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ABSTRACT:

This paper is devoted to investigating and comparing the variational iteration method (VIM) and the residual power series
method (RPSM) for solving the cubic-quintic nonlinear Schrodinger equation (CQNLSE) initially developed to elucidate
the propagation of pulses in optical fibers. Next, we use the initial conditions to get the numerical solutions of the CQNLSE.
We compared the known exact solutions with the approximate results obtained using both the VIM and RPSM. The exact
solution and the results from RPSM are evaluated against those from VIM. The findings demonstrated that VIM
outperformed RPSM in terms of accuracy, efficiency, and ease of implementation for solving the CQNLSE. In addition, the

current results are shown graphically and in the table.

KEYWORDS: Numerical solution, Cubic-Quintic Nonlinear Schrodinger equation, Residual Power Series Method,

Variational Iteration Method, Lagrange multiplier.

1. INTRODUCTION

The CQNLSE is a universal mathematical model describing
various physical applications and approximating more complex
systems, such as Bose-Einstein condensates (BECs), nonlinear
optics, a range of interaction phenomena in plasmas, including
plasma physics, condensed matter physics, and nuclear physics
(Tang & Shukla, 2007,Seadawy et al., 2022, Peleg &
Chakraborty, 2023). Notably in nonlinear optics and BECs. In
optics, it models the propagation of light beams through layered
media, where the nonlinear response of the material changes with
position or time. In BECs, it describes atomic interactions
influenced by Feshbach resonances. Even in the absence of
external potentials, the CQNLSE with nonlinearity management
is essential for regulating soliton dynamics, particularly when
nonlinearities fluctuate spatially or temporally. This enables the
formation of stable soliton structures and multi-soliton bound
states (Luo, 2022). The CQNLSE is used in modelling light
propagation through various optical media, including non-Kerr
crystals, chalcogenide glasses, organic materials, colloids, dye
solutions, and ferroelectrics (Seadawy & Sayed, 2017). Studies
on the cubic-quintic nonlinear Schrodinger equation also extend
to optical fiber communications and nuclear hydrodynamics.

Researchers have extensively studied the CQNLSE using
various solution methods. For example, Hafez used the
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exp(—w(f )) approach in his work to extract both singular and
periodic solutions (Golam Hafez et al., 2014). By assuming an
ansatz solution, Serkin (Serkin ef al., 2001) discovered the novel
stable bright and dark soliton management regimes for the
CQNLSE model. Hao (Hao et al., 2004) published solitary wave
analytical solutions. He found the explicit spatial self-similar,
bright, and dark soliton solutions of the CQNLSE using
distributed coefficients and an external potential (He et al., 2014).
Caplan addressed the problems of solitary vortex existence,
interactions, and stability in the two-dimensional CQNLSE using
both analytical and numerical techniques (Caplan et al., 2009).
Numerous researchers have focused on applying various
techniques to identify numerical analysis solutions in recent
years. Among these are the Adomian and Adomian-Padé
Techniques (Sabali, Manaa, & Easif, 2018), Variational Iteration
Method (Easif et al., 2015), Sumudu-Decomposition Method
(Azzo & Manaa, 2022), Successive Approximation Method
(Sabali et al., 2021), Residual Power Series Method (Manaa et
al.,2021), and others.

Inokuti (1978) was the first to propose a generic Lagrange
multiplier approach for solving quantum mechanical problems.
This method allowed for the solution of nonlinear problems. In
2006 and 2007, Chinese mathematician Ji-Huan He, a professor
at Donghua University, transformed the Lagrange multiplier
method into an iterative technique known as the VIM (Al-Saif et
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al.,2011). For a wide range of applications in physics, chemistry,
biology, and engineering, homogeneous or inhomogeneous
equations, including linear or nonlinear (NL), and systems of
equations, the VIM approach provides a reliable and efficient
process. Numerous writers have demonstrated (Faradilla ef al.,
2021) that this approach offers advantages over current numerical
methods. This method offers quick converging successive
approximations of the precise answer if one exists; if not, a few
approximations may be used for numerical purposes (Shihab et
al., 2023). The VIM does not need special treatments like the
Adomian method (Odibat, 2010), perturbation methods, etc, it
just employs the starting conditions that are specified.

