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ABSTRACT: 

This paper is devoted to investigating and comparing the variational iteration method (VIM) and the residual power series 

method (RPSM) for solving the cubic-quintic nonlinear Schrödinger equation (CQNLSE) initially developed to elucidate 

the propagation of pulses in optical fibers. Next, we use the initial conditions to get the numerical solutions of the CQNLSE. 

We compared the known exact solutions with the approximate results obtained using both the VIM and RPSM. The exact 

solution and the results from RPSM are evaluated against those from VIM. The findings demonstrated that VIM 

outperformed RPSM in terms of accuracy, efficiency, and ease of implementation for solving the CQNLSE. In addition, the 

current results are shown graphically and in the table. 

KEYWORDS: Numerical solution, Cubic-Quintic Nonlinear Schrödinger equation, Residual Power Series Method, 

Variational Iteration Method, Lagrange multiplier. 

1. INTRODUCTION 

        The CQNLSE is a universal mathematical model describing 

various physical applications and approximating more complex 

systems,  such as  Bose-Einstein  condensates (BECs), nonlinear 

optics, a range of interaction phenomena in plasmas, including 

plasma physics, condensed matter physics, and nuclear physics 

(Tang & Shukla, 2007,Seadawy et al., 2022, Peleg & 

Chakraborty, 2023). Notably in nonlinear optics and BECs. In 

optics, it models the propagation of light beams through layered 

media, where the nonlinear response of the material changes with 

position or time. In BECs, it describes atomic interactions 

influenced by Feshbach resonances. Even in the absence of 

external potentials, the CQNLSE with nonlinearity management 

is essential for regulating soliton dynamics, particularly when 

nonlinearities fluctuate spatially or temporally. This enables the 

formation of stable soliton structures and multi-soliton bound 

states (Luo, 2022). The CQNLSE is used in modelling light 

propagation through various optical media, including non-Kerr 

crystals, chalcogenide glasses, organic materials, colloids, dye 

solutions, and ferroelectrics (Seadawy & Sayed, 2017). Studies 

on the cubic-quintic nonlinear Schrödinger equation also extend 

to optical fiber communications and nuclear hydrodynamics.  

        Researchers have extensively studied the CQNLSE using 

various solution methods. For example, Hafez used the 

exp(−𝜑(𝜉)) approach in his work to extract both singular and 

periodic solutions (Golam Hafez et al., 2014). By assuming an 
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ansatz solution, Serkin (Serkin et al., 2001) discovered the novel 

stable bright and dark soliton management regimes for the 

CQNLSE model. Hao (Hao et al., 2004) published solitary wave 

analytical solutions. He found the explicit spatial self-similar, 

bright, and dark soliton solutions of the CQNLSE using 

distributed coefficients and an external potential (He et al., 2014). 

Caplan addressed the problems of solitary vortex existence, 

interactions, and stability in the two-dimensional CQNLSE using 

both analytical and numerical techniques (Caplan et al., 2009). 

Numerous researchers have focused on applying various 

techniques to identify numerical analysis solutions in recent 

years. Among these are the Adomian and Adomian-Padé 

Techniques (Sabali, Manaa, & Easif, 2018), Variational Iteration 

Method (Easif et al., 2015), Sumudu-Decomposition Method 

(Azzo & Manaa, 2022), Successive Approximation Method 

(Sabali et al., 2021), Residual Power Series Method (Manaa et 

al., 2021), and others.  

        Inokuti (1978) was the first to propose a generic Lagrange 

multiplier approach for solving quantum mechanical problems. 

This method allowed for the solution of nonlinear problems. In 

2006 and 2007, Chinese mathematician Ji-Huan He, a professor 

at Donghua University, transformed the Lagrange multiplier 

method into an iterative technique known as the VIM (Al-Saif et 

al., 2011). For a wide range of applications in physics, chemistry, 

biology, and engineering, homogeneous or inhomogeneous 

equations, including linear or nonlinear (NL), and systems of 

equations, the VIM approach provides a reliable and efficient 
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process. Numerous writers have demonstrated (Faradilla et al., 

2021) that this approach offers advantages over current numerical 

methods. This method offers quick converging successive 

approximations of the precise answer if one exists; if not, a few 

approximations may be used for numerical purposes (Shihab et 

al., 2023). The VIM does not need special treatments like the 

Adomian method (Odibat, 2010), perturbation methods, etc, it 

just employs the starting conditions that are specified. 

        The RPSM, a relatively new methodology based on the 

generalized Taylor series, is explained in depth (Alquran, 2014). 

The RPSM (Korpinar, 2019) is a helpful technique for 

determining the coefficient values in the solution of fuzzy 

differential equations using power series. The repeating 

algorithm is what makes up the RPSM. The RPSM offers several 

significant advantages for solving both linear and nonlinear 

differential equations (El-Ajou et al., 2015). In contrast to 

conventional approaches, RPSM can effectively and immediately 

tackle severely nonlinear situations since it does not need 

linearization, perturbation techniques, or discretization (Inc et al., 

2016). With each term calculated using basic chains of linear 

equations, it offers an analytical solution in the form of a 

convergent power series, which is both computationally simple 

and extremely precise. Furthermore, RPSM may be implemented 

flexibly given a suitable starting estimate, and does not require 

reformulation when the solution order is increased. This makes it 

a practical and adaptable tool for a variety of issues, such as 

differential and integral equation systems (Moaddy et al., 2015). 

