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ABSTRACT:

Detecting and Classifying Ocular conditions like Diabetic Retinopathy and Cataract is critical for the early diagnosis of
these eye diseases and their treatments. This study proposes a hybrid CNN-Haralick model, that leverages the lightweight
MobileNetV2 CNN architecture for spatial feature extraction and Haralick statistical texture features extraction for texture
analysis to improve the accuracy eye disease classification. A dual-branch architecture is modeled, which combines features
extracted from both the Convolutional Neural Network and the Haralick-based texture analysis at an early stage and is then
passed through the MobileNetV2 Neural Network. The model is then evaluated and the results show that the hybrid CNN-
Haralick model achieves an overall accuracy of 98% on the validation set, outperforming traditional CNN models. The
model demonstrates exceptional performance, with a macro average F1-score of 98% for the three classes, and AUC-ROC
scores of 100% for each category. Additionally, the model's effectiveness is discussed in comparison with existing works,
highlighting its superior performance in terms of both accuracy and multi-classification efficiency.

KEYWORDS: Eye Diseases, CNN, Haralick, Hybrid Model, Spatial Analysis, Texture Analysis, Dual-Branch

Architecture, Multi-Classification.

1. INTRODUCTION

Beyond what is commonly known about Diabetes, diabetes
mellitus is a chronic metabolic condition that also serves as a
leading cause of ocular complications, distinctly Diabetic
Retinopathy (DR) and Cataract, which are two of the most
common and preventable causes of visual impairment and
blindness (Cleveland Clinic, 2022; Shukla et al., 2023). These
complications significantly affect the retina and lens of the eye,
and if left untreated, can result in irreversible vision loss. Timely
and precise detection of such retinal ailments is essential for
avoiding permanent eye damage (Pratap ef al., 2024). However,
traditional diagnostic methods for retinal diseases still rely
expertise
ophthalmologists and access to high-end imaging equipment,
which may be unavailable or restricted in low-resource areas.

heavily on the availability and of trained

This highlights the pressing need for autonomous, intelligent, and
cost-effective screening tools that can assist healthcare
professionals and expand access to early eye care.

In the 21Ist century, Machine Learning and Pattern
Recognition have shown promise in medical imaging, with
Convolutional Neural Networks (CNNs) excelling at extracting
spatial features for disease classification (Mienye et al., 2025).
Despite this, CNNs often miss subtle texture cues critical for
identifying early-stage retinal abnormalities (Atc1 et al., 2024).
Such texture information, which can be essential for detecting
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micro-level changes in retinal images, may not be well-captured
by standard CNN pipelines. To overcome this, we propose a
hybrid model that integrates CNN-derived spatial features with
Haralick texture descriptors—handcrafted features calculated
from Gray-Level Co-occurrence Matrices (GLCMs) that capture
local pixel intensity variations. By combining these two feature
types, the model benefits from both global spatial structure and
local textural nuance, enabling improved detection of complex
changes, especially when dealing with fundus images.

This study introduces a dual-branch CNN-Haralick
architecture designed for the multi-classification of retinal
images. They include the DR, Cataract, and Normal classes. The
model is trained on a balanced dataset of high-resolution fundus
1,000 images per class
representativeness and generalizability. In contrast to earlier
hybrid approaches that either apply handcrafted features

images, with over to ensure

independently or fuse them without optimization (Li ez al., 2023),
this model adopts a structured and tuned integration approach
aimed at enhancing both classification performance and model
interpretability. This careful fusion strategy ensures that the
model is more sensitive to subtle visual anomalies, such as
variations around the optic disc, which are often early indicators
of disease.

The aim of this research is to validate a high-performing
hybrid detection and classification methodology that leverages
both deep and statistical features to improve diagnostic accuracy.
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This approach aligns with ongoing advancements in Al-driven
medical diagnostics and seeks to bridge the diagnostic gap in
regions with limited clinical resources. By enhancing screening
capabilities, it supports broader access to eye care and earlier
intervention for individuals at risk of diabetic visual
complications.

