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ABSTRACT:

Loop closure detection (LCD) remains a critical challenge in visual Simultaneous Localization and Mapping (SLAM),
particularly in environments with repetitive structures or sparse textures where traditional methods suffer from perceptual
aliasing and computational inefficiency. This paper presents a robust and scalable LCD framework that integrates a
lightweight Convolutional Neural Network (CNN) with a dictionary-based voting mechanism, optimized for accuracy and
real-time performance in resource-constrained settings. The proposed CNN architecture, featuring a single convolutional

layer with 32 filters, achieves 98% classification accuracy on the Greenhouse Scene Dataset-a structured agricultural
environment. Complementing the CNN, a dynamic dictionary tracks class frequencies to detect loop closures via adaptive
thresholding, eliminating the need for complex feature matching or geometric verification. Experimental results demonstrate
real-time operation (0.076 seconds per 70 frames) and resilience to spatial distortions, maintaining 92% accuracy under
pixel-level shifts. Compared to state-of-the-art methods, our approach reduces computational overhead and memory usage.
KEYWORDS: SLAM, Loop Closure, Machine Learning, CNN, Dictionary.

1. INTRODUCTION

Autonomous navigation in unknown environments relies on
the ability of robots to build accurate maps while correcting
accumulated localization errors—a task central to Simultaneous
Localization and Mapping (SLAM) (Placed, 2023). Among
SLAM components, loop closure detection (LCD) is pivotal for
recognizing previously visited locations to rectify trajectory drift,
ensuring globally consistent maps. Despite advancements, LCD
remains challenging in environments with repetitive visual
patterns (e.g., ware-houses, greenhouses) or low-texture regions,
where hand- crafted features-based methods or geometric
verification often struggle due to perceptual aliasing and
computational inefficiency (Soncini, 2024). Recent work has
explored deep learning to address these limitations, with
Convolutional Neural Networks (CNNs) emerging as powerful
tools for feature extraction and place recognition. Methods like
NetVLAD (Arandjelovic, 2016).leverage large CNN architectures
to generate global descriptors, while hybrid approaches such as
SymBioLCD (Kim, 2021)fuse semantic and geometric data for
robustness. However, these methods often prioritize accuracy at
the expense of computational efficiency, rendering them im-
practical for resource-constrained platforms. For instance,
pretrained-based frameworks (Olid, 2018)require often GPU
acceleration, and graph-based matching (Qin, 2021)introduces
latency incompatible with real-time applications. Conversely,
FAB-MAP
200 8)accuracy in repetitive environments, achieving only 75%
precision on structured datasets.

lightweight  solutions  like (Cummins,
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This study addresses these trade-offs by proposing a
lightweight CNN combined with a dictionary-based voting
mechanism, Optimized for accuracy and efficiency in repetitive,
low-texture settings.

Our approach diverges from existing methods in two key
ways:
eLightweight Architecture: A single-layer CNN with 32 filters
achieves 98% classification accuracy on the Greenhouse Scene
Dataset and maintains 92% accuracy under pixel-level
distortions.
eDynamic Frequency Tracking: A dictionary mechanism
replaces complex feature matching or geometric verification,
enabling real-time loop closure detection (0.076s per 70 frames)
without GPU reliance.

e The Greenhouse Scene Dataset (Xiao, n.d.),comprising 2,260
images of a structured agricultural environment, serves as the
testbed for our experiments. This dataset captures the challenges
of repetitive visual patterns and sparse textures, providing a
rigorous benchmark for evaluating LCD robustness, our
contributions are as follows:

e A computationally efficient LCD framework that com- bines
CNN-based classification with dictionary-driven frequency
counting, tailored for embedded systems.

e  Empirical validation demonstrating 98% accuracy on the
Greenhouse dataset and superior real-time performance compared
to GPU-based or high computational pretrained methods.