        Numerous writers from a variety of subjects have employed 

the RPSM approach, such as the Klein-Gordon Schrödinger 

equation (Manaa et al., 2021), fractional diffusion equations 

(Jumarie, 2011), fractional Burger-type equations (Zunino et al., 

2008), Boussinesq–Burgers equations (Mahmood & Yousif, 

2017). Systems of Fredholm integral equations (Komashynska et 

al., 2016), nonlinear fractional KdV–Burgers equation (He, 

1999), time fractional nonlinear coupled Boussinesq–Burgers 

equations (Ubriaco, 2009), fuzzy differential equations 

(Mainardi, 2012), for linear and nonlinear Lane–Emden 

equations (Oldham & Spanier, 1974), higher order initial value 

problems (Miller & Ross, 1993), time-fractional Fokker–Planck 

equations (Cifani & Jakobsen, 2011).  

        The following sections make up this paper: Section 2 

presents the CQNLSE's mathematical model. In section 3, the 

basic ideas of VIM and RPSM are provided. In section 4, the 

derivation of VIM and RPSM are illustrated for the CQNLSE, 

and in section 5, a numerical example demonstrates the 

approaches' accuracy and efficiency.

2. MATHEMATICAL MODEL 

Cubic-Quintic Nonlinear Schrödinger Equation:  

Consider the CQNLSE (Lai et al., 2006). 

    𝑖𝑢𝑡 =
𝛽1

2
𝑢𝑥𝑥 + 𝑖

𝛽2

6
𝑢𝑥𝑥𝑥 +

𝛽3

24
𝑢𝑥𝑥𝑥𝑥 − 𝛼1|𝑢|

2 𝑢 − 𝛼2|𝑢|
4 𝑢,        (1) 

where 𝑖 = √−1,  𝛽1, 𝛽2, 𝛽3, 𝛼1 and 𝛼2 ∈ ℛ. 

Where 𝑢(𝑥, 𝑡)is the slowly changing electric field envelope, 𝑥 is the distance along the velocity dispersion direction, 𝑡 is the 

time, with respect to the group velocity dispersion, 𝛽1 is the second-order dispersion, 𝛽2 is the 3rd-order dispersion, and 𝛽3 is the 

fourth-order dispersion. For the cubic-quintic terms, the coefficients are 𝛼1 and 𝛼2. 

Bright Soliton: 

The bright soliton for the CQNLSE (1) is (Lai et al., 2006): 

    𝑢(𝑥, 𝑡) = 𝑠𝑒𝑐ℎ (
4 𝑡

3
− 𝑥) 𝑒

𝑖(− 
𝑡 

6 
 −𝑥)

.     (2) 

With the initial condition  

    𝑢(𝑥, 0) = 𝑠𝑒𝑐ℎ(𝑥) 𝑒−𝑖𝑥 ,    𝑥 ∈ 𝐼              (3) 

The Method's Description: 

In this section, we will display the main ideas of the VIM and RPSM. 

Basic Idea of the Variational Iteration Method: 

To demonstrate the fundamental idea of VIM, consider the following general NL partial differential equation (PDE), (Odibat, 2010): 

    𝐿(𝑢(𝑥, 𝑡)) + 𝑁(𝑢(𝑥, 𝑡)) = 𝑔(𝑢(𝑥, 𝑡)),      (4) 

with the initial condition: 

     𝑢(𝑥, 0) =  𝑓(𝑥),       (5) 

When 𝑔 is a known analytic function, 𝑁 is the NL operator component, and 𝐿 =
𝜕𝔯

𝜕𝑡𝔯
 , 𝔯 ∈ ℕ is a linear operator part and is the term of 

the highest-order derivative. 
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We may create the following iteration formula using VIM: 

  𝑢𝑛+1 (𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) + ∫ 𝜆(𝜏)[𝐿𝑢𝑛(𝑥, 𝜏) + 𝑁𝑢̃𝑛(𝑥, 𝜏) − 𝑔(𝑥, 𝑡)]𝑑𝜏 ,
𝑡

0
            𝑛 = 0, 1, 2, … (6) 

A generic Lagrangian multiplier, denoted by λ (Inokuti, 1978), can be optimally determined from the stationary conditions of equation 

(6) concerning 𝑢𝑛 using the variational theory (Anjum & He, 2019), the subscript 𝑛 indicates the n-th approximation, and 𝑢̃𝑛is regarded 

as a confined variation, i.e. 𝛿𝑢̃𝑛 = 0. 

The Lagrange multiplier can be identified as (He and Wu, 2007). 

    𝜆(𝑡, 𝜏) =
(−1)𝔯

(𝔯−1)!
 (𝜏 − 𝑡)𝔯−1 , 𝔯 ≥ 1.     (7) 

By applying the Laplace transform to both sides of (4), we may more readily find the Lagrange multiplier, following the methodology 

of Tsai and Chen. This converts the linear portion with constant coefficients into an algebraic one (Wu, 2013). 

Next, the approximate solution to equation (4) is thus provided by:   𝑢(𝑥, 𝑡) = lim
𝑛→∞

𝑢𝑛(𝑥, 𝑡) 

The approximation is denoted by the subscript 𝑛, and 𝑢̃𝑛 is regarded as a constrained variant (Momani & Abuasad, 2006). 

Basic Idea of the Residual Power Series: 

3 METHOD 

Considering the general form of an NLPDE: 

    𝐿(𝑢(𝑥, 𝑡)) = 𝑁(𝑢(𝑥, 𝑡)) + 𝑔(𝑢(𝑥, 𝑡)),     (8) 

with the initial condition equation (5),  

where 𝐿 =
𝜕𝑘

𝜕𝑡𝑘
 , 𝑘 ∈ ℕ, is the highest order partial derivative with respect to time t. 𝑁(𝑥, 𝑡) is a nonlinear term and 𝑔(𝑥, 𝑡) a linear 

term. The standard RPSM defines the solution 𝑢(𝑥, 𝑡) as the power series of the form: 

    𝑢(𝑥, 𝑡) = ∑ 𝑓𝑛(𝑥)
∞
𝑛=0 𝑡𝑛.        (9) 

Where 𝑛 = 0, 1, 2,…, afterward, we may define 𝑢𝑛(𝑥, 𝑡) to denote the nth truncated series of 𝑢(𝑥, 𝑡), i.e. 

