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ABSTRACT: 

Detecting and Classifying Ocular conditions like Diabetic Retinopathy and Cataract is critical for the early diagnosis of 

these eye diseases and their treatments. This study proposes a hybrid CNN-Haralick model, that leverages the lightweight 

MobileNetV2 CNN architecture for spatial feature extraction and Haralick statistical texture features extraction for texture 

analysis to improve the accuracy eye disease classification. A dual-branch architecture is modeled, which combines features 

extracted from both the Convolutional Neural Network and the Haralick-based texture analysis at an early stage and is then 

passed through the MobileNetV2 Neural Network. The model is then evaluated and the results show that the hybrid CNN-

Haralick model achieves an overall accuracy of 98% on the validation set, outperforming traditional CNN models. The 

model demonstrates exceptional performance, with a macro average F1-score of 98% for the three classes, and AUC-ROC 

scores of 100% for each category. Additionally, the model's effectiveness is discussed in comparison with existing works, 

highlighting its superior performance in terms of both accuracy and multi-classification efficiency.  

KEYWORDS: Eye Diseases, CNN, Haralick, Hybrid Model, Spatial Analysis, Texture Analysis, Dual-Branch 

Architecture, Multi-Classification. 

1. INTRODUCTION 

        Beyond what is commonly known about Diabetes, diabetes 

mellitus is a chronic metabolic condition that also serves as a 

leading cause of ocular complications, distinctly Diabetic 

Retinopathy (DR) and Cataract, which are two of the most 

common and preventable causes of visual impairment and 

blindness (Cleveland Clinic, 2022; Shukla et al., 2023). These 

complications significantly affect the retina and lens of the eye, 

and if left untreated, can result in irreversible vision loss. Timely 

and precise detection of such retinal ailments is essential for 

avoiding permanent eye damage (Pratap et al., 2024). However, 

traditional diagnostic methods for retinal diseases still rely 

heavily on the availability and expertise of trained 

ophthalmologists and access to high-end imaging equipment, 

which may be unavailable or restricted in low-resource areas. 

This highlights the pressing need for autonomous, intelligent, and 

cost-effective screening tools that can assist healthcare 

professionals and expand access to early eye care. 

        In the 21st century, Machine Learning and Pattern 

Recognition have shown promise in medical imaging, with 

Convolutional Neural Networks (CNNs) excelling at extracting 

spatial features for disease classification (Mienye et al., 2025). 

Despite this, CNNs often miss subtle texture cues critical for 

identifying early-stage retinal abnormalities (Atcı et al., 2024). 

Such texture information, which can be essential for detecting 
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micro-level changes in retinal images, may not be well-captured 

by standard CNN pipelines. To overcome this, we propose a 

hybrid model that integrates CNN-derived spatial features with 

Haralick texture descriptors—handcrafted features calculated 

from Gray-Level Co-occurrence Matrices (GLCMs) that capture 

local pixel intensity variations. By combining these two feature 

types, the model benefits from both global spatial structure and 

local textural nuance, enabling improved detection of complex 

changes, especially when dealing with fundus images. 

        This study introduces a dual-branch CNN-Haralick 

architecture designed for the multi-classification of retinal 

images. They include the DR, Cataract, and Normal classes. The 

model is trained on a balanced dataset of high-resolution fundus 

images, with over 1,000 images per class to ensure 

representativeness and generalizability. In contrast to earlier 

hybrid approaches that either apply handcrafted features 

independently or fuse them without optimization (Li et al., 2023), 

this model adopts a structured and tuned integration approach 

aimed at enhancing both classification performance and model 

interpretability. This careful fusion strategy ensures that the 

model is more sensitive to subtle visual anomalies, such as 

variations around the optic disc, which are often early indicators 

of disease. 