The paper is structured as follows: Section 1 presents the
background of the study and an introduction of the proposed
method; Section 2 is the literature review and existing research
gaps; Section 3 details the proposed hybrid CNN-Haralick
model; Section 4 covers the results, section 5 is the discussion
and section 6 concludes with key findings, limitations, and
recommendations for future work

2. RELATED WORKS

Sushith et al. (2025) presented a hybrid model that puts
together two known deep learning algorithms which are CNN
and the Recurrent Neural Networks (RNNs) detecting DR using
retinal fundus images. The Proposed model evaluation in terms
of both sensitivity and specificity, achieved 97.5% accuracy on
the DRIVE dataset, 94.04% on the Kaggle dataset, 96.9% on the
Eyepacs Dataset.

Bidwai et al. (2024) presented the Dunnock-Scheduler
optimization-based Light GBM (DkSO-Light GBM) for
multimodal image fusion for DR detection. The experimental
outcomes were evalauated and the accuracy, sensitivity,
specificity, precision and F1 score, of the DkSO-Light GBM
were 94.32 %, 94.94 %, 94.78 %, 94.78 % and 94.25 %,
respectively. And for the k-fold 6 metrics we have 95.53 %,
94.72 %, 95.41 %, 94.16 %, 93.83 %, 95.07 %, and 92.00 %,
respectively.

Babaqi et al. (2023) focused on classifying eye diseases
including DR, cataract, and glaucoma using deep learning
models. Using transfer learning, the study achieved a
classification accuracy of 94%. The approach highlighted the
need for accurate multi-class classification in ophthalmology.
Introducing a multi-class transfer learning approach for eye-
disease classification, Bitto and Mahmud (2022) used a ResNet-
50, Inception-v3, Visual Geometry Group (VGG-16) CNN
models to classify between conjunctivitis eyes, normal eyes, and
cataract eyes. With a detection speed of 485 seconds, the
Inception-v3 model was recorded as the most accurate of all the
models used for their eye disease detection approach, with an
accuracy of 97.08%, ResNet-50 performed as the second-highest
with 95.68% accuracy for 1090 seconds and finally, The VGG-
16 performed with an accuracy of 95.48% with the longest time
spent of 2510 seconds to detect eye diseases.

Ouda et al. (2022) introduced a multi-label classification
approach for detecting different ocular diseases using retinal
fundus images. The proposed model demonstrated high accuracy
in classifying various eye conditions, showcasing the potential of
multi-label classification in ophthalmology. The model was
evaluated using Dice similarity coefficient (DSC), accuracy,
precision, recall, and area under the curve (AUC). The results are
99%, 94.3%, 91.5%, 80% and 96.7%, respectively.

Sarki et al. (2021) developed a model using CNN for multi-
classifiication of diabetic eye diseases. The study aimed to
automate the diagnosis process, reducing the manual workload
on ophthalmologists. The proposed model achieved a maximum
accuracy of 81.33%, with both sensitivity and specificity
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reaching 100%, demonstrating its effectiveness in clinical
settings.

Londhe (2021) proposed a hybrid CNN-RNN model for
classifying eye diseases such as cataracts, glaucoma, and other
retinal diseases. Utilizing transfer learning with architectures like
InceptionV3, InceptionResNetV2, and DenseNet169, features
were extracted and then classified using LSTM networks.
Addressing the challenge of class imbalance in the dataset, data
augmentation techniques were employed. The DenseNetl69-
LSTM model had the best performance with accuracy of 69.5%,
precision of 87.4% and sensitivity of 69.5%.

Sarki et al. (2020) addressed the challenge of detecting
diabetic eye diseases amidst the presence of mild feature
difference using deep learning. Using a pretrained CNN model
like VGG16, the study incorporated techniques such as fine-
tuning, optimization, and contrast enhancement. The model had
an accuracy of 88.3% for multi-class classification and 85.95%
for mild multi-class classification, highlighting its robustness in
handling varying disease severities.