The RPSM, a relatively new methodology based on the
generalized Taylor series, is explained in depth (Alquran, 2014).
The RPSM (Korpinar, 2019) is a helpful technique for
determining the coefficient values in the solution of fuzzy
differential equations using power series. The repeating
algorithm is what makes up the RPSM. The RPSM offers several
significant advantages for solving both linear and nonlinear
differential equations (El-Ajou ef al., 2015). In contrast to
conventional approaches, RPSM can effectively and immediately
tackle severely nonlinear situations since it does not need
linearization, perturbation techniques, or discretization (Inc et al.,
2016). With each term calculated using basic chains of linear
equations, it offers an analytical solution in the form of a

2. MATHEMATICAL MODEL
Cubic-Quintic Nonlinear Schriodinger Equation:
Consider the CQNLSE (Lai et al., 2006).

Bz

iU = %um + i?

where i = V-1, B1,52,03 a1 and a, € R.

uxxx +

convergent power series, which is both computationally simple
and extremely precise. Furthermore, RPSM may be implemented
flexibly given a suitable starting estimate, and does not require
reformulation when the solution order is increased. This makes it
a practical and adaptable tool for a variety of issues, such as
differential and integral equation systems (Moaddy e al., 2015).

Numerous writers from a variety of subjects have employed
the RPSM approach, such as the Klein-Gordon Schrodinger
equation (Manaa et al., 2021), fractional diffusion equations
(Jumarie, 2011), fractional Burger-type equations (Zunino et al.,
2008), Boussinesq—Burgers equations (Mahmood & Yousif,
2017). Systems of Fredholm integral equations (Komashynska et
al., 2016), nonlinear fractional KdV-Burgers equation (He,
1999), time fractional nonlinear coupled Boussinesq—Burgers
equations (Ubriaco, 2009), fuzzy differential equations
(Mainardi, 2012), for linear and nonlinear Lane-Emden
equations (Oldham & Spanier, 1974), higher order initial value
problems (Miller & Ross, 1993), time-fractional Fokker—Planck
equations (Cifani & Jakobsen, 2011).

The following sections make up this paper: Section 2
presents the CQNLSE's mathematical model. In section 3, the
basic ideas of VIM and RPSM are provided. In section 4, the
derivation of VIM and RPSM are illustrated for the CQNLSE,
and in section 5, a numerical example demonstrates the
approaches' accuracy and efficiency.

ﬁuxxxx_allulzu_azlul‘l' u, (1)

Where u(x, t)is the slowly changing electric field envelope, x is the distance along the velocity dispersion direction, t is the
time, with respect to the group velocity dispersion, §; is the second-order dispersion, f3, is the 3rd-order dispersion, and f5 is the
fourth-order dispersion. For the cubic-quintic terms, the coefficients are a; and a,.

Bright Soliton:
The bright soliton for the CQNLSE (1) is (Lai et al., 2006):

u(x,t) = sech (% - x) ei(‘

With the initial condition

<), @

u(x,0) = sech(x)e™™, x€l 3)

The Method's Description:

In this section, we will display the main ideas of the VIM and RPSM.

Basic Idea of the Variational Iteration Method:

To demonstrate the fundamental idea of VIM, consider the following general NL partial differential equation (PDE), (Odibat, 2010):

L(u(x, t)) + N(u(x, t)) = glu(x, t)), @)

with the initial condition:

u(x,0) = f(0),

®)



Omar and Easif/ Science Journal of the University of Zakho, 13(4), 499-509 October-December, 2025

When g is a known analytic function, N is the NL operator component, and L = % , * € N is a linear operator part and is the term of

the highest-order derivative.

We may create the following iteration formula using VIM:
Upseq (1) = up(x, t) + fot A(@[Luy (x, ) + Nit, (x, 7) — g(x, t)]d7, n=20,12,... 6)

A generic Lagrangian multiplier, denoted by A (Inokuti, 1978), can be optimally determined from the stationary conditions of equation
(6) concerning u,, using the variational theory (Anjum & He, 2019), the subscript n indicates the n-th approximation, and i, is regarded
as a confined variation, i.e. §ii,, = 0.

The Lagrange multiplier can be identified as (He and Wu, 2007).

A7) = f:l); (t—0 1, r>1. )

By applying the Laplace transform to both sides of (4), we may more readily find the Lagrange multiplier, following the methodology
of Tsai and Chen. This converts the linear portion with constant coefficients into an algebraic one (Wu, 2013).