        The aim of this research is to validate a high-performing 

hybrid detection and classification methodology that leverages 

both deep and statistical features to improve diagnostic accuracy. 
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http://sjuoz.uoz.edu.krd/
mailto:lakannanji@gmail.com
https://doi.org/10.25271/sjuoz.2025.13.4.1593
https://creativecommons.org/licenses/by-nc-sa/4.0/


Olorunshola et al/ Science Journal of the University of Zakho, 13(4), 479-488 October-December, 2025 

 

480 

 

This approach aligns with ongoing advancements in AI-driven 

medical diagnostics and seeks to bridge the diagnostic gap in 

regions with limited clinical resources. By enhancing screening 

capabilities, it supports broader access to eye care and earlier 

intervention for individuals at risk of diabetic visual 

complications. 

        The paper is structured as follows: Section 1 presents the 

background of the study and an introduction of the proposed 

method; Section 2 is the literature review and existing research 

gaps; Section 3 details the proposed hybrid CNN-Haralick 

model; Section 4 covers the results, section 5 is the discussion 

and section 6 concludes with key findings, limitations, and 

recommendations for future work 

2. .RELATED WORKS 

        Sushith et al. (2025) presented a hybrid model that puts 

together two known deep learning algorithms which are CNN 

and the Recurrent Neural Networks (RNNs) detecting DR using 

retinal fundus images. The Proposed model evaluation in terms 

of both sensitivity and specificity, achieved 97.5% accuracy on 

the DRIVE dataset, 94.04% on the Kaggle dataset, 96.9% on the 

Eyepacs Dataset. 

        Bidwai et al. (2024) presented the Dunnock-Scheduler 

optimization-based Light GBM (DkSO-Light GBM) for 

multimodal image fusion for DR detection. The experimental 

outcomes were evalauated and the accuracy, sensitivity, 

specificity, precision and F1_score, of the DkSO-Light GBM 

were 94.32 %, 94.94 %, 94.78 %, 94.78 % and 94.25 %, 

respectively. And for the k-fold 6 metrics we have 95.53 %, 

94.72 %, 95.41 %, 94.16 %, 93.83 %, 95.07 %, and 92.00 %, 

respectively.  

       Babaqi et al. (2023) focused on classifying eye diseases 

including DR, cataract, and glaucoma using deep learning 

models. Using transfer learning, the study achieved a 

classification accuracy of 94%. The approach highlighted the 

need for accurate multi-class classification in ophthalmology. 

Introducing a multi-class transfer learning approach for eye-

disease classification, Bitto and Mahmud (2022) used a ResNet-

50, Inception-v3, Visual Geometry Group (VGG-16) CNN 

models to classify between conjunctivitis eyes, normal eyes, and 

cataract eyes. With a detection speed of 485 seconds, the 

Inception-v3 model was recorded as the most accurate of all the 

models used for their eye disease detection approach, with an 

accuracy of 97.08%, ResNet-50 performed as the second-highest 

with 95.68% accuracy for 1090 seconds and finally, The VGG-

16 performed with an accuracy of 95.48% with the longest time 

spent of 2510 seconds to detect eye diseases. 

        Ouda et al. (2022) introduced a multi-label classification 

approach for detecting different ocular diseases using retinal 

fundus images.  The proposed model demonstrated high accuracy 

in classifying various eye conditions, showcasing the potential of 

multi-label classification in ophthalmology. The model was 

evaluated using Dice similarity coefficient (DSC), accuracy, 

precision, recall, and area under the curve (AUC). The results are 

99%, 94.3%, 91.5%, 80% and 96.7%, respectively. 

        Sarki et al. (2021) developed a model using CNN for multi-

classifiication of diabetic eye diseases. The study aimed to 

automate the diagnosis process, reducing the manual workload 

on ophthalmologists. The proposed model achieved a maximum 

accuracy of 81.33%, with both sensitivity and specificity 

reaching 100%, demonstrating its effectiveness in clinical 

settings. 

        Londhe (2021) proposed a hybrid CNN-RNN model for 

classifying eye diseases such as cataracts, glaucoma, and other 

retinal diseases. Utilizing transfer learning with architectures like 

InceptionV3, InceptionResNetV2, and DenseNet169, features 

were extracted and then classified using LSTM networks. 

