Such factors likely 

facilitated the model’s ability to extract relevant features, 

enabling the shallow network to perform effectively without 

requiring extensive depth or complexity. The minimalistic 

architecture, comprising a single convolutional layer and a small 

dense layer, mitigated the risk of overfitting while still 

maintaining sufficient discriminative power for class-specific 

features. These results suggest that complex neural network 

architectures are not always necessary to achieve high 

performance in specialized environments. The lightweight design 

makes this model particularly suitable for deployment on 

resource-constrained systems where computational efficiency is 

a priority. Notably, the confusion matrix indicates that 

misclassifications occurred between adjacent classes, suggesting 

that errors were likely made between visually similar or 

Table 2: Performance metrics (precision, recall, F1-score) of 

the CNN on test data, measured per class. 

Class Precision Recall F1-Score Samples 

1 1 1 1 11 

2 1 1 1 13 

3 1 1 1 13 

4 1 1 1 9 

5 1 1 1 10 

6 1 0.8 0.89 10 

7 1 1 1 14 

8 1 1 1 11 

9 1 1 1 13 

10 1 1 1 12 

11 1 1 1 10 

12 1 1 1 20 

13 0.91 1 0.95 10 

14 1 0.88 0.93 8 

15 1 1 1 11 

16 1 1 1 16 

17 0.94 1 0.97 17 

18 1 1 1 8 

19 1 1 1 11 

20 1 1 1 8 

21 1 1 1 8 

22 1 0.92 0.96 13 

23 0.92 0.92 0.92 13 

24 0.89 1 0.94 8 

25 1 0.86 0.92 14 

26 0.79 1 0.88 11 

27 0.93 0.93 0.93 14 

28 1 0.95 0.97 19 

29 1 1 1 15 

30 1 1 1 12 

31 1 1 1 10 

32 0.92 1 0.96 11 

33 1 1 1 10 

34 1 1 1 8 

35 0.93 1 0.96 13 

36 1 0.93 0.96 14 

37 1 1 1 10 

38 1 1 1  14 

 

 
Table 4: Performance metrics (precision, recall, F1-score)  

of the CNN on 1 pixel shifted test data, measured per class. 

Class Precision Recall F1-Score Samples 

1 0.96 0.90 0.93 60 

2 0.97 0.95 0.96 60 

3 1.00 0.67 0.80 60 

4 0.59 1.00 0.74 60 

5 0.94 0.80 0.86 60 

6 0.95 0.97 0.96 60 

7 0.98 0.98 0.98 60 

8 1.00 0.92 0.96 60 

9 0.91 1.00 0.95 60 

10 0.95 0.97 0.96 60 

11 0.98 0.90 0.94 60 

12 1.00 0.93 0.97 60 

13 0.98 1.00 0.99 60 

14 0.97 0.95 0.96 60 

15 0.96 0.73 0.83 60 

16 1.00 0.75 0.86 60 

17 0.98 0.97 0.97 60 

18 0.63 1.00 0.77 60 

19 1.00 0.90 0.95 60 

20 0.98 0.93 0.96 60 

21 0.95 0.93 0.94 60 

22 0.86 0.98 0.91 60 

23 0.83 0.97 0.89 60 

24 1.00 0.85 0.92 40 

25 1.00 0.98 0.99 60 

26 0.97 1.00 0.98 60 

27 0.72 0.97 0.83 60 

28 1.00 0.58 0.74 60 

29 0.87 1.00 0.93 60 

30 1.00 0.90 0.95 60 

31 0.97 0.98 0.98 60 

32 0.95 0.87 0.90 60 

33 0.96 0.85 0.90 60 

34 1.00 0.87 0.93 60 

35 0.86 1.00 0.92 60 

36 1.00 0.87 0.93 60 

37 0.93 0.95 0.94 60 

38 0.90 1.00 0.94 60 

 



Sharif and Aminifar/ Science Journal of University of Zakho, 13(3), 416-425 July-September, 2025 