Next, the approximate solution to equation (4) is thus provided by: u(x,t) = lim u,(x, t)
n—-oo
The approximation is denoted by the subscript n, and i, is regarded as a constrained variant (Momani & Abuasad, 2006).

Basic Idea of the Residual Power Series:

3 METHOD

Considering the general form of an NLPDE:

L(u(x, t)) = N(u(x, 1)) + g(ulx, 1)), ®)

with the initial condition equation (5),

a* . . . . . . . . .
where L = Py ,k €N, is the highest order partial derivative with respect to time t. N(x, t) is a nonlinear term and g(x, t) a linear

term. The standard RPSM defines the solution u(x, t) as the power series of the form:

u(x, t) = Yoo fu(x) t™ ©)

Where n = 0,1, 2, ..., afterward, we may define u,, (x, t) to denote the nth truncated series of u(x, t), i.e.

Up(x,t) = neo fn(x) t". (10)

The zeroth residual power series approximation solution for u(x, t) is

up = u(x,0) = f(x) = fo(x). 1)
Where f,(x) is the initial condition. Now, if we replace equation (11) with equation (10), we obtain:
Up(x,t) = ulx,0) + X0, () t", fort=0, x€l, m=1,2,... (12)
to complete the coefficients f,,(x),n = 1,2, ..., m of equation (12), the residual function for equation (8) is first defined as follows:
Resu(x,t) = L(u(x,t)) — N(u(x, t)) — g(u(x, t)), (13)

and the m*® Residual function is of the form:
Resuy, (x,t) = L(uy,(x,t)) — N(uy,(x, t)) — g(um(x, t)), m=1,23,.. (14)
We present a few RPSM findings from (Cifani & Jakobsen, 2011), which are crucial to RPSM:

e Resu(x,t) =0,
e lim Resu,(x,t) = Resu(x,t), t=0, Vx €I,

m-—oo

9% Res up, (x,t) _ _

m e W 0, k=0,1,2,...,m. (15)
As a result, we may acquire all of the necessary coefficients f, (x) of the power series of equation (8).
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Hlustrative Application:
This section will apply the aforementioned techniques to the CQNLSE.

Derivation of VIM for Solving Cubic-Quintic Nonlinear Schrédinger Equation:

Consider the CQNLSE (1) with the initial condition equation (3) by means of VIM, the correcting function is provided as

25 35 45
U1 (6, 1) = up(x, t) + fot A(0) (6un(x,r) + i%a T(1) _ fr 93Hn(x1) + i& il (x1) ali(lﬁn(xr DI 4, (x, ‘L’)) _

at dx2 6 ax3 24 Ix*
3|1 (6, DI 1 (x,7)) ) i, (16)
where
[ul? u=u?u,and |ul*u=1u® u?

u is the conjugate of u.

In our equation, r = 1. Then by formula (7), 1 = —1, substituting in equation (16), we get:

2 3 4
Uns1 (6,0 = up(r,t) — <au"(x'1) +(£aZunD)  fy Fun(t) By Fuin(tis)

— i 2 —
at 2 ox? 6 dx3 24 Ox* all((un G D)% un(x,7) )

azi(un (x, 7)% upy (x, ‘r)z)) dr, n=012,.. (17)

Equation (3) provides us with the initial approximation u(x,0) . The following is how we may retrieve the additional components
using the iteration formula (17):

up(x,t) = u(x,0) = f(x). (18)

Forn = 0;

t (Que(x,T) | .B10%ug(x,1) By Pug(xr) | . B3 9*uy(x) , —
uy (x,t) = uo(x,t)—f(,( s e i e — (o (D) e (x, 7)) -

ai(ug (6, 7) ug(x,7)%) ) d, (19)

Forn =1;

tfous(x ) | . fr OPus (1) Pui(x) | . Bz *ua(x1) ; e
w0 = ul(x,t)—fo< e R e (IS

ayi(uy (x, 0% uy (x,7)2 )) dr. (20)
And after similarly for n = 3,4, ...
Derivation of RPSM for Solving Cubic-Quintic Nonlinear Schrodinger Equation:

Consider the CQNLS equation (1), with the initial condition

u(x,0) = up(x, t) = f(x) = fo(x). @n

Where uy(x, t) is the initial condition. Using equation (21) to apply RPSM to equation (1). Next, the following is the RPSM solution
to equation (1) around the beginning point t = 0:

ulx,t) =Yoot t=0,x€el. (22)
Where n = 0, 1, 2, ..., then, we can define u, ( x, t) to indicate the nth truncated series of u(x, t), that’s
U, t) =X Ot t=0,x €l (23)
When we now replace equation (21) with equation (23), we obtain:
U (6, t) = fo() + X () t™ t = 0,x € 1. (24)
To calculate the value of the coefficients f;,(x), of equation (24), Vn = 1,2, 3, ..., m. We defined the residual function for equation

(1) as:
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Resu(x,t) = iu; — %uxx(x, t) — i%uxxx(x, t) — f—iuxxxx(x, £) + ay [ulx, ©)|? ulx, t) + ay lulx, t)|* ulx, t), (25)
Thus, the m*"residual functions, Res,y,, are to the form

Res (6, 8) = 1 (U)o, ) =2 (i) (06 0) = 122 i) 06 8) = 22 (i) e (0, 6) + 1 [t G, 1w (1) +
s |y O, )1* upy, (x,t), form =1,2,3,... (26)

to determine f; (x), we write m = 1 in equation (26). Then, we will have:

Res 1y (x,£) = 1(2u1) (%, 6) = 22 () (6, 6) = 122 () G 8) = 22 1) (2, €) + ety 11y G, 17 213 (1, ) +
a |‘Ll1 (X, t) |4 Uy (X, t)' (27)
where

w(x,6) = fo(x) + fi(x)t. (28)

We obtain the 15¢residual functions as follows by changing equation (28) into equation (27).

Res w,(x,0) = |00 =2 (/00 + F/ 00 = 2 (7" () + 700 =2 (" @) + 77 @0 +
o[ (o) + AOOD (fo () + i) + o[ (oGO) + 1) D (o) + £ (x) “3]L_o : 29)

Resu(6,0) = [ifs @) =2 (/@) + /@ 0 = 2 (@ + £/ 0 =2 E @ + A0 0 + @ [ 20 ol +
o) G ¢+ 2f60) o) AW E+2 () GO A €+ Rl i) 2+ O A @ ] + a2 [£° 00 fo? () +

2/° @) fo@) AW t+ 6 A2 € + 37 A0 P ()t + 6 7@ AW G il £+ 3/°() fi () fi7 () £+
3o £200 26 £ + 6 fo(0) f2QRE AEDIE+ 3 /600 A2 A0 4+ 200 o2 ¢ +
2fPORE RE E+ A0 RO (30)

Resuy(x,6) = ifi(0) = 2 £/ () = 122 £ () = 2 500 + an [ o* ) o] + 2 [ ) P 0], 6D
According to Res u; (x,t) = 0, we get

A = -t L@+ 2@ — 200 +ia] 2@ K]+ i e [P0 P @) (32)

So

w Gt =) + (- L@+l @ - LR+ ia[ FORD |+ i[O R@])L 6

When m = 2, 3, ... the same technique can be used to obtain a higher degree of an approximate solution.

Numerical Results:

Within this segment, we use the methods from the previous part to solve the CQNLS problem numerically. We then compare the results
with exact solutions.

Solving Cubic-Quintic Nonlinear Schrodinger Equation with the use of VIM:
Consider the CQNLS equation (1), assume that
Bi=L2=pF3=0a; =a, =1, (Laietal, 2006).
With the initial condition
u(x, 0) = sech (x) e (34

The exact solution is given by equation (2), and that uy(x, t) = u(x, 0) and from equations (19) and (20).
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te *leX(78 e2* j+e*¥(8—i)—8—i)
3 (e?*+1)3

u (x,t) = e *tsech(x) + , (35)

cos(x) —sin(x) i te*A=D (782X 4% (8 —i)—8—1i)
cosh(x) 3(e?* +1)3

uy(x,t) =

610250760 5% + ¢5% (—1388745 + 15130800 i)