Malik et al. (2019), introduced the development of a
standardized system for collecting and processing diagnostic
data, aiming to improve the accuracy and reliability of machine
learning models in predicting diseases. multiple machine
learning algorithms including Naive Bayes, Random Forest,
Decision Tree, Random Forest, and Neural Network algorithms.
The Random Forest and Decision Tree algorithms’ accuracy was
more than 90% as compared to just using Neural Networks and
the Naive Bayes algorithm.

Al-Bander et al. (2017) explored developing an automatic
feature learning model for the detection of ocular conditions in
colored retinal fundus images using CNN, a deep learning
method. It was developed to distinguish between normal and
glaucomatous patterns for diagnostic decisions. Unlike
traditional methods where the optic disc features are handcrafted,
feature extraction was carried out using raw images by CNN and
fed to an SVM classifier to classify the images into normal or
glaucomatous. The model was evaluated and had accuracy,
specificity and sensitivity of 88.2%, 90.8%, and 85%.

While CNNs, transfer learning, and hybrid deep learning
architectures have proven effective for classifying eye diseases,
they still face limitations. Most models focus on spatial or deep
semantic features extracted from retinal images, often neglecting
subtle texture patterns essential for distinguishing early-stage
diseases such as Cataract from Normal retina (Babaqi et al.,
2023; Bidwai et al., 2024). Additionally, multi-class and multi-
label classification techniques, despite improving general
diagnostic struggle with class-specific
performance, particularly in underrepresented or visually similar
categories (Ouda et al., 2022; Sarki et al., 2021).

Although some hybrid models, such as CNN-RNN and
CNN-SVM, have been proposed, few effectively combine

accuracy, often

handcrafted statistical texture features, like Haralick descriptors,
with deep features in a unified architecture. Most existing
approaches either use these features independently. Therefore,
there is a pressing need for an interpretable, multi-class
classification system that seamlessly integrates spatial deep
with representations.
Combining Haralick features with CNN-derived features could

features robust statistical texture

improve diagnostic accuracy and enhance predictability,
particularly for texture-dependent classes.
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3. METHODOLOGY

Research Design:

The model being proposed had its development and training
conducted on a Jupyter Notebook environment powered by an
Intel Core 17 processor with 16 GB of RAM. This research is
structured into four sequential phases: preprocessing of retinal
images to standardize inputs, extraction of Haralick texture
features to capture statistical regularities, deep feature learning
via fine-tuned MobileNetV2 for semantic representation, and
fusion of both feature types through a dual-branch architecture,
followed by joint training and classification.This layered design
combines low-level statistical regularities and high-level deep
features to enhance diagnostic precision for retinal diseases. This
architecture leverages both domain-agnostic statistical
descriptors and hierarchical deep features for enhanced
diagnostic performance.

Dataset Preparation and Preprocessing:

The model is trained and evaluated on a balanced dataset
comprising high-resolution fundus images grouped into three
diagnostic categories: Diabetic Retinopathy, Cataract, and
Normal. These images were sourced from publicly available
repositories, including the Indian Diabetic Retinopathy Image
Dataset (IDRiD), the Ocular Disease Recognition dataset, and the
High-Resolution Fundus (HRF) database. The IDRiD dataset,
curated specifically for diabetic eye disease detection, includes
both pathological and normal fundus images from Indian
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patients, capturing real-world variability. The Ocular Disease
Recognition dataset provides a broad range of labeled eye
conditions, while the HRF database offers high-resolution
clinical images aimed at retinal vessel segmentation and anomaly
detection. Each diagnostic class comprises over 1,000 images,
ensuring class balance and promoting robust generalization
across varied imaging conditions.