Addressing the challenge of class imbalance in the dataset, data 

augmentation techniques were employed. The DenseNet169-

LSTM model had the best performance with accuracy of 69.5%, 

precision of 87.4% and sensitivity of 69.5%. 

        Sarki et al. (2020) addressed the challenge of detecting 

diabetic eye diseases amidst the presence of mild feature 

difference using deep learning. Using a pretrained CNN model 

like VGG16, the study incorporated techniques such as fine-

tuning, optimization, and contrast enhancement. The model had 

an accuracy of 88.3% for multi-class classification and 85.95% 

for mild multi-class classification, highlighting its robustness in 

handling varying disease severities. 

        Malik et al. (2019), introduced the development of a 

standardized system for collecting and processing diagnostic 

data, aiming to improve the accuracy and reliability of machine 

learning models in predicting diseases. multiple machine 

learning algorithms including Naive Bayes, Random Forest, 

Decision Tree, Random Forest, and Neural Network algorithms. 

The Random Forest and Decision Tree algorithms’ accuracy was 

more than 90% as compared to just using Neural Networks and 

the Naïve Bayes algorithm. 

         Al-Bander et al. (2017) explored developing an automatic 

feature learning model for the detection of ocular conditions in 

colored retinal fundus images using CNN, a deep learning 

method. It was developed to distinguish between normal and 

glaucomatous patterns for diagnostic decisions. Unlike 

traditional methods where the optic disc features are handcrafted, 

feature extraction was carried out using raw images by CNN and 

fed to an SVM classifier to classify the images into normal or 

glaucomatous. The model was evaluated and had accuracy, 

specificity and sensitivity of 88.2%, 90.8%, and 85%. 

        While CNNs, transfer learning, and hybrid deep learning 

architectures have proven effective for classifying eye diseases, 

they still face limitations. Most models focus on spatial or deep 

semantic features extracted from retinal images, often neglecting 

subtle texture patterns essential for distinguishing early-stage 

diseases such as Cataract from Normal retina (Babaqi et al., 

2023; Bidwai et al., 2024). Additionally, multi-class and multi-

label classification techniques, despite improving general 

diagnostic accuracy, often struggle with class-specific 

performance, particularly in underrepresented or visually similar 

categories (Ouda et al., 2022; Sarki et al., 2021).  

        Although some hybrid models, such as CNN-RNN and 

CNN-SVM, have been proposed, few effectively combine 

handcrafted statistical texture features, like Haralick descriptors, 

with deep features in a unified architecture. Most existing 

approaches either use these features independently. Therefore, 

there is a pressing need for an interpretable, multi-class 

classification system that seamlessly integrates spatial deep 

features with robust statistical texture representations. 

Combining Haralick features with CNN-derived features could 

improve diagnostic accuracy and enhance predictability, 

particularly for texture-dependent classes. 



Olorunshola et al/ Science Journal of the University of Zakho, 13(4), 479-488 October-December, 2025 

 

481 

 

3. METHODOLOGY 

Research Design: 

        The model being proposed had its development and training 

conducted on a Jupyter Notebook environment powered by an 

Intel Core i7 processor with 16 GB of RAM. This research is 

structured into four sequential phases: preprocessing of retinal 

images to standardize inputs, extraction of Haralick texture 

features to capture statistical regularities, deep feature learning 

via fine-tuned MobileNetV2 for semantic representation, and 

fusion of both feature types through a dual-branch architecture, 

followed by joint training and classification.This layered design 

combines low-level statistical regularities and high-level deep 

features to enhance diagnostic precision for retinal diseases. This 

architecture leverages both domain-agnostic statistical 

descriptors and hierarchical deep features for enhanced 

diagnostic performance. 