 

423 

 

structurally similar environments, rather than between entirely 

dissimilar ones. This pattern implies that the model’s 

discriminative power remains strong, but refinement between 

similar classes could enhance performance further. When 

subjected to a shift of 1 pixel, simulating spatial distortions 

commonly encountered in real-world settings, the model 

retained an accuracy of 92%. This robustness to minor 

perturbations indicates that the model focuses on higher-level 

structural features, such as object shapes and layout, rather than 

being overly dependent on exact pixel positions. This behavior is 

indicative of the CNN’s ability to generalize well despite 

variations in image positioning. Furthermore, preprocessing 

steps such as converting the images to grayscale and resizing them 

to 32x32 pixels likely contributed to the model’s invariance to 

noise and spatial distortions. This makes the model well-suited for 

real-world applications where minor camera jitter or 

environmental changes might occur, ensuring consistent 

performance de- spite such challenges. 

        The system demonstrated real-time processing capability, 

handling 70 frames in just 0.076 seconds on a CPU (Intel i7-

8750H). This remarkable efficiency is largely due to the 

lightweight CNN architecture, which minimizes computational 

load by avoiding complex operations while still maintaining high 

performance. 

        Additionally, the use of a dictionary mechanism for 

classifying frames, instead of re- lying on resource-intensive 

feature matching or geometric verification, further reduces 

processing overhead. Regarding memory footprint, the 

dictionary’s requirements are mod- est. With 38 distinct classes, 

only 38 integer counters are maintained. Assuming 32-bit 

integers, this results in a total memory usage of approximately 152 

bytes—well within the capabilities of even the most constrained 

embedded systems. The approach does not rely on storing high-

dimensional feature descriptors or managing large image buffers, 

which further supports its deployment in low-power platforms. 

As for handling class overlaps, we mitigated this risk during 

dataset preparation by carefully segmenting the 2,260 frames into 

non-overlapping sequences of 60 consecutive frames, each 

designated as a distinct “spot.” Manual inspection was used to 

ensure that each class represents a visually coherent and spatially 

distinct segment of the environment. 

        Given that in repetitive environments such as greenhouses, 

some visual similarity between classes is unavoidable, the loop 

closure detection threshold was set conservatively at 70, 

providing a margin that helps filter out occasional 

misclassifications. This design prioritizes robustness over 

aggressive detection and ensures that loop closures are only 

declared when there is strong and sustained evidence of 

revisitation. The confusion matrix in the results section supports 

this, showing that misclassifications are rare and tend to occur 

only between visually adjacent classes. Overall, the dictionary 

mechanism is intended to be minimalistic yet effective, ensuring 

high performance without introducing computational or memory 

burdens. Additionally, the dictionary-based loop closure 

mechanism is computationally lightweight—look up and up- date 

operations are 𝑂 (1) per frame. Thus, latency does not scale with 

the number of classes in a significant way, even with hundreds of 

classes. 

        By grouping frames into classes (60 frames per class), the 

system reduces the computational demands of processing each 

frame individually. This efficiency ensures that the model can be 

deployed on low-power embedded systems, such as agricultural 

robots or autonomous vehicles, which typically lack GPUs, 

making it ideal for real-time applications in resource-constrained 

environments. 

        For loop closure detection, a threshold of 70 detections was 

established, despite the classes being defined with 60 frames. 

This threshold was chosen to accommodate potential 

misclassifications, acknowledging that the worst-case accuracy 

of the model is 90%. The additional buffer (70 detections instead 

of 60, although the frames are 60 not 100) ensures that the system 

remains robust to transient errors while avoiding false positives. 