All images were uniformly resized to 128x128 pixels and
standardized using the preprocess input function from
MobileNetV2 to align with the model’s expected input
distribution. This preprocessing step also normalized color and
contrast values across all samples, thereby reducing domain-
specific biases. Stratified sampling was applied to split the
dataset into training (70%), validation (15%), and test (15%)
subsets, ensuring proportional class representation throughout.
MobileNetV2, used as the CNN backbone, employs depthwise
separable convolutions with 3x3 kernels and strides of 1 or 2,
designed for computational efficiency. Its convolutional blocks
progressively downsample the input while increasing filter depth
from 32 to 1,280. The resulting feature maps are condensed using
a Global Average Pooling layer, followed by a dense layer with
128 units activated by the Swish function. The final classification
head is a fully connected softmax layer with three output neurons,
corresponding to the Diabetic Retinopathy, Cataract, and Normal
classes.

Model Architecture:
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Figure 1: CNN-Haralick Architecture for the Multi-Classification of Eye Diseases

The model’s architecture represented in Figure 1 above is
divided into two parallel branches for features extraction, The
CNN Feature extraction Branch and the Haralick Feature Branch
which are later fused to make a final prediction and classification.

CNN Feature Extraction Branch:

The CNN branch receives images with input shape (128,
128, 3) and utilizes a pretrained MobileNetV2 base. The initial
layers (up to layer 100) are frozen to retain general-purpose low-
level features, while the final 20 layers are unfrozen for domain-
specific fine-tuning. After convolutional processing, a Global
Average Pooling (GAP) layer compresses the feature maps into
a 1D representation, followed by a dense layer of 128 units with
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the Swish activation function. Batch normalization is applied,
and a dropout layer with a rate of 0.4 prevents overfitting. This
branch effectively extracts optic  disc
anomalies, and macular irregularities commonly found in retinal

vascular patterns,

disease.

Haralick Feature Branch:

The second branch operates on grayscale-converted fundus
images, which are rescaled to 256 intensity levels. Gray-Level
Co-occurrence Matrices (GLCMs) are computed across four
orientations (0°, 45°, 90°, and 135°) at multiple pixel distances
(1, 2, 4, and 8). From these matrices, thirteen Haralick features
are derived, of which seven are retained based on their clinical
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and statistical relevance: contrast, correlation, homogeneity,
energy, variance, inverse variance, and entropy. These features
were selected for their ability to capture critical retinal texture
patterns. For example, entropy quantifies randomness in pixel
distribution and can indicate localized retinal degeneration or
hemorrhages, while correlation measures the linear dependency
of gray levels, helping identify structured patterns such as aligned

Haralick Texture Features:

Contrast:

blood vessels in healthy retinas. After extraction, the features are
standardized and passed into a dedicated subnetwork comprising
two fully connected layers with 64 and 128 units respectively,
both using the Swish activation function. To improve
generalization, batch normalization is applied between layers,
and a dropout layer with a rate of 0.3 is added for regularization.

An interaction between a pixel and its neighbors which often causes the intensity:

N—-1N-1
o . a2 ..
Contrast = g E (i —7)° - P(i,7) )
=0 j=0
Entropy:
measures the level of randomness among pixels within the image:
N—-1N-1
Entropy = — P(i,7) - logy(P(4,5) +€) @
i=0 j=0
Energy:
The sum of the squared elements within the Matrix, with its ranging up to 1.
—1N-1
Energy = E E P(i, j)* 3)
=0 5=0

Correlation:
Indicates the extent to which a pixel's neighboring values are correlated with the overall structure of the image.

YL TN (- ) - ) PG, J) “
Correlation =

0,0

Homogeneity:

reflects the uniformity of the texture. As the GLCM elements shift further from the diagonal, the homogeneity value increases in a

geometric manner.

P, j)

Homogeneity = _—
; 1+ i — 4]

®)

Variance: Represents the degree to which intensity values vary or deviate from the mean.

N-1N-1
Variance = Z (i — pa)® + (5 — 1) PG, 7)
i—0 j—0

Inverse Variance:

(6)

Highlights elements close to the diagonal in the GLCM, providing a precise assessment of texture similarity.