The organization of this study is as follows: The subsequent
section 2 provides a detailed review of the related work in the field.
This is followed by an in-depth description of the proposed
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approach in Section 3. The subsequent sections 4 presents the
experiments conducted and the results obtained. Finally, the study
concludes with a discussion in Section 5 and summary of the
findings and potential directions for future research in Section 6

RELATED WORK

The evolution of loop closure detection (LCD) in visual
SLAM has been shaped by three primary methodologies:
handcrafted feature-based methods, deep learning-driven
approaches, and hybrid techniques combining visual, se-mantic,
and geometric data. Early LCD systems relied on handcrafted
features such as SIFT, SURF, and ORB to generate visual
descriptors (Barros, 2022).For instance, FAB-MAP (Cummins,
2008) pioneered a probabilistic framework using Bag-of-Words
(BoW) models and Chow-Liu trees for place recognition,
achieving real-time performance. In another work, RB- SLAM3
(Campos, n.d.)integrated ORB features with geometric
verification (PnP/RANSAC) to improve robustness. However,
such methods often struggle in repetitive or low-texture
environments and incur high computational costs, limiting
scalability on resource-constrained platforms (Chen, 2022)While
these methods inspired early feature-matching paradigms,

Their dependency on manual tuning and susceptibility to
repetitive scenes motivated our shift toward learning-based
frequency tracking. As for deep learning-driven approaches,
CNNs have revolutionized LCD by automating feature extraction
and improving robustness to environmental changes. For
instance, (Arandjelovic, 2016) introduced, NetVLAD, a trainable
VLAD layer atop CNNs for global descriptor learning, achieving
state-of- the-art (SOTA) recall on large-scale datasets.
However, its reliance on AlexNet (Krizhevsky, 2017)and
VGG16 (Simonyan, 2024)necessitates GPU acceleration,
rendering it impractical for embedded systems. Subsequent
works, such as DenseLoop (Yu, 2019)employed DenseNet
features with locality-sensitive hashing (LSH) to reduce matching

complexity but their improved recognition accuracy inherently
produces high-dimensional descriptors, which can increase
memory demands even after dimensionality reduction techniques.
These studies highlight the trade-off between accuracy and
computational load. Our lightweight CNN (32 filters, single
layer) addresses this by reducing parameters while maintaining
98% accuracy, demonstrating that simpler architectures can suffice
in structured environments.

In another studies, authors used hybrid approaches to fuse
CNN features with spatial or semantic data to enhance robustness.
For instance, SymBioLCD (Kim, 2021) combined CNN-derived
object features with BoW, using temporal constraints to reduce
false positives in dynamic scenes.

Finally, efforts to optimize LCD for constrained environments
have focused on architectural efficiency. For instance, (Xu,
2021)proposed a single- layer CNN (SCNN) for loop detection,
with small number of parameters. Similarly, (Li, 2023) leveraged
depth wise separable convolutions (DSC) to reduce computation,
but their accuracy drops in repetitive settings. Our approach
advances these efforts by tailoring the CNN to repetitive
agricultural scenes (Greenhouse Dataset) and integrating a
dynamic dictionary. This combination achieves higher accuracy
(98%) while maintaining low computations cost.

PROPOSED APPROACH

To address the challenges of loop closure detection in
visually complex and repetitive environments, we propose a
robust and scalable method that integrates Convolutional Neural
Networks (CNNs) with a dictionary-based mechanism. This
approach leverages the Greenhouse Scene Dataset, which
provides a diverse and challenging testbed for evaluating loop
closure detection methods in constrained settings.

Figure 1 presents the integrated components of the proposed
approach.

Image Acquisition

h 4

Classification by CNN

v

Update Class Count in Dictionary

Count > Threshold?

Continue Monitoring

[ Loop Closure Detected

e  Figure 1: Flowchart of the loop closure detection process
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CNN-Based Classification Model

The cornerstone of our approach is a CNN-based
classification model that identifies distinct visual classes within
the dataset, which help a key-value dictionary to track the
locations. The dataset comprises 2,260 images, we group the
images
representing a unique class or “spot” in the environment, except
for the last class, which contains 40 frames. We deliberately left
the last class as is to avoid making the model overly strict and to
maintain simplicity. The CNN used is a lightweight architecture
with a single convolutional layer, designed to balance
computational efficiency and accuracy. The key parts are as

into sequences of 60 consecutive frames, each

follows:
. Grouping of Images: The dataset is segmented into
multiple classes, with most containing 60 consecutive frames,
except the last class with 40 frames.

