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The rise and spread of antimicrobial resistance (AMR) not only significantly hinder the effective treatment of 

infectious diseases, but also lead to prolonged illness, treatment failures, and increased mortality. In intensive 

care units (ICUs), extended-spectrum β-lactamase (ESBL)-producing bacteria, such as Escherichia coli (E. 

coli) and Klebsiella pneumoniae (K. pneumoniae), are among the most concerning multidrug-resistant 

organisms (MDROs. This research was conducted to find out the causative agents of ICU infections, identify 

their profiles of antimicrobial resistance, and assess associated virulence factors. Discrepancies were found in 

bacterial identification by molecular analysis using 16S rRNA sequencing compared to the Vitek2 system. 

More than half (50%) carried all three ESBL genes, while the prevalence of blaSHV + blaCTX-M carriers were the 

lowest. Isolates of E. coli from the study were not found to be salmon single ESBL genes (blaSHV, blaCTX, or 

blaTEM), only 5.26% of K. pneumoniae isolates carried blaTEM among them. Most of the strains had moderate 

to high biofilm-forming ability, which is the key to their MDR. In other words, ICU patients are vulnerable to 

colonization and infection with MDR pathogens, and still, E. coli and K. pneumoniae are the major threats that 

are linked to the resistance mechanisms and virulence factors of these pathogens. 
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1. INTRODUCTION 

        Infection management is increasingly challenged by 

antimicrobial resistance (AMR), which leads to treatment 

failures, prolonged illness, and higher mortality rates. Its 

economic impact is particularly severe in low- and middle-

income countries, where healthcare resources are often limited 

(Murray et al., 2022, Taher and Othman, 2024). Limiting 

treatment options for Enterobacteriaceae resistant to third-

generation cephalosporins and carbapenems has been 

recognized as essential for public health (Oliveira et al. 2015, 

Ali, 2025).       Assessing the adaptive patterns and genomes of 

pathogenic bacteria in specific geographic regions is crucial for 

monitoring and controlling drug resistance (Hami & Khalid, 

2023; Issa, 2024). In vitro analyses showed that Carbapenems 

were the most effective antibacterial agents, while Amikacin 

and Ciprofloxacin demonstrated minimal activity. Rupp and 

Fey (2003) found that TEM-type extended-spectrum β-

lactamases (ESBLs) occurred more frequently than other ESBL 

variants. Enterobacteriaceae continue to pose treatment 

challenges as they steadily develop antibiotic resistance. 

ESBLs, in particular, drive one of the most widespread 

resistance mechanisms in Gram-negative bacteria (Ojdana et al., 

2014).  Inhibition of ESBLs enzymes by Clavulanic acid allows 

certain bacteria resistant to Aztreonam, Ceftazidime, 

Cefotaxime, Oxyimino-β-lactams, cephalosporins, and 

penicillins. ESBL Enzymes are broadly classified into three 

primary families: TEM, SHV, and CTX-M (Castanheira et al.,  

2021). Among all, CTX-M catalysts have grown into quite 

common, surpassing both SHV and TEM in frequency, and are 

rapidly expanding across diverse clinically relevant bacterial 

species and geographic regions (Husna et al., 2023). 

Additionally, ESBL-producing strains commonly demonstrate 

co-resistance to distinct sorts of antimicrobials, as 

aminoglycosides, fluoroquinolones, and sulfonamides, thereby 

complicating therapeutic strategies (Rupp and Fey, 2003).      

Although several ESBL types exist, including OXA and AmpC, 

most variants belong to the SHV, TEM, and CTX-M families, 

which are frequently identified in K. pneumoniae and E. coli 

(Ghenea et al., 2022). This study aimed to investigate the 

prevalence of extended-spectrum β-lactamases (ESBLs) and 

detect the presence of the blaSHV, blaCTX-M, and blaTEM genes 

among bacterial isolates recovered from clinical specimens in 

Erbil. By evaluating the antimicrobial resistance (AMR) profiles 

and multidrug susceptibility of infectious agents, particularly 

those isolated from intensive care unit (ICU) patients, the study 

sought to generate insights that supported precise treatment 

decisions, minimized therapeutic failures, and curbed the spread 

of resistant pathogens. Ultimately, these findings aimed to 

strengthen evidence-based infection control strategies and 

improve patient outcomes in healthcare settings.  
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2. MATERIALS AND METHODS 