More specifically, the 70 frames margin also serves to ensure that 

a loop closure is not declared prematurely during a partial revisit 

or due to visual ambiguity. It prioritizes specificity over 

sensitivity, which aligns with our system’s objective of ensuring 

reliable operation in resource-constrained and visually 

ambiguous environments. This adaptive approach to thresholding 

strikes an optimal balance between sensitivity and specificity, 

ensuring reliable loop closure detection in environments where 

repetition and environmental variations are prevalent. Such a 

strategy is crucial for applications involving navigation and path 

recognition in repetitive environments, where the accurate 

detection of loop closures is essential for maintaining system 

reliability. 

        With regards to CPU/GPU specifications and power 

consumption, all experiments were conducted without any GPU 

acceleration to simulate the performance of higher- end 

embedded or low-power CPUs. The CNN inference and 

dictionary operations were performed entirely on the CPU, 

supporting our claim of GPU-independent real-time operation. 

Moreover, since our framework uses only the CPU and avoids 

GPU-heavy tasks (e.g., feature matching, geometric verification), 

the power consumption remains significantly lower than 

comparable GPU-based LCD systems. Notably, the model 

achieves real-time performance of 0.076 seconds per 70 frames 

on CPU, which translates to approximately 920 frames per 

second. This high throughput, achieved with- out GPU support, 

further emphasizes the model’s suitability for real-time 

applications on constrained hardware. 

COMPARISON WITH STATE-OF-THE-ART METHODS 

        In contextualizing our method against several state-of-the-

art studies, emphasizing efficiency, and applicability to 

repetitive scenes, our method contributes to bridge the gap 

between accuracy and efficiency in LCD for repetitive 

environments. 

(Zhou, 2025)proposed a lightweight Siamese capsule network 

which leverages spatial hierarchies and attention to features, 

achieving robustness in dynamic urban environments but at the cost 

of higher complexity. Moreover, their method achieves 0.074s per 

frame but relies on GPU acceleration during training. Their 

pruning strategy mitigates computational load but still requires 

more resources than our dictionary-based voting. 

         (Shi, 2024) employs a multi-stage deep learning pipeline 

(MixVPR + SuperPoint + Light- Glue), offering robustness in 

diverse environments at the cost of complexity. Their method 

achieves 0.074s per frame on GPU (NVIDIA Jetson) but requires 

significant computational resources, limiting deployment on low-

end hardware. Additionally, they leveraged MixVPR for holistic 

global descriptors and LightGlue for adaptive feature matching, 

enabling robustness to viewpoint changes. 
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         (Li, 2023) introduced CoCALC, a self-supervised visual 

place recognition (VPR) approach combining appearance and 

geo- metric information, achieving state-of-the-art performance 

on benchmarks. While CoCALC excels in long-term VPR with 

minimal memory footprint, its geometric verification introduces 

latency during post-processing. In contrast, our method 

eliminates feature matching entirely through a dynamic 

dictionary mechanism, achieving 0.076s per 70 frames on CPU 

without geometric checks, making it more suitable for repetitive 

agricultural environments. 

(Mehta, 2021)proposed MobileViT which mixes depth-wise CNN 

layers with lightweight self-attention, giving it global context 

without ballooning parameters. MobileViT demonstrated 

stability across classification, detection and dense segmentation 

(without heavy augmentation tricks) suggests strong 

generalization, complementing the pixel-shift or viewpoint-

centric robustness of existing LCD methods. However, different 

from ours, MobileViT is mainly about general-purpose vision 

transformers for mobile devices, not specifically loop closure 

detection. 

        Comparative Analysis of the three studies and our method is 

presented in Table 5.

 

Table 5: Comparison of our method with several notable studies. 