. Training Process: The lightweight CNN is trained on
these grouped sequences, achieving a classification accuracy of

98% during testing.

Key-Value Dictionary Mechanism:

Complementing the CNN model, we implement a dictionary-
based mechanism to track and identify loop closures during
deployment. This mechanism operates by maintaining a count
of the frequency with which each class is detected in real time.
More specifically, the dictionary is implemented
as a simple key-value store in which each key corresponds to a
class label predicted by the CNN, and each value is an integer
counter representing the number of times that class has been
detected during deployment. For every incoming frame, the
CNN predicts a class, and the corresponding counter in the
dictionary is incremented by one. If the count for any given class
surpasses the threshold (set to 70 detections), a loop closure is
declared. This update process is intentionally designed to be
computationally lightweight and easy to maintain in real-time
settings.

The mathematical formulation of the dictionary mechanism is as
follows:

Let:
. C= {1,2,..,N} be the set of class labels (with N =
38 in our case),

D : C — Z>( bethe dictionary, mapping each class label
to its frequency count,
ft € C be the class predicted by the CNN for the input frame

at time t.

The dictionary update rule is defined as:
D(fe) < D(fe) + 1

This operation is performed in real time for each incoming
frame.

Setting Thresholds:

Rather than comparing individual frames, we aggregate
frames into distinct classes. This approach mitigates overfitting
and reduces computational cost. In this study, we utilize 60
frames per class, providing a balanced and comprehensive
representation of each visual class
. The selection of 60 frames per class, or *spot’, was refined
through trial and error, including manually checking the images to

ensure sequences of this length properly captured distinct
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environmental locations. This approach is crucial for model
performance. Using 60 frames per spot ensures each spot is well-
represented in the dataset. This helps the CNN model learn the
distinguishing features of each spot more effectively, leading to
higher classification accuracy, as presented in Section 4.
Additionally, utilizing this number of frames per spot captures
more variability within each class, such as different angles and
lighting conditions that might occur in real-world scenarios. This
diversity aids the model in generalizing better to new, unseen data.
. Using a sufficient number of frames per class helps prevent
overfitting. Overfitting occurs when the model learns the training
data too well, including noise and minor details, which can
negatively impact its performance on new data. A larger dataset
helps mitigate this risk.

. Importantly, during the training phase, the model shows a
classification accuracy of 96% (worst-case), and during testing
with shifted pixels, it achieves 94% accuracy. This indicates a
10% margin for potential misclassifications. Therefore, the
threshold for loop closure detection is set to 70, even though the
dataset contains 60 frames per class.

If any class count exceeds the threshold of 70 detections, a loop
closure is detected, signaling the robot’s re-encounter of a
previously visited region. The mathematical formulation is as
follows:

Let 7 denote the threshold for loop closure detection. A loop
closure is declared when:

Jc e Csuchthat D(c) >t

In our implementation, we empirically set T

70, providing
robustness to occasional misclassifications.

Specifically for the threshold selection justification, the notations
are as follows:

Let:
. L be the number of frames per class (typically L = 60),
. € be the expected misclassification rate (empirically
observed as € = 0.10 in the worst case),

. A be a safety buffer to tolerate classification noise.

We estimate the expected number of correct detections in a single
traversal as:

(1-€)-L=0.9-60=54

To ensure a reliable loop closure signal that surpasses the number
of correct detections in a single traversal (even with partial
overlap), we define the threshold as:

T=L+A=60+10=70

This formulation is supported by empirical tests shown in Table
1 (Section 4), where the 60-frame class size with a 10-frame
margin (t =70) produced the highest classification accuracy and

most reliable loop detection performance.

Integration of Components Thresholds:

The proposed approach works as follows:

Image Classification: As the navigates the
environment, each captured image is classified into one of the
predefined classes by the trained CNN.