Bacterial isolates:  

        Between September 2024 and February 2025, a total of 35 

consecutive, non-duplicate isolates of Escherichia coli (n = 16) 

and Klebsiella pneumoniae (n = 19) were obtained from various 

clinical specimens (blood, urine, sputum and wound) at an 

intensive care unit (ICU) facility in Erbil, Iraq. For initial 

isolation and identification, standard microbiological techniques 

through culture on MacConkey agar and conventional 

biochemical tests, including catalase, citrate utilisation, indole, 

oxidase, and methyl red assays, were carried out. For 

confirmation, the VITEK 2 Compact system (bioMérieux, 

France) was employed to re-identify E. coli and K. pneumoniae 

isolates (BioMerieux, France). 

Antimicrobial susceptibility testing: 

        Antimicrobial susceptibility of the isolates was assessed on 

Mueller–Hinton agar (MHA) plates using the Kirby–Bauer disc 

diffusion method in accordance with the guidelines of the 

Clinical and Laboratory Standards Institute (CLSI). The study 

employed commonly prescribed antibiotics, including 

ampicillin (10 μg), amikacin (30 μg), cefotaxime (30 μg), 

cefepime (30 μg), ceftazidime (30 μg), ciprofloxacin (5 μg), 

gentamicin (10 μg), imipenem (10 μg), and meropenem. Results 

were interpreted using CLSI breakpoints to classify isolates as 

susceptible, intermediate, or resistant (Balouiri et al., 2016)..  

Amplification of 16S rRNA gene for sequencing the 

isolated bacteria: 

        Universal primers 8F (forward) 

AGAGTTTGATCCTGGCTCAG and 1492R (reverse) 

GGTTACCTTGTTACGACTT with the amplicon size 1500bp 

were used to amplify the target DNA and the 1391R (reverse) 

primer GACGGGCGGTGTGTRCA was used to sequence the 

16S rRNA gene. Amplification of the 16S rRNA gene was   

performed according to (Turner et al., (1999). All PCR 

reactions were performed by using 2 μl DNA template (density 

of 10 ng/μl), 1.5 μl of each primers, 25μl of the Master Mix 

consisting of 3 mM MgCl2, 0.2% Tween 20, 20 mM Tris-HCl 

pH 8.5, (NH4)2SO4, 0.4 mM for each dNTP, and 0.2 units/μl 

Ampliqon Taq DNA polymerase, and 20 μl water nuclease free 

in a final volume of 50 μl. The conditions of PCR included 

primary denaturation at 95 °C for 5 min, followed by 35 cycles 

at 95 °C for 45 sec, at 55 °C for 45 sec, and at 72 °C for 90 sec, 

and a last extension at 72°C for 6 (Sambrook and Russell 2001). 

Sequencing of 16S rRNA gene: 

        The PCR products were purified and sequenced using the 

automated sequencer ABI 3100 with Big Dye Terminator Kit v. 

3.1 at MACROGEN in Seoul, Korea. The primers 1391R (5'- 

GACGGGCGGTGTGTRCA -3') were used for sequencing 

(Turner et al., 1999). 

Detection of ESBL genotypes by multiplex PCR 

amplification:  

        The PCR assay was employed to detect the blaSHV, 

blaCTX-M, and blaTEM genes in isolates that tested positive during 

the initial enzyme screening, following the method described by 

Monstein et al. (2007) with minor modifications. Genomic 

DNA was extracted from 35 freshly cultured bacterial isolates 

using the Presto™ Mini gDNA Bacterial Kit. PCR products 

were then separated by agarose gel electrophoresis to confirm 

the presence of the target genes, as detailed in Table 1..

 

Table 1: Primers used for ESBL genotypes Multiplex PCR amplification. 

Target 

Genes 

Primers Seq. (5`-3`) Amplicon  Ref. 