Aspect Our Method Zhou and Sun (2025) Shi et al. (2024) Li et al. (2023) Mehtaand Rastegari 

(2021) 

Architectur

e 

Single-layer CNN +               

dictionary 

Pruned-Capsule 

network 

MixVPR+ 

LightGlue 

DSC + geometric check     MobileNet+V2 blocks 

Accuracy 98% (Greenhouse) 94.7% (CityCentre) 0.473mATE 

(KAIST) 

AUC 0.98, R𝑝 

1000.51(𝑁𝑜𝑟𝑑𝑙𝑎𝑛𝑑) 

     74.8% (ImageNet) 

Efficiency 1.085 ms/frame 

(CPU) 

74 ms/frame (GPU) 12.5ms/frame (GPU) 86.27 ms/frame (CPU)    7.25 ms/frame 

(iPhone12 NE) 

Robustness Pixel shifts Viewpoint changes Seasonal changes viewpoint changes     weight-decay changes 

Dataset Greenhouse NewCollege, 

CityCentre 

EuRoC, KAIST  Nordland,SPEDTest, 

Gardens Point 

   ImageNet, COCO 

  KITTI 4Seasons Campus Loop, Cross-Seasons    PASCAL 

 

CONCLUSION 

        The proposed methodology integrates the advantages of 

CNN-based image classification with a simple yet efficient 

dictionary-based counting mechanism, thereby achieving robust 

loop closure detection. By exploiting the structured nature of the 

Greenhouse Scene Dataset, which features repetitive patterns and 

controlled lighting conditions, our approach ensures accurate and 

reliable detection of loop closures. This, in turn, enhances robotic 

navigation in repetitive environments, where reliable detection of 

previously visited locations is crucial. The model’s high 

accuracy, reaching 98% in training and 92% when tested with 

spatial distortions, highlights its effectiveness in complex, 

visually challenging scenarios. Additionally, the model’s 

robustness to pixel-level shifts, achieving 94% accuracy even 

with 1- pixel image shifts, demonstrates its resilience to real-

world perturbations, such as minor camera jitter. 

        Our experimental results confirm that the proposed method 

is well-suited for use in resource-constrained robotic systems. The 

lightweight CNN architecture, which minimizes computational 

overhead while maintaining high performance, enables real-time 

operation on low-power embedded systems. This efficiency, 

coupled with the robustness demonstrated by the model, makes it 

a promising solution for visual SLAM applications in 

environments with limited computational resources, such as 

agricultural robots and autonomous vehicles. The model’s ability 

to maintain high classification accuracy despite 

misclassifications occurring primarily between visually similar 

classes further supports its reliability for practical applications. 

The adaptive thresholding for loop closure, set at 70 detections to 

accommodate potential misclassifications, balances sensitivity 

and specificity, ensuring robust performance even in the presence 

of minor errors. 

        Finally, our methodology represents a significant 

advancement in visual SLAM, addressing the persistent 

challenges of loop closure detection in repetitive and visually 

complex environments. The simplicity, efficiency, and reliability of 

the approach offer a practical solution that advances the state-of-

the-art in visual SLAM systems. 

FUTURE WORK 

        Future research could focus on several key areas to augment 

the robustness, scalability, and versatility of the proposed loop 

closure detection framework. The overarching goal is to facilitate 

its deployment in increasingly diverse and dynamic operational 

contexts. A significant avenue of investigation could be the 

development and integration of automatic labeling techniques, 

which offer the potential to streamline the dataset preparation 

phase required for training and evaluation. 

        A critical aspect of future work could involve rigorous 

validation of the method’s performance in environments 

characterized by less structure and greater dynamism than the 

Greenhouse Scene Dataset. Consequently, a priority will be to 

expand the empirical evaluation to diverse datasets, including 

comprehensive testing on established public bench- marks such as 

KITTI, Nordland, and 4Seasons. This ex- tensive testing is of 

significance for assessing the method’s generalization 

capabilities and its efficacy in managing high scene variability. 

        Finally, exploration into the hybrid integration of 

complementary sensory modalities could be undertaken to fuse 

additional environmental data with visual inputs, thereby 

bolstering the overall robustness and reliability of the loop 

closure detection system. These research trajectories are 

envisioned to culminate in a more universally applicable and 

resilient loop closure detection solution, thereby advancing the 

capabilities of visual SLAM systems for a broader spectrum of 

autonomous navigation application. 
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