Dataset Preparation and Preprocessing: 

        The model is trained and evaluated on a balanced dataset 

comprising high-resolution fundus images grouped into three 

diagnostic categories: Diabetic Retinopathy, Cataract, and 

Normal. These images were sourced from publicly available 

repositories, including the Indian Diabetic Retinopathy Image 

Dataset (IDRiD), the Ocular Disease Recognition dataset, and the 

High-Resolution Fundus (HRF) database. The IDRiD dataset, 

curated specifically for diabetic eye disease detection, includes 

both pathological and normal fundus images from Indian 

patients, capturing real-world variability. The Ocular Disease 

Recognition dataset provides a broad range of labeled eye 

conditions, while the HRF database offers high-resolution 

clinical images aimed at retinal vessel segmentation and anomaly 

detection. Each diagnostic class comprises over 1,000 images, 

ensuring class balance and promoting robust generalization 

across varied imaging conditions. 

        All images were uniformly resized to 128×128 pixels and 

standardized using the preprocess_input function from 

MobileNetV2 to align with the model’s expected input 

distribution. This preprocessing step also normalized color and 

contrast values across all samples, thereby reducing domain-

specific biases. Stratified sampling was applied to split the 

dataset into training (70%), validation (15%), and test (15%) 

subsets, ensuring proportional class representation throughout. 

MobileNetV2, used as the CNN backbone, employs depthwise 

separable convolutions with 3×3 kernels and strides of 1 or 2, 

designed for computational efficiency. Its convolutional blocks 

progressively downsample the input while increasing filter depth 

from 32 to 1,280. The resulting feature maps are condensed using 

a Global Average Pooling layer, followed by a dense layer with 

128 units activated by the Swish function. The final classification 

head is a fully connected softmax layer with three output neurons, 

corresponding to the Diabetic Retinopathy, Cataract, and Normal 

classes. 

Model Architecture:

 

Figure 1: CNN-Haralick Architecture for the Multi-Classification of Eye Diseases 

        The model’s architecture represented in Figure 1 above is 

divided into two parallel branches for features extraction, The 

CNN Feature extraction Branch and the Haralick Feature Branch 

which are later fused to make a final prediction and classification. 

CNN Feature Extraction Branch: 

        The CNN branch receives images with input shape (128, 

128, 3) and utilizes a pretrained MobileNetV2 base. The initial 

layers (up to layer 100) are frozen to retain general-purpose low-

level features, while the final 20 layers are unfrozen for domain-

specific fine-tuning. After convolutional processing, a Global 

Average Pooling (GAP) layer compresses the feature maps into 

a 1D representation, followed by a dense layer of 128 units with 

the Swish activation function. Batch normalization is applied, 

and a dropout layer with a rate of 0.4 prevents overfitting. This 

branch effectively extracts vascular patterns, optic disc 

anomalies, and macular irregularities commonly found in retinal 

disease. 

Haralick Feature Branch: 

        The second branch operates on grayscale-converted fundus 

images, which are rescaled to 256 intensity levels. Gray-Level 

Co-occurrence Matrices (GLCMs) are computed across four 

orientations (0°, 45°, 90°, and 135°) at multiple pixel distances 

(1, 2, 4, and 8). From these matrices, thirteen Haralick features 

are derived, of which seven are retained based on their clinical 
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and statistical relevance: contrast, correlation, homogeneity, 

energy, variance, inverse variance, and entropy. These features 

were selected for their ability to capture critical retinal texture 

patterns. For example, entropy quantifies randomness in pixel 

distribution and can indicate localized retinal degeneration or 

hemorrhages, while correlation measures the linear dependency 

of gray levels, helping identify structured patterns such as aligned 

blood vessels in healthy retinas. After extraction, the features are 

standardized and passed into a dedicated subnetwork comprising 

two fully connected layers with 64 and 128 units respectively, 

both using the Swish activation function. To improve 

generalization, batch normalization is applied between layers, 

and a dropout layer with a rate of 0.3 is added for regularization.

Haralick Texture Features: 

Contrast: 

An interaction between a pixel and its neighbors which often causes the intensity: 

 

 

Entropy: 

measures the level of randomness among pixels within the image: 

 

 

Energy:  

The sum of the squared elements within the Matrix, with its ranging up to 1. 

 

 

Correlation:  

Indicates the extent to which a pixel's neighboring values are correlated with the overall structure of the image. 