    𝑢𝑚(𝑥, 𝑡) = ∑ 𝑓𝑛(𝑥)
𝑚
𝑛=0 𝑡𝑛.       (10) 

The zeroth residual power series approximation solution for 𝑢(𝑥, 𝑡) is 

    𝑢0 = 𝑢(𝑥, 0) = 𝑓(𝑥) = 𝑓0(𝑥).     (11) 

Where 𝑓0(𝑥) is the initial condition. Now, if we replace equation (11) with equation (10), we obtain: 

   𝑢𝑛(𝑥, 𝑡) =  𝑢(𝑥, 0) + ∑ 𝑓𝑛(𝑥)
𝑚
𝑛=1 𝑡𝑛, 𝑓𝑜𝑟 𝑡 ≥ 0, 𝑥 ∈ 𝐼, 𝑚 = 1, 2,…  (12) 

to complete the coefficients 𝑓𝑛(𝑥), 𝑛 =  1, 2, . . . , 𝑚 of equation (12), the residual function for equation (8) is first defined as follows: 

    𝑅𝑒𝑠𝑢(𝑥, 𝑡) = 𝐿(𝑢(𝑥, 𝑡)) − 𝑁(𝑢(𝑥, 𝑡)) − 𝑔(𝑢(𝑥, 𝑡)),   (13) 

and the 𝑚𝑡ℎ Residual function is of the form: 

   𝑅𝑒𝑠𝑢𝑚(𝑥, 𝑡) =  𝐿(𝑢𝑚(𝑥, 𝑡)) − 𝑁(𝑢𝑚(𝑥, 𝑡)) − 𝑔(𝑢𝑚(𝑥, 𝑡)), 𝑚 = 1, 2, 3, …  (14) 

We present a few RPSM findings from (Cifani & Jakobsen, 2011), which are crucial to RPSM: 

• 𝑅𝑒𝑠𝑢(𝑥, 𝑡) = 0, 

• lim
𝑚→∞

𝑅𝑒𝑠𝑢𝑚(𝑥, 𝑡) = 𝑅𝑒𝑠𝑢(𝑥, 𝑡),  𝑡 ≥ 0,   ∀ 𝑥 ∈ 𝐼, 

• 
𝜕𝑘 𝑅𝑒𝑠 𝑢𝑚(𝑥,𝑡)

𝜕𝑡𝑘
|
𝑡=0

= 0,   𝑘 = 0, 1, 2,… ,𝑚.      (15) 

As a result, we may acquire all of the necessary coefficients 𝑓𝑛(𝑥) of the power series of equation (8). 

Illustrative Application: 

This section will apply the aforementioned techniques to the CQNLSE. 
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Derivation of VIM for Solving Cubic-Quintic Nonlinear Schrödinger Equation: 

Consider the CQNLSE (1) with the initial condition equation (3) by means of VIM, the correcting function is provided as 

𝑢𝑛+1(𝑥, 𝑡) =  𝑢𝑛(𝑥, 𝑡) + ∫ 𝜆(𝜏) (
𝜕𝑢𝑛(𝑥,𝜏)

𝜕𝜏
+ 𝑖

𝛽1

2

𝜕2𝑢𝑛(𝑥,𝜏)

𝜕𝑥2
−
𝛽2

6
 
𝜕3𝑢𝑛(𝑥,𝜏)

𝜕𝑥3
+ 𝑖

𝛽3

24
 
𝜕4𝑢𝑛(𝑥,𝜏)

𝜕𝑥4
− 𝛼1𝑖(|𝑢̃𝑛(𝑥, 𝜏)|

2 𝑢̃𝑛(𝑥, 𝜏)) −
𝑡

0

𝛼2𝑖(|𝑢̃𝑛(𝑥, 𝜏)|
4 𝑢̃𝑛(𝑥, 𝜏))) 𝑑𝜏,           (16) 

where 

 |𝑢|2  𝑢 = 𝑢2 𝑢̅, and  |𝑢|4 𝑢 = 𝑢3  𝑢̅2,  

𝑢̅  is the conjugate of 𝑢. 

In our equation, 𝔯 = 1. Then by formula (7), 𝜆 = −1, substituting in equation (16), we get: 

𝑢𝑛+1(𝑥, 𝑡) =  𝑢𝑛(𝑥, 𝑡) − ∫ (
𝜕𝑢𝑛(𝑥,𝜏)

𝜕𝜏
+ 𝑖

𝛽1

2

𝜕2𝑢𝑛(𝑥,𝜏)

𝜕𝑥2
−
𝛽2

6
 
𝜕3𝑢𝑛(𝑥,𝜏)

𝜕𝑥3
+ 𝑖

𝛽3

24
 
𝜕4𝑢𝑛(𝑥,𝜏)

𝜕𝑥4
− 𝛼1𝑖((𝑢𝑛(𝑥, 𝜏)

2 𝑢𝑛(𝑥, 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ) −
𝑡

0

𝛼2𝑖(𝑢𝑛(𝑥, 𝜏)
3 𝑢𝑛(𝑥, 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2))𝑑𝜏,       𝑛 = 0,1,2,…             (17) 

Equation (3) provides us with the initial approximation  𝑢(𝑥, 0)  . The following is how we may retrieve the additional components 

using the iteration formula (17): 