. robot

Class Frequency Count: The dictionary dynamically
updates a count for each detected class based on CNN’s
predictions.

e Thresholding for Loop Detection: If the count for any class
exceeds a predefined threshold of detections, the system identifies

a loop closure.
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EXPERIMENTS AND RESULTS

The experiments were executed in the jupyter notebook in
the Python programming environment utilizing the Pan- das,
NumPy, Pillow, scikit-learn, TensorFlow, Keras, and OpenCV
libraries on a laptop with 16GB of ram. The dataset comprises
2,260 RGB images, each with a resolution of 640x480 pixels,
representing repetitive and visually complex environments.
Preprocessing procedures involved converting the images to
grayscale and resizing them to 32x32 pixels. The dataset was
categorized into 38 distinct classes, with each class containing 60
images, except for the final class, which contained 40 images. To
ensure consistency, pixel values were normalized to a range of
[0, 11.

Furthermore, the dataset was partitioned into training (80%)
and testing (20%) subsets. To ensure this split result is not an
artefact of a particular training run, we repeated the entire training
and evaluation process several times with different random
initializations. In every run the test accuracy converged to 98%
on the original images, mirroring the stable learning curves. The
experimental procedures are depicted in Figure 2.This choice for
using 60 frames per spot ensures each spot is well-represented in
the dataset and was further validated by empirical results from a
comparative analysis of classification accuracy on original test
images. As presented in Table 1, which compared using 50, 60,
and 70 frames per spot. The findings indicated that the 60-frame
configuration achieved 98% accuracy on original images,
outperforming both a 50-frame configuration (97%) and a 40-
frame setup (96%). With regards to class size, the 60-frame
configuration consistently outperformed the others, yielding the
highest accuracy because it balances two opposing factors (1)
Shorter class windows (e.g., 50 frames) may increase the
number of classes, but may not capture enough intra- class
variation, reducing the model’s ability to generalize (2) Longer
class windows (e.g., 70 frames) reduce the number of classes, but
may inadvertently include transitional scenes or overlapping
visual regions, increasing intra-class variability and reducing
separability. Therefore, the 60-frame configuration provides an
optimal balance between within-class consistency and between-
class distinctiveness, which is essential in highly repetitive
environments like greenhouses.

A lightweight Convolutional Neural Network (CNN)
architecture was designed to balance computational efficiency with
high classification accuracy. The architecture comprised a single
convolutional layer with 32 filters, a kernel size of (3, 3), and
ReLU activation, followed by a flattening layer to convert feature
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maps into a one-dimensional vector. This was succeeded by a
dense hidden layer with 68 neurons and ReLU activation, and an
output layer employing softmax activation for multi-class
classification across 38 classes. The model was trained using the
Adam optimizer with a learning rate of 0.001, categorical cross-
entropy as the loss function, 200 epochs, and a batch size of 32.
The training process yielded a classification accuracy of 98% on
the test set, demonstrating the effectiveness of the lightweight
CNN architecture. Notably, the model reached an accuracy of
approximately 98% by the 45th epoch, as shown in Figure 3. To
enhance the interpretability of the results presented in Figure 4, a
logarithmic scale was applied. Throughout the training process,
the model’s accuracy consistently remained above 96%, even by
the 200th epoch, indicating stable performance. Consequently, an
accuracy threshold of 96% is adopted for further analysis.

The model was trained on 1,808 images and tested on 452
images, following 80:20 split ratio. Notably, we avoided equal
class distribution in train-test splits which aligns with real-world
scenarios where class imbalances are common. The performance
metrics, including precision, recall, and F1-score, per class are
presented in Table 2. Moreover, as present in Figure 5, the
confusion matrix exhibits a very low degree of false alarms (10
out 0f 452), as indicated by the substantial values along the
diagonal. The pattern is consistent across all classes, with most
misclassifications occurring between adjacent or similar classes.
In an additional experiment, we shuffled the 2,260 training images
and shifted them by 1 pixel to the right, setting the vacated leftmost
column to zero, thereby altering 32 pixels per image. In this
experiment, we use the entire dataset, given they all will change,
as presented in Table 3. This manipulation aimed to test the
robustness of the classifier. Despite this modification, the CNN
achieved 92% accuracy, demonstrating its resilience to slight
spatial distortions. The model exhibited the high-performance
metrics per class, as presented in Table 4, even after the shifting.
The dictionary is implemented as a key-value store, where each
key corresponds to a class label predicted by the CNN, and each
value is an integer count representing the number of times that
class has been detected during runtime. Moreover, the update
process is straightforward and computationally inexpensive. For
every incoming frame, the CNN outputs a predicted class label.
The corresponding count in the dictionary is incremented by 1. If
any class’s count exceeds the pre-defined threshold (e.g., 70
detections), a loop closure is declared. This mechanism avoids
temporal matching or probabilistic reasoning, enabling efficient
up- dates in real time with minimal computational overhead.
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Greenhouse Scene Dataset