 

 
 

Homogeneity: 

reflects the uniformity of the texture. As the GLCM elements shift further from the diagonal, the homogeneity value increases in a 

geometric manner. 

 

 

Variance: Represents the degree to which intensity values vary or deviate from the mean. 

 

 

Inverse Variance:  

Highlights elements close to the diagonal in the GLCM, providing a precise assessment of texture similarity. 

 

 
Where: 

P(i,j) = Probability value at position (i,j) in the GLCM. 

(1) 

(3) 

(5) 
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N = Number of gray levels in the image. 

 = row i and column j. 

 = Standard deviations of row i and column j. 

  is a small value  added to prevent log(0). 

 

Feature Fusion and Classification Layer: 

        The outputs from both branches—each of shape (128,)—are 

concatenated to form a 256-dimensional feature vector. This 

combined vector is passed through two dense layers of 256 and 

128 units, each followed by batch normalization and dropout 

layers (rates = 0.5 and 0.3 respectively). The final classification 

layer consists of 3 output units corresponding to Diabetic 

Retinopathy, Cataract, and Normal classes, using a Softmax 

activation function to generate class probabilities. This 

configuration is appropriate for mutually exclusive multi-class 

classification tasks. The model is compiled using categorical 

cross-entropy as the loss function and the AdamW optimizer with 

an initial learning rate of 0.01. Learning rate scheduling is used 

to reduce the rate when the validation loss plateaus, improving 

convergence. 

Training Protocol: 

        The training protocol includes 30 epochs with early 

stopping (patience = 5) and real-time data augmentation to 

prevent overfitting. A batch size of 32 is used, and input images 

are consistently formatted to dimensions (128, 128, 3). The 

dropout rates across different layers were not selected arbitrarily 

but were the result of empirical tuning through iterative 

experimentation using validation accuracy and loss as 

performance indicators. A higher dropout 0.5 was assigned to the 

fusion layer to mitigate overfitting from the high-dimensional 

joint feature vector. The Haralick and CNN branches used 0.3 

and 0.4, respectively, as these provided the best trade-off between 

stability and regularization during trials. The 0.1 dropout in the 

final dense layer was retained after testing values between 0.0 

and 0.3, as it preserved gradient flow without compromising 

convergence. Its minor regularization was sufficient due to 

upstream regularization layers and batch normalization.  

Integration of Techniques and Novelty: 

        The key novelty of this approach lies in the synergistic 

fusion of deep and statistical features within a unified learning 

framework: 

        The CNN branch abstracts complex spatial relationships, 

capturing semantic cues like exudates and hemorrhages. 

        The Haralick branch quantifies micro-textural variations, 

which are often early indicators of diseases like cataract. 

Instead of ensemble voting or post-hoc feature concatenation, an 

early fusion strategy is employed in a multi-input neural network, 

allowing the model to learn joint feature representations in an 

end-to-end fashion. 

        The inclusion of interpretable Haralick descriptors 

contributes to transparency and aligns with clinical reasoning, 

thus improving the model’s trustworthiness. 

        The synergy between CNN and Haralick features boosts 

performance in distinguishing visually similar classes (e.g., 

Cataract vs. Normal), a known limitation in conventional CNNs. 

Evaluation of the Model: 

        The proposed model was evaluated on a separate validation 

set using metrics such as accuracy, precision, recall and F1-score. 

To validate the effectiveness of the hybrid approach. The 

performance metrics are: 

Accuracy: 

        This refers to the proportion of correctly predicted instances, 

TP+TN, to the total number of samples, TP+TN+FP+FN, in the 

dataset:

 

 
 

Recall (Sensitivity): 

The proportion of true positive predictions relative to the total number of instances predicted as positive: 

 

 
 

Precision: 

The proportion of correctly predicted instances within all instances classified under that specific class: 

 

 
 

F1-Score: 

The harmonic average of precision and recall, for reducing the impact of large disparities between them. 

 
Where: 

(8) 

(9) 

(10) 

(11) 
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TP is True Positive 

TN is True Negative 

FP is False Positive 

FN is False Negative. 