𝑢0(𝑥, 𝑡) = 𝑢(𝑥, 0) = 𝑓(𝑥).               (18) 

For 𝑛 = 0;  

𝑢1(𝑥, 𝑡) =  𝑢0(𝑥, 𝑡) − ∫ (
𝜕𝑢0(𝑥,𝜏)

𝜕𝜏
+ 𝑖

𝛽1

2

𝜕2𝑢0(𝑥,𝜏)

𝜕𝑥2
−
𝛽2

6
 
𝜕3𝑢0(𝑥,𝜏)

𝜕𝑥3
+ 𝑖

𝛽3

24
 
𝜕4𝑢0(𝑥,𝜏)

𝜕𝑥4
− 𝛼1𝑖((𝑢0(𝑥, 𝜏)

2 𝑢0(𝑥, 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ) −
𝑡

0

                   𝛼2𝑖(𝑢0(𝑥, 𝜏)
3 𝑢0(𝑥, 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2)) 𝑑𝜏,        (19) 

For 𝑛 = 1; 

𝑢2(𝑥, 𝑡) =  𝑢1(𝑥, 𝑡) − ∫ (
𝜕𝑢1(𝑥,𝜏)

𝜕𝜏
+ 𝑖

𝛽1

2

𝜕2𝑢1(𝑥,𝜏)

𝜕𝑥2
−
𝛽2

6
 
𝜕3𝑢1(𝑥,𝜏)

𝜕𝑥3
+ 𝑖

𝛽3

24
 
𝜕4𝑢1(𝑥,𝜏)

𝜕𝑥4
− 𝛼1𝑖((𝑢1(𝑥, 𝜏)

2 𝑢1(𝑥, 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ) −
𝑡

0

𝛼2𝑖(𝑢1(𝑥, 𝜏)
3 𝑢1(𝑥, 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2 )) 𝑑𝜏.                                                                                                                                               (20)  

And after similarly for 𝑛 = 3,4,… 

Derivation of RPSM for Solving Cubic-Quintic Nonlinear Schrödinger Equation: 

Consider the CQNLS equation (1), with the initial condition   

    𝑢(𝑥, 0) =  𝑢0(𝑥, 𝑡) = 𝑓(𝑥) = 𝑓0(𝑥).    (21) 

Where 𝑢0(𝑥, 𝑡) is the initial condition. Using equation (21) to apply RPSM to equation (1). Next, the following is the RPSM solution 

to equation (1) around the beginning point 𝑡 = 0: 

    𝑢(𝑥, 𝑡) = ∑ 𝑓𝑛(𝑥)
∞
𝑛=0 𝑡𝑛,  𝑡 ≥ 0, 𝑥 ∈ 𝐼.     (22) 

Where 𝑛 = 0, 1, 2, …, then, we can define 𝑢𝑛( 𝑥, 𝑡) to indicate the nth truncated series of 𝑢(𝑥, 𝑡), that’s 

    𝑢𝑚(𝑥, 𝑡) = ∑ 𝑓𝑛(𝑥)
𝑚
𝑛=0 𝑡𝑛,   𝑡 ≥ 0, 𝑥 ∈ 𝐼.     (23) 

When we now replace equation (21) with equation (23), we obtain:  

    𝑢𝑚(𝑥, 𝑡) = 𝑓0(𝑥) + ∑ 𝑓𝑛(𝑥)
𝑚
𝑛=1 𝑡𝑛, 𝑡 ≥ 0, 𝑥 ∈ 𝐼.    (24) 

To calculate the value of the coefficients 𝑓𝑛(𝑥), of equation (24), ∀ 𝑛 = 1, 2, 3,… ,𝑚. We defined the residual function for equation 

(1) as: 

𝑅𝑒𝑠𝑢(𝑥, 𝑡) =  𝑖𝑢𝑡 −
𝛽1

2
𝑢𝑥𝑥(𝑥, 𝑡) − 𝑖

𝛽2

6
𝑢𝑥𝑥𝑥(𝑥, 𝑡) −

𝛽3

24
𝑢𝑥𝑥𝑥𝑥(𝑥, 𝑡) + 𝛼1 |𝑢(𝑥, 𝑡)|

2 𝑢(𝑥, 𝑡) + 𝛼2 |𝑢(𝑥, 𝑡)|
4 𝑢(𝑥, 𝑡),  (25) 

Thus, the 𝑚𝑡ℎresidual functions, 𝑅𝑒𝑠𝑚, are to the form 
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𝑅𝑒𝑠 𝑢𝑚(𝑥, 𝑡) =  𝑖 (𝑢𝑚)𝑡(𝑥, 𝑡) −
𝛽1

2
 (𝑢𝑚)𝑥𝑥(𝑥, 𝑡) − 𝑖

𝛽2

6
 (𝑢𝑚)𝑥𝑥𝑥(𝑥, 𝑡) −

𝛽3

24
 (𝑢𝑚)𝑥𝑥𝑥𝑥(𝑥, 𝑡) + 𝛼1 |𝑢𝑚(𝑥, 𝑡)|

2 𝑢𝑚 (𝑥, 𝑡) +

𝛼2|𝑢𝑚(𝑥, 𝑡)|
4 𝑢𝑚 (𝑥, 𝑡), for 𝑚 = 1, 2, 3, . ..         (26) 

to determine 𝑓1(𝑥), we write 𝑚 =  1 in equation (26). Then, we will have: 

𝑅𝑒𝑠 𝑢1(𝑥, 𝑡) =  𝑖(𝑢1)𝑡(𝑥, 𝑡) −
𝛽1

2
(𝑢1)𝑥𝑥(𝑥, 𝑡) − 𝑖

𝛽2

6
(𝑢1)𝑥𝑥𝑥 (𝑥, 𝑡) −

𝛽3

24
(𝑢1)𝑥𝑥𝑥𝑥(𝑥, 𝑡) + 𝛼1|𝑢1(𝑥, 𝑡)|

2 𝑢1(𝑥, 𝑡) +

𝛼2|𝑢1(𝑥, 𝑡)|
4 𝑢1(𝑥, 𝑡),             (27) 

where 

    𝑢1(𝑥, 𝑡) = 𝑓0(𝑥) + 𝑓1(𝑥)𝑡.     (28) 

We obtain the 1𝑠𝑡residual functions as follows by changing equation (28) into equation (27). 