Categorization into classes

Preprocessing Dataset
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Figure 2: Block diagram of the loop closure detection process.

Table 1:Empirical comparison of classification performance using different numbers of frames per spot (50, 60, and 70), showing
accuracy trade-offs and number of resulting classes.

50 60 70
Original (%) 97% 98% 97%
Spots/Classes (#) 46 38 33
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Figure 4: The accuracy during training, validation accuracy,
loss function during training, and loss function during
validation, when values were logged in 200 epochs.

Figure 3: The accuracy during training, validation accuracy,
loss function during training, and loss function during
validation in 200 epochs.
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Figure 5: Matrix of the model on the test set where the x-axis represents Predicted Class and the y-axis represents True Class.
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Table 2: Performance metrics (precision, recall, F1-score) of  Taple 4: Performance metrics (precision, recall, F1-score)
of the CNN on 1 pixel shifted test data, measured per class.

the CNN on test data, measured per class.

Class Precision Recall F1-Score Samples
1 1 1 1 11
2 1 1 1 13
3 1 1 1 13
4 1 1 1 9
5 1 1 1 10
6 1 0.8 0.89 10
7 1 1 1 14
8 1 1 1 11
9 1 1 1 13
10 1 1 1 12
11 1 1 1 10
12 1 1 1 20
13 0.91 1 0.95 10
14 1 0.88 0.93 8
15 1 1 1 11
16 1 1 1 16
17 0.94 1 0.97 17
18 1 1 1 8
19 1 1 1 11

20 1 1 1 8

21 1 1 1 8

22 1 0.92 0.96 13
23 0.92 0.92 0.92 13
24 0.89 1 0.94 8

25 1 0.86 0.92 14
26 0.79 1 0.88 11
27 0.93 0.93 0.93 14
28 1 0.95 0.97 19
29 1 1 1 15
30 1 1 1 12
31 1 1 1 10
32 0.92 1 0.96 11
33 1 1 1 10
34 1 1 1 8

35 0.93 1 0.96 13
36 1 0.93 0.96 14
37 1 1 1 10
38 1 1 1 14

Class Precision Recall F1-Score Samples
1 0.96 0.90 0.93 60
2 0.97 0.95 0.96 60
3 1.00 0.67 0.80 60
4 0.59 1.00 0.74 60
5 0.94 0.80 0.86 60
6 0.95 0.97 0.96 60
7 0.98 0.98 0.98 60
8 1.00 0.92 0.96 60
9 0.91 1.00 0.95 60
10 0.95 0.97 0.96 60
11 0.98 0.90 0.94 60
12 1.00 0.93 0.97 60
13 0.98 1.00 0.99 60
14 0.97 0.95 0.96 60
15 0.96 0.73 0.83 60
16 1.00 0.75 0.86 60
17 0.98 0.97 0.97 60
18 0.63 1.00 0.77 60
19 1.00 0.90 0.95 60

20 0.98 0.93 0.96 60
21 0.95 0.93 0.94 60
22 0.86 0.98 0.91 60
23 0.83 0.97 0.89 60
24 1.00 0.85 0.92 40
25 1.00 0.98 0.99 60
26 0.97 1.00 0.98 60
27 0.72 0.97 0.83 60
28 1.00 0.58 0.74 60
29 0.87 1.00 0.93 60
30 1.00 0.90 0.95 60
31 0.97 0.98 0.98 60
32 0.95 0.87 0.90 60
33 0.96 0.85 0.90 60
34 1.00 0.87 0.93 60
35 0.86 1.00 0.92 60
36 1.00 0.87 0.93 60
37 0.93 0.95 0.94 60
38 0.90 1.00 0.94 60

Table 3: Accuracy of CNN across all classes on the original test dataset vs. the whole dataset subjected to a 1-pixel shift.