 

4. RESULTS AND DISCUSSIONS 

        In this section, we present the results obtained from the 

proposed hybrid CNN-Haralick model for eye disease 

classification. The performance of the model is evaluated using 

various metrics, including accuracy, precision, recall, F1-score, 

and AUC-ROC. We also analyze the contribution of Haralick 

features to the model’s performance and compare the results with 

existing methods to demonstrate the effectiveness of our 

approach. 

Confusion Matrix Analysis: 

        The confusion matrix (Table 1 and Figure 2) provides 

insight into the model’s classification performance across the 

three classes—Cataract, DR, and Normal. The model achieved 

nearly perfect classification for DR and high performance for 

Cataract and Normal classes. 

 

Table 1: Confusion Matrix for the predicted classes 

Class Cataract DR Normal 

Cataract 154 0 2 

DR 0 165 0 

Normal 7 1 153 

 

 

 

Figure 2: Confusion matrix illustrating classification results on 

the validation set. 

        The model accurately classified 165 images of DR with no 

false positives or negatives, reflecting strong discriminative 

capability in detecting this class. For Cataract, only 2 Normal 

images were misclassified, while 7 Normal samples were 

wrongly predicted as Cataract, revealing minor overlap in feature 

representation between these classes. 

 

 

Classification Metrics:  

       The classification report in Table 2 presents the F1-score, 

recall, precision, and AUC-ROC for each class. Figure 3a is a 

screenshot of the classification report which includes the 

weighted and macro average of each of the metrics for all 

classses, highlighting the model’s strong accuracy across the eye 

disease categories. 

        Figure 3b displays the AUC-ROC curve, demonstrating the 

model’s ability to distinguish between the classes. The high AUC 

values indicate reliable performance in multi-class classification, 

effectively identifying subtle differences between similar eye 

conditions. 

 

Table 2:Classification Report of the CNN-Haralick Model 

Performance on the Validation Set. 

Class F1-Score Recall Precision AUC-ROC 

Cataract 97% 99% 96% 100% 

DR 100% 100% 99% 100% 

Normal 97% 97% 99% 100% 

 

 

 

Figure 3a: Classification Report Visualizing Precision, 

Recall, and F1-Score. 

Figure 3b: ROC-AUC curve for the 3 classes. 
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        The model achieved an impressive overall accuracy of 98%. 

Notably, the AUC-ROC of 100% for each of the classes 

demonstrates the model's outstanding ability to distinguish 

nuanced patterns. This perfect score though seemingly 

questionable is supported by the balanced precision and recall 

that each class got showing that the model doesn’t struggle with 

predicting accurately for each of the classes. This also indicates 

that the model consistently ranks positive cases higher than 

negative ones, regardless of the disease type. The model’s ability 

reflects how well it leverages both spatial and texture features, 

captures subtle patterns that helps it differentiate between the 

different eye conditions with high precision and Sensitivity. 

Training and Validation Dynamics: 

        The Training and Validation Accuracy/Loss curve over 30 

epochs are shown below in Figures 4a and 4b. The graphs show 

a gradual and then instant convergence with no signs of 

overfitting, further validating the model's robustness and 

generalization capability.

 

 

Figure 4: Performance (a) training vs validation accuracy and (b) training vs validation loss for the proposed model 

 

        The minimal gap between training and validation accuracy 

(less than 2%) and the consistent decline in validation loss 

confirm that the model effectively learns meaningful features 

without overfitting, even with the hybrid fusion of CNN and 

Haralick features. 

5. DISCUSSION 

        The proposed CNN-Haralick hybrid model leverages two 

distinct types of features: spatial features from the CNN branch 

and textural features from the Haralick descriptors. Combining 

These features to be used for the classification of multiple eye 

diseases has achieved an outstanding classification ability for eye 

diseases, with results that surpass that of benchmark models that 

rely on either CNN or texture-based features alone. 