𝑅𝑒𝑠 𝑢1(𝑥, 𝑡) =  [𝑖𝑓1(𝑥) −
𝛽1

2
( 𝑓0

′′(𝑥) + 𝑓1
′′(𝑥)𝑡) − 𝑖

𝛽2

6
(𝑓0
′′′(𝑥) + 𝑓1

′′′(𝑥)𝑡) −
𝛽3

24
(𝑓0
′′′′(𝑥) + 𝑓1

′′′′(𝑥)𝑡) +

𝛼1[ (𝑓0(𝑥) + 𝑓1(𝑥)𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (𝑓0(𝑥) + 𝑓1(𝑥)𝑡)
2] + 𝛼2[ (𝑓0(𝑥) + 𝑓1(𝑥) 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2 (𝑓0(𝑥) + 𝑓1(𝑥) 𝑡)

3]]
𝑡=0

 ,   (29) 

 

𝑅𝑒𝑠 𝑢1(𝑥, 𝑡) = [𝑖𝑓1(𝑥) −
𝛽1

2
(𝑓0
′′(𝑥) + 𝑓1

′′(𝑥) 𝑡) − 𝑖
𝛽2

6
(𝑓0
′′′(𝑥) + 𝑓1

′′′(𝑥) 𝑡) −
𝛽3

24
(𝑓0
′′′′(𝑥) + 𝑓1

′′′′(𝑥) 𝑡) + 𝛼1 [ 𝑓0
2(𝑥) 𝑓0(𝑥)̅̅ ̅̅ ̅̅ ̅ +

 𝑓0
2(𝑥)  𝑓1(𝑥)̅̅ ̅̅ ̅̅ ̅̅  𝑡 + 2𝑓0(𝑥) 𝑓0(𝑥)̅̅ ̅̅ ̅̅ ̅ 𝑓1(𝑥) 𝑡 + 2 𝑓0(𝑥) 𝑓1(𝑥)̅̅ ̅̅ ̅̅ ̅ 𝑓1(𝑥) 𝑡

2 +   𝑓0(𝑥)̅̅ ̅̅ ̅̅ ̅ 𝑓1
2
(𝑥) 𝑡2 +   𝑓1(𝑥)̅̅ ̅̅ ̅̅ ̅ 𝑓1

2
(𝑥) 𝑡3] + 𝛼2 [𝑓0

3(𝑥) 𝑓0
2(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅ +

2𝑓0
3(𝑥) 𝑓0(𝑥)̅̅ ̅̅ ̅̅ ̅  𝑓1(𝑥)̅̅ ̅̅ ̅̅ ̅ 𝑡 + 𝑓0

3(𝑥) 𝑓1
2̅̅ ̅̅ (𝑥) 𝑡2 + 3𝑓0

2(𝑥)𝑓1(𝑥) 𝑓0
2(𝑥)̅̅ ̅̅ ̅̅ ̅̅  𝑡 + 6 𝑓0

2(𝑥) 𝑓1(𝑥) 𝑓0(𝑥)̅̅ ̅̅ ̅̅ ̅  𝑓1(𝑥)̅̅ ̅̅ ̅̅ ̅ 𝑡2 +  3 𝑓0
2(𝑥) 𝑓1(𝑥) 𝑓1

2(𝑥)̅̅ ̅̅ ̅̅ ̅̅  𝑡2 +

 3 𝑓0(𝑥) 𝑓1
2(𝑥)  𝑓0

2(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑡2 + 6 𝑓0(𝑥) 𝑓1
2(𝑥)𝑓0(𝑥)̅̅ ̅̅ ̅̅ ̅  𝑓1(𝑥)̅̅ ̅̅ ̅̅ ̅ 𝑡3 +  3 𝑓0(𝑥) 𝑓1

2(𝑥) 𝑓1
2(𝑥)̅̅ ̅̅ ̅̅ ̅̅  𝑡4 + 𝑓1

3(𝑥) 𝑓0
2(𝑥)̅̅ ̅̅ ̅̅ ̅̅  𝑡3 +

2 𝑓1
3(𝑥) 𝑓0(𝑥)̅̅ ̅̅ ̅̅ ̅  𝑓1(𝑥)̅̅ ̅̅ ̅̅ ̅ 𝑡4 + 𝑓1

3(𝑥) 𝑓1
2(𝑥)̅̅ ̅̅ ̅̅ ̅̅  𝑡5]]

𝑡=0
,        (30) 

 

𝑅𝑒𝑠 𝑢1(𝑥, 𝑡) = 𝑖𝑓1(𝑥) −
𝛽1

2
𝑓0
′′(𝑥) − 𝑖

𝛽2

6
𝑓0
′′′(𝑥) −

𝛽3

24
𝑓0
′′′′(𝑥) + 𝛼1[ 𝑓0

2(𝑥) 𝑓0(𝑥)̅̅ ̅̅ ̅̅ ̅] + 𝛼2 [𝑓0
3(𝑥) 𝑓0

2(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅],  (31) 