32 PGL)

N
Inverse Variance = - -
0 1 + (7’ - .7)2

i=0 j=
Where:
P(i,j) = Probability value at position (i,j) in the GLCM.
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N = Number of gray levels in the image.
=row i and column j.
0i)0j = Standard deviations of row i and column j.

€ is asmall value added to prevent log(0).

Feature Fusion and Classification Layer:

The outputs from both branches—each of shape (128,)—are
concatenated to form a 256-dimensional feature vector. This
combined vector is passed through two dense layers of 256 and
128 units, each followed by batch normalization and dropout
layers (rates = 0.5 and 0.3 respectively). The final classification
layer consists of 3 output units corresponding to Diabetic
Retinopathy, Cataract, and Normal classes, using a Softmax
activation function to generate class probabilities. This
configuration is appropriate for mutually exclusive multi-class
classification tasks. The model is compiled using categorical
cross-entropy as the loss function and the AdamW optimizer with
an initial learning rate of 0.01. Learning rate scheduling is used
to reduce the rate when the validation loss plateaus, improving
convergence.

Training Protocol:

The training protocol includes 30 epochs with early
stopping (patience = 5) and real-time data augmentation to
prevent overfitting. A batch size of 32 is used, and input images
are consistently formatted to dimensions (128, 128, 3). The
dropout rates across different layers were not selected arbitrarily
but were the result of empirical tuning through iterative
experimentation using validation accuracy and loss as
performance indicators. A higher dropout 0.5 was assigned to the
fusion layer to mitigate overfitting from the high-dimensional
joint feature vector. The Haralick and CNN branches used 0.3
and 0.4, respectively, as these provided the best trade-off between
stability and regularization during trials. The 0.1 dropout in the
final dense layer was retained after testing values between 0.0
and 0.3, as it preserved gradient flow without compromising

TP+TN
TP+TN+ FP+FN

Accuracy =

Recall (Sensitivity):

convergence. Its minor regularization was sufficient due to
upstream regularization layers and batch normalization.

Integration of Techniques and Novelty:

The key novelty of this approach lies in the synergistic
fusion of deep and statistical features within a unified learning
framework:

The CNN branch abstracts complex spatial relationships,
capturing semantic cues like exudates and hemorrhages.

The Haralick branch quantifies micro-textural variations,

which are often early indicators of diseases like cataract.
Instead of ensemble voting or post-hoc feature concatenation, an
early fusion strategy is employed in a multi-input neural network,
allowing the model to learn joint feature representations in an
end-to-end fashion.

The inclusion of interpretable Haralick descriptors
contributes to transparency and aligns with clinical reasoning,
thus improving the model’s trustworthiness.

The synergy between CNN and Haralick features boosts
performance in distinguishing visually similar classes (e.g.,
Cataract vs. Normal), a known limitation in conventional CNNs.

Evaluation of the Model:

The proposed model was evaluated on a separate validation
set using metrics such as accuracy, precision, recall and F1-score.
To validate the effectiveness of the hybrid approach. The
performance metrics are:

Accuracy:

This refers to the proportion of correctly predicted instances,
TP+TN, to the total number of samples, TP+TN+FP+FN, in the
dataset:

®)

The proportion of true positive predictions relative to the total number of instances predicted as positive:

TP

Recall = TP-|-—FN

Precision:

©

The proportion of correctly predicted instances within all instances classified under that specific class:

TP

Precision = ——
rectsion TPL FP

F1-Score:

(10)

The harmonic average of precision and recall, for reducing the impact of large disparities between them.

Precision -
Fl_s. recision - Recall

Where:

Precision + Recall

(11)
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TP is True Positive
TN is True Negative
FP is False Positive
FN is False Negative.

4. RESULTS AND DISCUSSIONS

In this section, we present the results obtained from the
proposed hybrid CNN-Haralick model for eye disease
classification. The performance of the model is evaluated using
various metrics, including accuracy, precision, recall, F1-score,
and AUC-ROC. We also analyze the contribution of Haralick
features to the model’s performance and compare the results with
existing methods to demonstrate the effectiveness of our
approach.