+e7* (46777500 + 67080960 )
+ e9% (203073885 + 168292080 )
+e11% (421505370 + 252901440 i)
+ e13% (569719575 + 202506480 i)
+e3% (—2029050 + 1477440 ()
+e17% (569719575 — 202506480 i)
+e19% (421505370 — 252901440 i)
+e21% (203073885 — 168292080 i)
+e23% (46777500 — 67080960 i)
+e25% (—1388745 — 15130800 1)
+e27% (—2029050 — 1477440 i)
+e29% (—25515 + 64801)
+e* (—25515 — 6480 i)

e3% (—8775 + 70200 i)
+e5% (444420 + 30434401)
+e7% (17238690 + 13525920 ()
+e%% (103400820 + 187062480 i)
+e11* (851733495 + 671402520)
+e13% (2740719240 + 820925280 i)

—t* +3951202140 5% i+ 5

+e17% (2740719240 — 820925280 i)
+e19% (851733495 — 671402520 1)
+e21* (103400820 — 187062480 i)
+e23% (17238690 — 13525920 i)
+e25% (444420 — 30434401)
+e27* (—8775 — 70200 i)

5% (42250 — 338000 i)
+e7% (—3498300 + 1622400 i)
+€%% (23849410 — 63572080 ()
+el1¥ (642117840 + 1487116801)
+e13% (1829294900 — 2780480800 i)
—27770394600 e15%
+e17% (1829294900 + 2780480800 i)
+e17% (1829294900 + 2780480800 i)
+e17% (1829294900 + 2780480800 i)
+e21% (23849410 + 63572080 i)
+e23% (—3498300 — 1622400 i)
+e25% (42250 + 338000 i)

+ t®

Where

= 14580 e*! + 218700 * 2*+) 4+ 1530900 e* “*+D + 6633900 * 6+ 4 19901700 e* B+D) 4 43783740 ¢* (10+1) 4

3% (=17280 + 208440 i)
+e5% (1071360 + 4272480 1)
+e7% (20252160 + 25939440 i)
+e9% (98046720 + 136620000 i)
+e11% (211697280 + 492669000 i)
+e13% (204802560 + 1056818880 i)
p+t3 +1357788960 157 |
+e17% (—204802560 + 1056818880 i)
+e19% (—211697280 + 492669000 i)
+e21* (—98046720 + 136620000 {)
+e23% (—20252160 + 25939440 i)
+e25% (—=1071360 + 4272480 i)
+e27% (17280 + 208440 1)

5% (—149760 + 1502280 i)
+e7* (11741184 — 1330992 10)
+e%% (17830656 + 157771944 i)
+e11¥ (987918336 + 193120704 i)
+e13% (2077042176 + 2242802448 1)

+4420573920 5% i u
+e17% (—2077042176 + 2242802448 i)

+e19% (—987918336 + 193120704 )
+e21% (17830656 + 157771944 i)
+e23% (—11741184 — 1330992 ()
+e25% (149760 + 1502280 i)

(36)

72972900 e* (12+D 1 93822300 e* (14+D 4 93822300 e* (16+D) 4+ 72972900 e* (18+D 4 43783740 ¢* 20+ 4
19901700 e* 22+D 4 6633900 e* 24+D) 4 1530900 e* 26+ 4 218700 e* 28+D) 4 14580 X B30+D)

By the same way, we can find us, uy, ... and so on.
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Solving Cubic-Quintic Nonlinear Schrodinger Equation with the use of RPSM:
Subject to the initial condition equation (3), equation (33), which is obtained by applying RPSM to the CQNLSE, is obtained.

Form =1, we get
u (x,t) = e *isech(x) +t (%L e *isech(x) + 43—ie"” sinh(x) sech?(x) — %e"”' sech(x) tanh?(x) + ie *! sech3(x) —

i e *tsech(x) tanh*(x) + ie *! sechs(x)), (37)
Form = 2, we get

u(x,t) = %e‘xi(63 t? sech(x) — 16i tanh(x) sech(x) t? + 1032 sech3(x) t? + 960 i sech?(x) tanh?(x) t* —
3240 sech®(x) t? + 1680 t? — 12isech(x) t + 96 tanh(x) sech(x) + 240 i sech®(x) t + 72 sech (x)). (38)

Table 1: Shows exact solution, VIM, RPSM, and absolute error between the exact solution and the approximate solutions by VIM and
RPSM for —4 < x <4 andt = 0.01.