According to 𝑅𝑒𝑠 𝑢1(𝑥, 𝑡) = 0, we get 

𝑓1(𝑥) = −𝑖 
𝛽1

2
𝑓0
′′(𝑥) + 𝑖

𝛽2

6
𝑓0
′′′(𝑥) − 𝑖

𝛽3

24
𝑓0
′′′′(𝑥) + 𝑖 𝛼1[ 𝑓0

2(𝑥) 𝑓0(𝑥)̅̅ ̅̅ ̅̅ ̅] + 𝑖 𝛼2 [𝑓0
3(𝑥) 𝑓0

2(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅].   (32) 

So 

𝑢1(𝑥, 𝑡) = 𝑓0(𝑥) + (−𝑖 
𝛽1

2
𝑓0
′′(𝑥) + 𝑖

𝛽2

6
𝑓0
′′′(𝑥) − 𝑖

𝛽3

24
𝑓0
′′′′(𝑥) + 𝑖 𝛼1[ 𝑓0

2(𝑥) 𝑓0(𝑥)̅̅ ̅̅ ̅̅ ̅ ] +  𝑖 𝛼2 [𝑓0
3(𝑥) 𝑓0

2(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅ ]) 𝑡. (33) 

When 𝑚 = 2, 3, … the same technique can be used to obtain a higher degree of an approximate solution. 

Numerical Results: 

Within this segment, we use the methods from the previous part to solve the CQNLS problem numerically. We then compare the results 

with exact solutions. 

Solving Cubic-Quintic Nonlinear Schrödinger Equation with the use of VIM: 

Consider the CQNLS equation (1), assume that 

 𝛽1 = 𝛽2 = 𝛽3 = 𝛼1 = 𝛼2 = 1, (Lai et al., 2006). 

With the initial condition   

    𝑢(𝑥, 0) = 𝑠𝑒𝑐ℎ (𝑥) 𝑒−𝑖𝑥        (34) 

The exact solution is given by equation (2), and that 𝑢0(𝑥, 𝑡) = 𝑢(𝑥, 0) and from equations (19) and (20). 

𝑢1(𝑥, 𝑡) = 𝑒
−𝑥 𝑖 𝑠𝑒𝑐ℎ(𝑥) +

𝑡 𝑒−𝑥 𝑖𝑒𝑥(78 𝑒2𝑥 𝑖+𝑒4𝑥(8−𝑖)−8−𝑖)

3 (𝑒2𝑥+1)3
,      (35) 

 

𝑢2(𝑥, 𝑡) =
𝑐𝑜𝑠(𝑥) − 𝑠𝑖𝑛(𝑥)  𝑖

𝑐𝑜𝑠ℎ(𝑥)
+
𝑡 𝑒𝑥 (1−𝑖) (78 𝑒2𝑥  𝑖 + 𝑒4𝑥  (8 − 𝑖) − 8 − 𝑖)

3 (𝑒2𝑥 + 1)3
− 
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  𝑡2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

610250760 𝑒15𝑥 + 𝑒5𝑥  (−1388745 + 15130800 𝑖)

+𝑒7𝑥  (46777500 + 67080960 𝑖)

+ 𝑒9𝑥  (203073885 + 168292080 𝑖)

+𝑒11𝑥  (421505370 + 252901440 𝑖)

 + 𝑒13𝑥  (569719575 + 202506480 𝑖)

+𝑒3𝑥  (−2029050 + 1477440 𝑖)

+𝑒17𝑥  (569719575 − 202506480 𝑖)

+𝑒19𝑥  (421505370 − 252901440 𝑖)

+𝑒21𝑥  (203073885 − 168292080 𝑖)

+𝑒23𝑥  (46777500 − 67080960 𝑖)

+𝑒25𝑥  (−1388745 − 15130800 𝑖)

+𝑒27𝑥  (−2029050 − 1477440 𝑖)

+𝑒29𝑥  (−25515 + 6480 𝑖)

+𝑒𝑥  (−25515 − 6480 𝑖) )

 
 
 
 
 
 
 
 
 
 
 
 
 

𝜇⁄ + 𝑡3

(

 
 
 
 
 
 
 
 
 
 
 
 

𝑒3𝑥  (−17280 + 208440 𝑖)

+𝑒5𝑥  (1071360 + 4272480 𝑖)

+𝑒7𝑥  (20252160 + 25939440 𝑖)

+𝑒9𝑥  (98046720 + 136620000 𝑖)

+𝑒11𝑥  (211697280 + 492669000 𝑖)

+𝑒13𝑥  (204802560 + 1056818880 𝑖)

+1357788960 𝑒15𝑥  𝑖
+𝑒17𝑥  (−204802560 + 1056818880 𝑖)

+𝑒19𝑥  (−211697280 + 492669000 𝑖)

+𝑒21𝑥  (−98046720 + 136620000 𝑖)

+𝑒23𝑥  (−20252160 + 25939440 𝑖)

+𝑒25𝑥  (−1071360 + 4272480 𝑖)

+𝑒27𝑥  (17280 + 208440 𝑖) )

 
 
 
 
 
 
 
 
 
 
 
 

𝜇⁄  

 

− 𝑡4

(

 
 
 
 
 
 
 
 
 
 
 
 

𝑒3𝑥  (−8775 + 70200 𝑖)

+𝑒5𝑥  (444420 + 3043440 𝑖)

+𝑒7𝑥  (17238690 + 13525920 𝑖)

+𝑒9𝑥  (103400820 + 187062480 𝑖)

+𝑒11𝑥  (851733495 + 671402520 𝑖)

+𝑒13𝑥  (2740719240 + 820925280 𝑖)