        MobileNetV2, a lightweight CNN architecture pretrained on 

ImageNet, was employed to extract deep spatial features. The 

model's ability to recognize high-level subtleties—such as 

vascular anomalies, lesions, and other structural abnormalities—

was important and a key feature in distinguishing between 

Cataract, DR, and Normal conditions. The inclusion of a 

pretrained backbone enables the model to retain generalizable 

low-level features, which are then fine-tuned for the specific task 

of retinal disease classification. The use of global average 

pooling (GAP) further ensures that the model captures global 

image features while reducing the risk of overfitting. 

        Incorporating Haralick texture features into the model 

significantly enhances its performance. Haralick features capture 

microscopic textural variations in the images that may not be 

easily discernible through spatial CNN filters alone. For example, 

Contrast and Homogeneity offer insights into the uniformity of 

pixel intensities and patterns of texture that may be early 

indicators of diseases like Cataract. Energy and Entropy provide 

additional measures of textural regularity and information 

randomness, which are critical for identifying conditions that 

alter the fine structure of the retina. 

        The fusion of these texture features with the deep features 

from the CNN model enables the network to capture both high-

level semantic cues (e.g., lesions, vascular patterns) and fine-

grained details (e.g., textural irregularities) simultaneously. This 

dual-branch architecture results in a model that can better handle 

the inter-class variability and intra-class subtle differences that 

often challenge conventional CNN-only models. 

Comparison with Existing Models: 

        When compared to existing state-of-the-art approaches for 

retinal disease classification, the CNN-Haralick hybrid model 

stands out in several key aspects: 

        Many existing models rely solely on CNNs for retinal 

disease detection. While CNNs excel at capturing global patterns, 

they often struggle with fine-grained texture details that are 

crucial for differentiating between diseases like Cataract and 

Normal. The proposed model addresses this by incorporating 

Haralick features, which offer an additional layer of textural 

sensitivity. Previous studies that used pure CNN models typically 

report accuracy in the range of 85%-93%, with misclassification 

between visually similar conditions such as Cataract and Normal 

being common. Table 3 shows the comparison of the proposed 

hybrid model with other state of the art models used in 

classification of animal diseases.
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Table 3: Comparison of Proposed Work with existing works 

Author(s) and Year Proposed Methodology Diseases Focused On Result 

Sushith et al. (2025) 

A hybrid deep learning 

framework combining 

CNN and RNN 

Diabetic Retinopathy  

The model Achieved 97.5% accuracy on 

the DRIVE dataset, 94.04% on the Kaggle 

dataset, 96.9% on the Eyepacs Dataset. 

Bidwai et al. (2024) 

DkSO-Light GBM for 

multimodal image fusion 

(ResNet 101 + DkSO + 

Light GBM) 

Diabetic Retinopathy 

Accuracy: 94.32%, Sensitivity: 94.94%, 

Specificity: 94.78%, Precision: 94.78%, 

F1-Score: 94.25%, MCC: 91.77% 

(TP=90%) 

Babaqi et al. (2023) 
Transfer learning with deep 

learning models 

Diabetic Retinopathy, 

Cataract, Glaucoma 

Accuracy: 94%, CNN Models (Traditional: 

84%) 

Bitto and Mahmud 

(2022) 

Multi-categorical transfer 

learning (VGG-16, ResNet-

50, Inception-v3) 

Normal, Conjunctivitis, 

Cataract 

Accuracy: Inception-v3: 97.08%, ResNet-

50: 95.68%, VGG-16: 95.48% 

Ouda et al. (2022) 

Multi-label deep learning 

classification (fundus 

images) 

Multiple Ocular Diseases 
Accuracy: 94.3%, Recall: 80%, Precision: 

91.5%, Dice Similarity: 99%, AUC: 96.7% 

Sarki et al. (2021) 

Convolutional Neural 

Network (CNN) for multi-

class classification 

Diabetic Eye Diseases 
Accuracy: 81.33%, Sensitivity: 100%, 

Specificity: 100% 

Londhe (2021) 

Hybrid CNN-RNN model 

with transfer learning 

(InceptionV3, 

InceptionResNetV2, 

DenseNet169 + LSTM) 