Condition Number of Samples Accuracy
No shifts (Original Image) 452 98%
Shift by 1 pixel 2260 92%

2. DISCUSSION

The single-layer Convolutional Neural Network (CNN)
achieved an impressive accuracy of 98% on the Greenhouse Scene
Dataset, utilizing 32 filters and a relatively simple architecture.
This high performance can be attributed to the structured nature
of the greenhouse environment, characterized by repetitive
patterns and controlled lighting conditions. Such factors likely
facilitated the model’s ability to extract relevant features,
enabling the shallow network to perform effectively without
requiring extensive depth or complexity. The minimalistic
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architecture, comprising a single convolutional layer and a small
dense layer, mitigated the risk of overfitting while still
maintaining sufficient discriminative power for class-specific
features. These results suggest that complex neural network
architectures are not always necessary to achieve high
performance in specialized environments. The lightweight design
makes this model particularly suitable for deployment on
resource-constrained systems where computational efficiency is
a priority. Notably, the confusion matrix indicates that
misclassifications occurred between adjacent classes, suggesting
that errors were likely made between visually similar or
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structurally similar environments, rather than between entirely
dissimilar ones. This pattern implies that the model’s
discriminative power remains strong, but refinement between
similar classes could enhance performance further. When
subjected to a shift of 1 pixel, simulating spatial distortions
commonly encountered in real-world settings, the model
retained an accuracy of 92%. This robustness to minor
perturbations indicates that the model focuses on higher-level
structural features, such as object shapes and layout, rather than
being overly dependent on exact pixel positions. This behavior is
indicative of the CNN’s ability to generalize well despite
variations in image positioning. Furthermore, preprocessing
steps such as converting the images to grayscale and resizing them
to 32x32 pixels likely contributed to the model’s invariance to
noise and spatial distortions. This makes the model well-suited for
real-world applications where minor camera jitter or
environmental changes might occur, ensuring consistent
performance de- spite such challenges.

The system demonstrated real-time processing capability,
handling 70 frames in just 0.076 seconds on a CPU (Intel i7-
8750H). This remarkable efficiency is largely due to the
lightweight CNN architecture, which minimizes computational
load by avoiding complex operations while still maintaining high
performance.

Additionally, the use of a dictionary mechanism for
classifying frames, instead of re- lying on resource-intensive
feature matching or geometric verification, further reduces
processing overhead. Regarding memory footprint, the
dictionary’s requirements are mod- est. With 38 distinct classes,
only 38 integer counters are maintained. Assuming 32-bit
integers, this results in a total memory usage of approximately 152
bytes—well within the capabilities of even the most constrained
embedded systems. The approach does not rely on storing high-
dimensional feature descriptors or managing large image buffers,
which further supports its deployment in low-power platforms.
As for handling class overlaps, we mitigated this risk during
dataset preparation by carefully segmenting the 2,260 frames into
non-overlapping sequences of 60 consecutive frames, each
designated as a distinct “spot.” Manual inspection was used to
ensure that each class represents a visually coherent and spatially
distinct segment of the environment.

Given that in repetitive environments such as greenhouses,
some visual similarity between classes is unavoidable, the loop
closure detection threshold was set conservatively at 70,
providing a margin that helps filter occasional
misclassifications. This design prioritizes robustness over

out

aggressive detection and ensures that loop closures are only
declared when there is strong and sustained evidence of
revisitation. The confusion matrix in the results section supports
this, showing that misclassifications are rare and tend to occur
only between visually adjacent classes. Overall, the dictionary
mechanism is intended to be minimalistic yet effective, ensuring
high performance without introducing computational or memory
Additionally, the dictionary-based loop
mechanism is computationally lightweight—look up and up- date

burdens. closure
operations are O (1) per frame. Thus, latency does not scale with
the number of classes in a significant way, even with hundreds of
classes.