+3951202140 𝑒15𝑥

+𝑒17𝑥  (2740719240 − 820925280 𝑖)

+𝑒19𝑥  (851733495 − 671402520 𝑖)

+𝑒21𝑥  (103400820 − 187062480 𝑖)

+𝑒23𝑥  (17238690 − 13525920 𝑖)

+𝑒25𝑥  (444420 − 3043440 𝑖)

+𝑒27𝑥  (−8775 − 70200 𝑖) )

 
 
 
 
 
 
 
 
 
 
 
 

𝜇⁄ + 𝑡5

(

 
 
 
 
 
 
 
 
 
 

𝑒5𝑥  (−149760 + 1502280 𝑖)

+𝑒7𝑥  (11741184 − 1330992 𝑖)

+𝑒9𝑥  (−17830656 + 157771944 𝑖)

+𝑒11𝑥  (987918336 + 193120704 𝑖)

+𝑒13𝑥  (2077042176 + 2242802448 𝑖)

+4420573920 𝑒15𝑥  𝑖
+𝑒17𝑥  (−2077042176 + 2242802448 𝑖)

+𝑒19𝑥  (−987918336 + 193120704 𝑖)

+𝑒21𝑥  (17830656 + 157771944 𝑖)

+𝑒23𝑥  (−11741184 − 1330992 𝑖)

+𝑒25𝑥  (149760 + 1502280 𝑖) )

 
 
 
 
 
 
 
 
 
 

𝜇⁄   

 

+ 𝑡6

(

 
 
 
 
 
 
 
 
 
 
 

𝑒5𝑥  (42250 − 338000 𝑖)

+𝑒7𝑥  (−3498300 + 1622400 𝑖)

+𝑒9𝑥  (23849410 − 63572080 𝑖)

+𝑒11𝑥  (−642117840 + 148711680 𝑖)

+𝑒13𝑥  (1829294900 − 2780480800 𝑖)

−27770394600 𝑒15𝑥

+𝑒17𝑥  (1829294900 + 2780480800 𝑖)

+𝑒17𝑥  (1829294900 + 2780480800 𝑖)

+𝑒17𝑥  (1829294900 + 2780480800 𝑖)

+𝑒21𝑥  (23849410 + 63572080 𝑖)

+𝑒23𝑥  (−3498300 − 1622400 𝑖)

+𝑒25𝑥  (42250 + 338000 𝑖) )

 
 
 
 
 
 
 
 
 
 
 

𝜇⁄ .        (36) 

 

Where  

𝜇 = 14580 𝑒𝑥 𝑖 + 218700 𝑒𝑥 (2+𝑖) + 1530900 𝑒𝑥 (4+𝑖) + 6633900 𝑒𝑥 (6+𝑖) + 19901700 𝑒𝑥 (8+𝑖) + 43783740 𝑒𝑥 (10+𝑖) +

72972900 𝑒𝑥 (12+𝑖) + 93822300 𝑒𝑥 (14+𝑖) + 93822300 𝑒𝑥 (16+𝑖) + 72972900 𝑒𝑥 (18+𝑖) + 43783740 𝑒𝑥 (20+𝑖) +

19901700 𝑒𝑥 (22+𝑖) + 6633900 𝑒𝑥 (24+𝑖) + 1530900 𝑒𝑥 (26+𝑖) + 218700 𝑒𝑥 (28+𝑖) + 14580 𝑒𝑥 (30+𝑖). 

By the same way, we can find 𝑢3, 𝑢4, … and so on. 

Solving Cubic-Quintic Nonlinear Schrödinger Equation with the use of RPSM: 

Subject to the initial condition equation (3), equation (33), which is obtained by applying RPSM to the CQNLSE, is obtained.  

For 𝑚 = 1, we get 

𝑢1(𝑥, 𝑡) =  𝑒
−𝑥 𝑖 𝑠𝑒𝑐ℎ(𝑥) + 𝑡 (

7 𝑖 

6
𝑒−𝑥 𝑖𝑠𝑒𝑐ℎ(𝑥) +

4 𝑖 

3
𝑒−𝑥 𝑖  𝑠𝑖𝑛ℎ(𝑥) 𝑠𝑒𝑐ℎ2(𝑥) −

 𝑖 

3
𝑒−𝑥 𝑖  𝑠𝑒𝑐ℎ(𝑥) 𝑡𝑎𝑛ℎ2(𝑥) + 𝑖𝑒−𝑥 𝑖  𝑠𝑒𝑐ℎ3(𝑥) −

𝑖 𝑒−𝑥 𝑖  𝑠𝑒𝑐ℎ(𝑥) 𝑡𝑎𝑛ℎ4(𝑥) +  𝑖𝑒−𝑥 𝑖  𝑠𝑒𝑐ℎ5(𝑥)),         (37) 
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For 𝑚 = 2, we get 

𝑢2(𝑥, 𝑡) =
1

72
𝑒−𝑥 𝑖(63 𝑡2 𝑠𝑒𝑐ℎ(𝑥) − 16𝑖 𝑡𝑎𝑛ℎ(𝑥) 𝑠𝑒𝑐ℎ(𝑥) 𝑡2 + 1032 𝑠𝑒𝑐ℎ3(𝑥) 𝑡2 + 960 𝑖 𝑠𝑒𝑐ℎ2(𝑥) 𝑡𝑎𝑛ℎ2(𝑥) 𝑡2 −

3240  𝑠𝑒𝑐ℎ5(𝑥) 𝑡2 + 1680  𝑡2 −  12 𝑖 𝑠𝑒𝑐ℎ(𝑥)  𝑡 + 96 𝑡𝑎𝑛ℎ(𝑥) 𝑠𝑒𝑐ℎ(𝑥) + 240 𝑖 𝑠𝑒𝑐ℎ3(𝑥) 𝑡 + 72  𝑠𝑒𝑐ℎ (𝑥)).   (38) 

Table 1: Shows exact solution, VIM, RPSM, and absolute error between the exact solution and the approximate solutions by VIM and 

RPSM for −4 ≤ 𝑥 ≤ 4  and 𝑡 = 0.01. 