Absolute Error Absolute Error
E M RPSM
x xact v S |[Exact-VIM| [Exact-RPSM|
4 1.305687614 1.305694106 1.305694107 6.492347076 6.492867412
) 593779¢-03 940856¢-03 461191e-03 614280e-09 125070e-09
10 6.450450147 6.450587452 6.450587464 1.373051012 1.373165103
' 789773e-03 890997¢-03 300128e-03 245469¢-07 455906e-07
94 3.154516942 3.154815107 3.154815119 2.981650471 2.981765444
' 753750e-02 800896¢-02 298163¢-02 460540e-06 137752¢-06
L6 1.468686431 1.469139522 1.469139360 4.530912944 4.529291914
o 534473e-01 828903e-01 725920e-01 300525e-05 459610e-05
0.8 5.491884863 5.492309418 5.492296088 4.245553045 4.112248824
' 153710e-01 458221e-01 036173e-01 112427¢-05 506004¢-05
0 9.998222432 9.997116874 9.997115282 1.105558755 1.107150782
900585¢-01 145271e-01 118056€e-01 314373e-04 528876¢-04
0.8 5.689860006 5.690434416 5.690447578 5.744097989 5.875716918
' 351928e-01 150851e-01 043778e-01 235364e-05 457563e-05
L6 1.542683812 1.543150573 1.543150734 4.667607133 4.669220502
' 584001¢e-01 297396e-01 634280e-01 951313e-05 773186¢-05
94 3.324429013 3.324730828 3.324730817 3.018147790 3.018033239
' 803103e-02 582197e-02 127070e-02 946613e-06 682305e-06
39 6.802609526 6.802740545 6.802740533 1.310189223 1.310075524
' 142632¢-03 064941e-03 695097e-03 086011e-07 642990e-07
4 1.377165454 1.377170079 1.377170078 4.624736986 4.624218416
304141e-03 041128e-03 522558e-03 598432¢-09 602460e-09
3.087168260 3.088590996
Total
274371e-04 873099¢-04
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Graph of Exact & VIM & RPSM

Graph of Exact & VIM & RPSM
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(a) The 2D graph of |u(x, t)|2.

(b) The zoomed 2D graph of |u(x, t)|?.

Figure 1: Exact solution and VIM and RPSM at —4 < x < 4 andt = 0.01

0.8

0.6

0.4

0.2

04

Real of Exact & VIM & RPSM
T T T '

= = Re(RPSM

T

Re(Exact)
A Re(VIM)

.02 " L

imag{u(x,t))

Imaginary of Exact & VIM & RPSM

Iimag(Exact)
A imag(VIM)
= = imag(RPSM)

0.6

0.4

0.2

-04

.06 n L L L
-4 -3 -2 -1 0 1 2 3

(a) The 2D graph of Re(u(x, t)). (b) The 2D graph ofIm(u(x, t)).

Figure 2: The curves of exact solution, VIM, and RPSM for real and imaginary, when —4 < x < 4 and t = 0.01.
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(a) The 3D graph of |u(x, t)|%.
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Figure 3: The surfaces of the exact solution, VIM, and RPSM CQNLSE, when —4 < x <4 and 0 <t < 0.1.

Real of Exact solution

Re(u(x.t)

(a) The 3D graph of Re(u(x, t)).

Real of VIM Real of RPSM

)

Re(u(x.t))

Re(u(x,

(b) The 3D graph of Re(u(x, t)). (c) The 3D graph of Re(u(x, t)).

Figure 4: The 3D surfaces for the real part of u(x,t), when —4 < x <4 and 0 <t < 0.1.
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Figure 5: The 3D surfaces for the imaginary part of u(x,t), when —4 <x <4 and 0 <t < 0.1.

CONCLUSION

The VIM and RPSM are both utilized in this paper to obtain
approximate analytical solutions for the cubic-quintic nonlinear
Schrédinger equation. We took an example of the CQNLS
equation to compare between the 2nd order of VIM and RPSM
with the exact solution. The results obtained by the two methods
are compared with the exact solution of the equation. Moreover,
we concluded that VIM is powerful, reliable, and elegant, and it
yields solutions in a rapidly converging sequence compared to
RPSM. It was also found that VIM is significantly more accurate
and efficient, matching the exact solution more closely than
RPSM. The solutions that have been obtained with real and
imaginary parts are plotted.
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