Confusion Matrix Analysis:

The confusion matrix (Table 1 and Figure 2) provides
insight into the model’s classification performance across the
three classes—Cataract, DR, and Normal. The model achieved
nearly perfect classification for DR and high performance for

Cataract and Normal classes.
Table 1: Confusion Matrix for the predicted classes
Class Cataract DR Normal
Cataract 154 0 2
DR 0 165 0
Normal 7 1 153

Confusion Matrix

160

140

cataract

120

100

pathy

-80

Actual

diabetic_retino

-60

Classification Metrics:

The classification report in Table 2 presents the F1-score,
recall, precision, and AUC-ROC for each class. Figure 3a is a
screenshot of the classification report which includes the
weighted and macro average of each of the metrics for all
classses, highlighting the model’s strong accuracy across the eye
disease categories.

Figure 3b displays the AUC-ROC curve, demonstrating the
model’s ability to distinguish between the classes. The high AUC
values indicate reliable performance in multi-class classification,
effectively identifying subtle differences between similar eye
conditions.

Table 2:Classification Report of the CNN-Haralick Model
Performance on the Validation Set.

Class F1-Score Recall Precision AUC-ROC
Cataract  97% 99% 96% 100%
DR 100% 100% 99% 100%
Normal 97% 97% 99% 100%

Test Accuracy: 8.9793
16/16

5s 263ms/step

Classification Report:

precision recall fl-score support

cataract .96 8.99 8.97 156
diabetic_retinopathy 9.99 1.00 1.00 165
normal 0.99 8.95 .97 161

accuracy 8.98 482

macro avg 0.98 0.98 8.98 482

weighted avg 9.98 9.98 .98 482

Figure 3a: Classification Report Visualizing Precision,
Recall, and F1-Score.

Multi-Class ROC Curve

normal

-20

'
cataract

normal

diabetic_retinopathy
Predicted

Figure 2: Confusion matrix illustrating classification results on
the validation set.

The model accurately classified 165 images of DR with no
false positives or negatives, reflecting strong discriminative
capability in detecting this class. For Cataract, only 2 Normal
images were misclassified, while 7 Normal samples were
wrongly predicted as Cataract, revealing minor overlap in feature
representation between these classes.
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Figure 3b: ROC-AUC curve for the 3 classes.
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The model achieved an impressive overall accuracy of 98%.
Notably, the AUC-ROC of 100% for each of the classes
demonstrates the model's outstanding ability to distinguish
nuanced patterns. This perfect score though seemingly
questionable is supported by the balanced precision and recall
that each class got showing that the model doesn’t struggle with
predicting accurately for each of the classes. This also indicates
that the model consistently ranks positive cases higher than
negative ones, regardless of the disease type. The model’s ability
reflects how well it leverages both spatial and texture features,

Model Accuracy

captures subtle patterns that helps it differentiate between the
different eye conditions with high precision and Sensitivity.

Training and Validation Dynamics:

The Training and Validation Accuracy/Loss curve over 30
epochs are shown below in Figures 4a and 4b. The graphs show
a gradual and then instant convergence with no signs of
overfitting, further validating the model's robustness and
generalization capability.

Model Loss

10

Wl 7

0.8 4

o
~

ACcuracy

o
o

0.5 4

—— Train Accuracy
Val Accuracy

= Train Loss
Val Loss

15 20 25

Epoch

10

10 15 25 30

Epoch

20

Figure 4: Performance (a) training vs validation accuracy and (b) training vs validation loss for the proposed model

The minimal gap between training and validation accuracy
(less than 2%) and the consistent decline in validation loss
confirm that the model effectively learns meaningful features
without overfitting, even with the hybrid fusion of CNN and
Haralick features.

5. DISCUSSION

The proposed CNN-Haralick hybrid model leverages two
distinct types of features: spatial features from the CNN branch
and textural features from the Haralick descriptors. Combining
These features to be used for the classification of multiple eye
diseases has achieved an outstanding classification ability for eye
diseases, with results that surpass that of benchmark models that
rely on either CNN or texture-based features alone.