By grouping frames into classes (60 frames per class), the
system reduces the computational demands of processing each
frame individually. This efficiency ensures that the model can be
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deployed on low-power embedded systems, such as agricultural
robots or autonomous vehicles, which typically lack GPUs,
making it ideal for real-time applications in resource-constrained
environments.

For loop closure detection, a threshold of 70 detections was
established, despite the classes being defined with 60 frames.
This threshold was chosen to accommodate potential
misclassifications, acknowledging that the worst-case accuracy
of the model is 90%. The additional buffer (70 detections instead
of 60, although the frames are 60 not 100) ensures that the system
remains robust to transient errors while avoiding false positives.
More specifically, the 70 frames margin also serves to ensure that
a loop closure is not declared prematurely during a partial revisit
or due to visual ambiguity. It prioritizes specificity over
sensitivity, which aligns with our system’s objective of ensuring
reliable  operation resource-constrained and  visually
ambiguous environments. This adaptive approach to thresholding
strikes an optimal balance between sensitivity and specificity,
ensuring reliable loop closure detection in environments where
repetition and environmental variations are prevalent. Such a
strategy is crucial for applications involving navigation and path
recognition in repetitive environments, where the accurate
detection of loop closures is essential for maintaining system

in

reliability.

With regards to CPU/GPU specifications and power
consumption, all experiments were conducted without any GPU
acceleration to simulate the performance of higher- end
embedded or low-power CPUs. The CNN inference and
dictionary operations were performed entirely on the CPU,
supporting our claim of GPU-independent real-time operation.
Moreover, since our framework uses only the CPU and avoids
GPU-heavy tasks (e.g., feature matching, geometric verification),
the power consumption remains significantly lower than
comparable GPU-based LCD systems. Notably, the model
achieves real-time performance of 0.076 seconds per 70 frames
on CPU, which translates to approximately 920 frames per
second. This high throughput, achieved with- out GPU support,
further emphasizes the model’s suitability for real-time
applications on constrained hardware.

COMPARISON WITH STATE-OF-THE-ART METHODS

In contextualizing our method against several state-of-the-

art studies, emphasizing efficiency, and applicability to
repetitive scenes, our method contributes to bridge the gap
between accuracy and efficiency in LCD for repetitive
environments.
(Zhou, 2025)proposed a lightweight Siamese capsule network
which leverages spatial hierarchies and attention to features,
achieving robustness in dynamic urban environments but at the cost
of higher complexity. Moreover, their method achieves 0.074s per
frame but relies on GPU acceleration during training. Their
pruning strategy mitigates computational load but still requires
more resources than our dictionary-based voting.

(Shi, 2024) employs a multi-stage deep learning pipeline
(MixVPR + SuperPoint + Light- Glue), offering robustness in
diverse environments at the cost of complexity. Their method
achieves 0.074s per frame on GPU (NVIDIA Jetson) but requires
significant computational resources, limiting deployment on low-
end hardware. Additionally, they leveraged Mix VPR for holistic
global descriptors and LightGlue for adaptive feature matching,
enabling robustness to viewpoint changes.
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(Li, 2023) introduced CoCALC, a self-supervised visual
place recognition (VPR) approach combining appearance and
geo- metric information, achieving state-of-the-art performance
on benchmarks. While CoCALC excels in long-term VPR with
minimal memory footprint, its geometric verification introduces
latency during post-processing. In contrast, our method
eliminates feature matching entirely through a dynamic
dictionary mechanism, achieving 0.076s per 70 frames on CPU
without geometric checks, making it more suitable for repetitive
agricultural environments.

(Mehta, 2021)proposed MobileViT which mixes depth-wise CNN

layers with lightweight self-attention, giving it global context
without ballooning parameters. MobileViT demonstrated
stability across classification, detection and dense segmentation
(without heavy augmentation tricks) suggests strong
generalization, complementing the pixel-shift or viewpoint-
centric robustness of existing LCD methods. However, different
from ours, MobileViT is mainly about general-purpose vision
transformers for mobile devices, not specifically loop closure
detection.

Comparative Analysis of the three studies and our method is
presented in Table 5.