Cataracts, Glaucoma, 

Retinal Diseases 

Accuracy: 69.5%, Specificity: 87.4%, 

Sensitivity: 69.5% 

Sarki et al. (2020) 

Pretrained CNN models 

(VGG16), fine-tuning, and 

optimization 

Diabetic Eye Diseases 
Accuracy: 88.3%, Multi-Class Accuracy: 

85.95% 

Proposed Model 
CNN-Haralick Hybrid 

Framework 

Diabetic Retinopathy, 

Cataract 

Accuracy: 98% 

Recall: 98% 

Precision: 98% 

AUC-ROC: 100% 

 

Model Robustness and Generalization: 

        The model’s high performance on the validation set, with an 

accuracy of 98% and F1-scores ranging from 97% to 100%, 

indicates its ability to generalize across different types of eye 

diseases. The AUC-ROC score of 100% for all three classes 

further demonstrates that the model maintains high sensitivity 

and specificity, crucial for clinical applications where false 

negatives (missed diagnoses) can be life-threatening. This 

robustness is attributed to several factors: The integration of deep 

spatial features from MobileNetV2 with handcrafted Haralick 

texture features, the use of balanced training data through class 

weighting to address potential class imbalance, the application of 

data augmentation to enhance model generalization, and the fine-

tuning of the CNN backbone to adapt to subtle differences among 

the disease classes. Additionally, the combination of batch 

normalization, dropout, and the AdamW optimizer helped 

maintain model stability and prevented overfitting, leading to 

consistent performance across the validation set. 

 

 

CONCLUSION 

Conclusion: 

        This study introduced a novel hybrid CNN-Haralick model 

for multi-class eye disease classification, achieving superior 

performance over existing models by combining the strengths of 

spatial deep features from CNNs and textural features from 

Haralick descriptors. The model demonstrated 98% accuracy and 

outperformed traditional CNN-only approaches in detecting 

diseases like Cataract and DR. The results indicate the potential 

of the hybrid model to contribute meaningfully to early disease 

detection and clinical decision-making. 

Limitations: 

        However, potential limitations include differences in 

imaging equipment, population-specific characteristics (such as 

ethnic variations in retinal appearance), and possible label 

inconsistencies across datasets. These factors may affect the 

generalizability of the model when applied to other fundus 

datasets or real-world screening environments. Although, the use 

of multiple data sources enhances the model's robustness across 

multiple scenarios. In addition to dataset-related limitations, the 

model faces challenges related to feature fusion and 
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hyperparameter tuning. Specifically, integrating handcrafted 

Haralick features with deep features required careful 

normalization and dimensionality alignment to avoid redundancy 

and overfitting. Training the dual-branch architecture also posed 

computational constraints, particularly during early experiments 

where the model showed unstable convergence across certain 

folds. Moreover, the limited interpretability of deep learning 

decisions, even with statistical feature fusion, remains a concern 

for real-world clinical trust and acceptance. These technical and 

methodological challenges highlight the complexity of 

developing reliable hybrid diagnostic tools. 

Recommendations:  

        To further enhance the model’s capabilities, the following 

recommendations are made: 

Multimodal Data Integration: Future work should explore the 

integration of additional modalities, such as optical coherence 

tomography (OCT) images or patient demographics, to enrich 

feature extraction and improve diagnostic accuracy for complex 

cases. 

        Real-time Inference: Efforts should be directed toward 

optimizing the model for real-time inference in clinical settings, 

ensuring that it can be used in resource-limited environments 

without sacrificing accuracy. 

        Fine-Grained Diagnosis: The model could be expanded to 

include more granular classifications, such as subtypes of DR or 

the early stages of Glaucoma, which are often difficult to detect 

with standard methods. 

        Model Explainability: Incorporating explainability 

frameworks such as SHAP or Grad-CAM will help visualize and 

interpret predictions, thereby increasing clinician trust and 

regulatory acceptability. 

        Cross-dataset Evaluation: Future work should involve 

rigorous testing across geographically and demographically 

diverse datasets to further assess model robustness and improve 

generalizability. 
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