MobileNetV2, a lightweight CNN architecture pretrained on
ImageNet, was employed to extract deep spatial features. The
model's ability to recognize high-level subtleties—such as
vascular anomalies, lesions, and other structural abnormalities—
was important and a key feature in distinguishing between
Cataract, DR, and Normal conditions. The inclusion of a
pretrained backbone enables the model to retain generalizable
low-level features, which are then fine-tuned for the specific task
of retinal disease classification. The use of global average
pooling (GAP) further ensures that the model captures global
image features while reducing the risk of overfitting.

Incorporating Haralick texture features into the model
significantly enhances its performance. Haralick features capture
microscopic textural variations in the images that may not be
easily discernible through spatial CNN filters alone. For example,
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Contrast and Homogeneity offer insights into the uniformity of
pixel intensities and patterns of texture that may be early
indicators of diseases like Cataract. Energy and Entropy provide
additional measures of textural regularity and information
randomness, which are critical for identifying conditions that
alter the fine structure of the retina.

The fusion of these texture features with the deep features
from the CNN model enables the network to capture both high-
level semantic cues (e.g., lesions, vascular patterns) and fine-
grained details (e.g., textural irregularities) simultaneously. This
dual-branch architecture results in a model that can better handle
the inter-class variability and intra-class subtle differences that
often challenge conventional CNN-only models.

Comparison with Existing Models:

When compared to existing state-of-the-art approaches for
retinal disease classification, the CNN-Haralick hybrid model
stands out in several key aspects:

Many existing models rely solely on CNNs for retinal
disease detection. While CNNss excel at capturing global patterns,
they often struggle with fine-grained texture details that are
crucial for differentiating between diseases like Cataract and
Normal. The proposed model addresses this by incorporating
Haralick features, which offer an additional layer of textural
sensitivity. Previous studies that used pure CNN models typically
report accuracy in the range of 85%-93%, with misclassification
between visually similar conditions such as Cataract and Normal
being common. Table 3 shows the comparison of the proposed
hybrid model with other state of the art models used in
classification of animal diseases.
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Table 3: Comparison of Proposed Work with existing works

Author(s) and Year Proposed Methodology Diseases Focused On Result
A hybrid deep learning The model Achieved 97.5% accuracy on
Sushith et al. (2025) framework combining Diabetic Retinopathy the DRIVE dataset, 94.04% on the Kaggle
CNN and RNN dataset, 96.9% on the Eyepacs Dataset.
DkSO-Light GBM for Accuracy: 94.32%, Sensitivity: 94.94%,
. . multimodal image fusion . . . Specificity: 94.78%, Precision: 94.78%,
B . (2024 D tic Ret th
idwai et al. 2024) - p esNet 101 + DKSO + iabetic Retinopathy F1-Score: 94.25%, MCC: 91.77%
Light GBM) (TP=90%)
Transfer learning with deep ~ Diabetic Retinopathy, Accuracy: 94%, CNN Models (Traditional:

Babagqi et al. (2023)

learning models

Cataract, Glaucoma

84%)

Bitto and Mahmud

Multi-categorical transfer

Normal, Conjunctivitis,

Accuracy: Inception-v3: 97.08%, ResNet-

learning (VGG-16, ResNet-

(2022) 50, Inception-v3)

Cataract

50: 95.68%, VGG-16: 95.48%

Multi-label deep learning
classification (fundus
images)

Ouda et al. (2022)

Multiple Ocular Diseases

Accuracy: 94.3%, Recall: 80%, Precision:
91.5%, Dice Similarity: 99%, AUC: 96.7%

Convolutional Neural
Network (CNN) for multi-
class classification

Sarki et al. (2021)