Table 5: Comparison of our method with several notable studies.

Aspect Our Method

Zhou and Sun (2025) Shi et al. (2024)

Li et al. (2023) Mehtaand Rastegari

(2021)

Architectur Single-layer CNN + Pruned-Capsule MixVPR+ DSC + geometric check MobileNet+V2 blocks
e dictionary network LightGlue
Accuracy 98% (Greenhouse) 94.7% (CityCentre) 0.473mATE AUC 0.98, Rp 74.8% (ImageNet)
(KAIST) 1000.51(Nordland)
Efficiency 1.085 ms/frame 74 ms/frame (GPU) 12.5ms/frame (GPU)86.27 ms/frame (CPU) 7.25 ms/frame
(CPU) (iPhonel2 NE)
Robustness Pixel shifts Viewpoint changes  Seasonal changes viewpoint changes weight-decay changes
Dataset Greenhouse NewCollege, EuRoC, KAIST Nordland,SPEDTest, ImageNet, COCO
CityCentre Gardens Point
KITTI 4Seasons s Loop, Cross-Seasons PASCAL
advancement in visual SLAM, addressing the persistent
CONCLUSION

The proposed methodology integrates the advantages of
CNN-based image classification with a simple yet efficient
dictionary-based counting mechanism, thereby achieving robust
loop closure detection. By exploiting the structured nature of the
Greenhouse Scene Dataset, which features repetitive patterns and
controlled lighting conditions, our approach ensures accurate and
reliable detection of loop closures. This, in turn, enhances robotic
navigation in repetitive environments, where reliable detection of
previously visited locations is crucial. The model’s high
accuracy, reaching 98% in training and 92% when tested with
spatial distortions, highlights its effectiveness in complex,
visually challenging scenarios. Additionally, the model’s
robustness to pixel-level shifts, achieving 94% accuracy even
with 1- pixel image shifts, demonstrates its resilience to real-
world perturbations, such as minor camera jitter.

Our experimental results confirm that the proposed method
is well-suited for use in resource-constrained robotic systems. The
lightweight CNN architecture, which minimizes computational
overhead while maintaining high performance, enables real-time
operation on low-power embedded systems. This efficiency,
coupled with the robustness demonstrated by the model, makes it
SLAM applications
environments with limited computational resources, such as

a promising solution for visual in
agricultural robots and autonomous vehicles. The model’s ability
high accuracy  despite

misclassifications occurring primarily between visually similar

to maintain classification

classes further supports its reliability for practical applications.
The adaptive thresholding for loop closure, set at 70 detections to
accommodate potential misclassifications, balances sensitivity
and specificity, ensuring robust performance even in the presence
of minor errors.

Finally, our a significant

methodology represents
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challenges of loop closure detection in repetitive and visually
complex environments. The simplicity, efficiency, and reliability of
the approach offer a practical solution that advances the state-of-
the-art in visual SLAM systems.

FUTURE WORK

Future research could focus on several key areas to augment
the robustness, scalability, and versatility of the proposed loop
closure detection framework. The overarching goal is to facilitate
its deployment in increasingly diverse and dynamic operational
contexts. A significant avenue of investigation could be the
development and integration of automatic labeling techniques,
which offer the potential to streamline the dataset preparation
phase required for training and evaluation.

A critical aspect of future work could involve rigorous
validation of the method’s performance in environments
characterized by less structure and greater dynamism than the
Greenhouse Scene Dataset. Consequently, a priority will be to
expand the empirical evaluation to diverse datasets, including
comprehensive testing on established public bench- marks such as
KITTIL, Nordland, and 4Seasons. This ex- tensive testing is of

significance for assessing the method’s generalization
capabilities and its efficacy in managing high scene variability.
Finally, exploration into the hybrid integration of

complementary sensory modalities could be undertaken to fuse
additional environmental data with visual inputs, thereby
bolstering the overall robustness and reliability of the loop
closure detection system. These research trajectories are
envisioned to culminate in a more universally applicable and
resilient loop closure detection solution, thereby advancing the
capabilities of visual SLAM systems for a broader spectrum of
autonomous navigation application.
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