𝑥 Exact VIM RPSM 
Absolute Error 

|Exact-VIM| 

Absolute Error 

|Exact-RPSM| 

-4 
1.305687614 

593779e-03 

1.305694106 

940856e-03 

1.305694107 

461191e-03 

6.492347076 

614280e-09 

6.492867412 

125070e-09 

-3.2 
6.450450147 

789773e-03 

6.450587452 

890997e-03 

6.450587464 

300128e-03 

1.373051012 

245469e-07 

1.373165103 

 455906e-07 

-2.4 
3.154516942 

753750e-02 

3.154815107 

800896e-02 

3.154815119 

298163e-02 

2.981650471 

460540e-06 

2.981765444  

137752e-06 

-1.6 
1.468686431 

534473e-01 

1.469139522 

828903e-01 

1.469139360 

725920e-01 

4.530912944 

300525e-05 

4.529291914  

459610e-05 

-0.8 
5.491884863 

153710e-01 

5.492309418 

458221e-01 

5.492296088 

036173e-01 

4.245553045 

112427e-05 

4.112248824  

506004e-05  

0 
9.998222432 

900585e-01 

9.997116874 

145271e-01 

9.997115282 

118056e-01 

1.105558755 

314373e-04 

1.107150782 

 528876e-04  

0.8 
5.689860006 

351928e-01 

5.690434416 

150851e-01 

5.690447578 

043778e-01 

5.744097989 

235364e-05 

5.875716918 

 457563e-05 

1.6 
1.542683812 

584001e-01 

1.543150573 

297396e-01 

1.543150734 

634280e-01 

4.667607133 

951313e-05 

4.669220502 

 773186e-05 

2.4 
3.324429013 

803103e-02 

3.324730828 

582197e-02 

3.324730817 

127070e-02 

3.018147790 

946613e-06 

3.018033239 

 682305e-06 

3.2 
6.802609526 

142632e-03 

6.802740545 

064941e-03 

6.802740533 

695097e-03 

1.310189223 

086011e-07 

1.310075524  

642990e-07 

4 
1.377165454 

304141e-03 

1.377170079 

041128e-03 

1.377170078 

522558e-03 

4.624736986 

598432e-09 

4.624218416  

602460e-09 

Total 
3.087168260 

274371e-04 

3.088590996 

 873099e-04 
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    (a) The 2D graph of |𝑢(𝑥, 𝑡)|2.          (b) The zoomed 2D graph of |𝑢(𝑥, 𝑡)|2. 

 

Figure 1: Exact solution and VIM and RPSM at −4 ≤ 𝑥 ≤ 4  and 𝑡 = 0.01 

 

.               (a) The 2D graph of 𝑅𝑒(𝑢(𝑥, 𝑡)).               (b) The 2D graph of 𝐼𝑚(𝑢(𝑥, 𝑡)). 

Figure 2: The curves of exact solution, VIM, and RPSM for real and imaginary, when −4 ≤ 𝑥 ≤ 4  and 𝑡 = 0.01. 

 

          (a) The 3D graph of |𝑢(𝑥, 𝑡)|2. 
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      (b) The 3D graph of |𝑢(𝑥, 𝑡)|2.               (c) The 3D graph of |𝑢(𝑥, 𝑡)|2. 

Figure 3: The surfaces of the exact solution, VIM, and RPSM CQNLSE, when −4 ≤ 𝑥 ≤ 4  and 0 ≤ 𝑡 ≤ 0.1. 

 

 

(a) The 3D graph of 𝑅𝑒(𝑢(𝑥, 𝑡)). 

 

 

 

    (b) The 3D graph of 𝑅𝑒(𝑢(𝑥, 𝑡)).         (c) The 3D graph of 𝑅𝑒(𝑢(𝑥, 𝑡)). 

Figure 4: The 3D surfaces for the real part of 𝑢(𝑥, 𝑡), when −4 ≤ 𝑥 ≤ 4  and 0 ≤ 𝑡 ≤ 0.1. 
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                           (a) The 3D graph of 𝐼𝑚(𝑢(𝑥, 𝑡)). 

 

 

 

 

 

 

 

 

 

 

             (b) The 3D graph of 𝐼𝑚(𝑢(𝑥, 𝑡)).                  (c) The 3D graph of 𝐼𝑚(𝑢(𝑥, 𝑡)). 

Figure 5: The 3D surfaces for the imaginary part of 𝑢(𝑥, 𝑡), when −4 ≤ 𝑥 ≤ 4  and 0 ≤ 𝑡 ≤ 0.1. 

 

CONCLUSION 

        The VIM and RPSM are both utilized in this paper to obtain 

approximate analytical solutions for the cubic-quintic nonlinear 

Schrödinger equation. We took an example of the CQNLS 

equation to compare between the 2nd order of VIM and RPSM 

with the exact solution. The results obtained by the two methods 

are compared with the exact solution of the equation. Moreover, 

we concluded that VIM is powerful, reliable, and elegant, and it 

yields solutions in a rapidly converging sequence compared to 

RPSM. It was also found that VIM is significantly more accurate 

and efficient, matching the exact solution more closely than 

RPSM. The solutions that have been obtained with real and 

imaginary parts are plotted. 
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