Diabetic Eye Diseases

Accuracy: 81.33%, Sensitivity: 100%,
Specificity: 100%

Hybrid CNN-RNN model
with transfer learning

Cataracts, Glaucoma,

Accuracy: 69.5%, Specificity: 87.4%,

Londhe (2021 InceptionV3
ondhe ( ) inll(;i)rzi;?lli{esl’\lew 2, Retinal Diseases Sensitivity: 69.5%
DenseNet169 + LSTM)
Pretrained CNN models
. 0 - .
Sarki et al. (2020) (VGG16), fine-tuning, and  Diabetic Eye Diseases ?50(;1?;0}’. 88.3%, Multi-Class Accuracy:
optimization oo

CNN-Haralick Hybrid

P d Model
ropose ode Framework

Diabetic Retinopathy,
Cataract

Accuracy: 98%
Recall: 98%
Precision: 98%
AUC-ROC: 100%

Model Robustness and Generalization:

The model’s high performance on the validation set, with an
accuracy of 98% and F1-scores ranging from 97% to 100%,
indicates its ability to generalize across different types of eye
diseases. The AUC-ROC score of 100% for all three classes
further demonstrates that the model maintains high sensitivity
and specificity, crucial for clinical applications where false
negatives (missed diagnoses) can be life-threatening. This
robustness is attributed to several factors: The integration of deep
spatial features from MobileNetV2 with handcrafted Haralick
texture features, the use of balanced training data through class
weighting to address potential class imbalance, the application of
data augmentation to enhance model generalization, and the fine-
tuning of the CNN backbone to adapt to subtle differences among
the disease classes. Additionally, the combination of batch
normalization, dropout, and the AdamW optimizer helped
maintain model stability and prevented overfitting, leading to
consistent performance across the validation set.
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CONCLUSION

Conclusion:

This study introduced a novel hybrid CNN-Haralick model
for multi-class eye disease classification, achieving superior
performance over existing models by combining the strengths of
spatial deep features from CNNs and textural features from
Haralick descriptors. The model demonstrated 98% accuracy and
outperformed traditional CNN-only approaches in detecting
diseases like Cataract and DR. The results indicate the potential
of the hybrid model to contribute meaningfully to early disease
detection and clinical decision-making.

Limitations:

However, potential limitations include differences in
imaging equipment, population-specific characteristics (such as
ethnic variations in retinal appearance), and possible label
inconsistencies across datasets. These factors may affect the
generalizability of the model when applied to other fundus
datasets or real-world screening environments. Although, the use
of multiple data sources enhances the model's robustness across
multiple scenarios. In addition to dataset-related limitations, the
model faces challenges related to feature fusion and
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hyperparameter tuning. Specifically, integrating handcrafted
Haralick features with deep features required careful
normalization and dimensionality alignment to avoid redundancy
and overfitting. Training the dual-branch architecture also posed
computational constraints, particularly during early experiments
where the model showed unstable convergence across certain
folds. Moreover, the limited interpretability of deep learning
decisions, even with statistical feature fusion, remains a concern
for real-world clinical trust and acceptance. These technical and
methodological challenges highlight the complexity of
developing reliable hybrid diagnostic tools.

Recommendations:

To further enhance the model’s capabilities, the following

recommendations are made:
Multimodal Data Integration: Future work should explore the
integration of additional modalities, such as optical coherence
tomography (OCT) images or patient demographics, to enrich
feature extraction and improve diagnostic accuracy for complex
cases.

Real-time Inference: Efforts should be directed toward
optimizing the model for real-time inference in clinical settings,
ensuring that it can be used in resource-limited environments
without sacrificing accuracy.

Fine-Grained Diagnosis: The model could be expanded to
include more granular classifications, such as subtypes of DR or
the early stages of Glaucoma, which are often difficult to detect
with standard methods.

Model  Explainability:  Incorporating  explainability
frameworks such as SHAP or Grad-CAM will help visualize and
interpret predictions, thereby increasing clinician trust and
regulatory acceptability.

Cross-dataset Evaluation: Future work should involve
rigorous testing across geographically and demographically
diverse datasets to further assess model robustness and improve
generalizability.
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