BlaTEM Forward TC GCC G CAT ACACTAT TCTCAGAAT GA 445bp 

Ghenea et 

al. 2022 

 

Reverse ACGC TCAC CGGCT CC AGATT TAT 

BlaSHV Forward ATGC GTTA TAT TCGCC TGTG 747bp 

Reverse TGCTT TGTTA TTCG GGC CAA 

BlaCTX-M  Forward ATGT GCA GYAC CAGTA ARGT KAT GGC 593bp 

Reverse TG GGTRAART ARGTSA CCAG AAYCAG C GG 

Biofilm Formation: 

        The biofilm-forming ability of Gram-negative isolates was 

quantitatively assessed using pre-sterilized 96-well polystyrene 

microtiter plates. After incubation, the adherent biofilm was 

stained, and absorbance was measured at 630 nm using an 

ELISA reader. The optical density (OD) values reflected the  

 

thickness of the biofilm produced by each strain. Biofilm 

production was classified according to the criteria of Stepanović 

et al. (2007) criteria, with the optical density cut-off (ODc) 

defined as the mean OD of the negative control plus three 

standard deviations (SD). 

3. RESULTS  

        A total of 112 clinical specimens, including urine (22), 

blood (15), wound (15), and sputum (60), were collected and 

analyzed for bacterial culture. Among these, 35 samples showed 

positive bacterial growth, with K. pneumoniae as the 

predominant isolate (19 isolates, 54.3%), followed by E. coli 

(16 isolates, 45.7%). E. coli was most frequently recovered 

from urine samples (43.75% of E. coli isolates), reflecting its 

strong association with urinary tract infections, whereas K.   

pneumoniae was primarily isolated from sputum samples 

(52.6% of Klebsiella isolates), indicating its significant role in 

respiratory infections. The highest positive culture rate was 

observed in urine samples (50%), followed by wound (40%) 

and sputum (26.7%), with blood samples showing the lowest 

recovery rate (13.3%). These findings highlighted the clinical 

significance of K. pneumoniae in respiratory infections and E. 

coli in urinary tract infections, emphasizing the need for 

targeted antimicrobial therapy based on infection site-specific 

prevalence.
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Table 2: Prevalence of studied bacteria.  

Urine (22) Blood (15) Wound (15) Sputum (60) No. Isolates 

7 - 3 6 16 E. coli 

4 2 3 10 19 K. pneumoniae 

11(72.27%) 2(20%) 6(73.33%) 16(56.66%) 35 Total 

 

Molecular identification using 16S rRNA gene 

sequencing 

Molecular methods were employed to confirm the 

results obtained through conventional identification techniques 

and the VITEK 2 Compact system. The 16S rRNA gene (~1500 

bp) was amplified and sequenced for 35 isolates, comprising 16  

 

E. coli and 19 K. pneumoniae. Sequencing results 

revealed discrepancies in identification: 13 isolates were 

confirmed as E. coli, 21 as K. pneumoniae, and one remained 

unidentified. To ensure accurate species-level identification 

(Figure 1), PCR-amplified 16S rRNA products from all 35 

isolates were sequenced (Table 3).

Table 3: Conventional and automated Recognition of isolates. 

Bacteria 
Clinical Identification 

Conventional & Automatic 16S rRNA 

Escherichia coli 16 13 

Klebsiella pneumoniae 19 21 

Total 35 34 

 
Figure 1: Agarose gel electrophoresis image showing the amplification of 16S rRNA, showing amplicons of 1500 bp. Lane M:  

DNA marker with 100 bp, with lanes (1-10) showing positive bands produced. 

 

        A slightly different resistance pattern was observed for K. 

pneumoniae. More than 84% of isolates were resistant to 

ampicillin, and approximately 74% were resistant to 

cefotaxime, cefepime, and gentamicin. Notably, considerable 

resistance was also observed to ciprofloxacin and meropenem. 

Encouragingly, amikacin resistance remained relatively low, 

with only about 10.5% of K. pneumoniae isolates exhibiting 

resistance (Table 4).

 

Table 4: Number and percentage of antimicrobial resistance of the isolated bacteria. 

Antibiotic Symbol E. coli (n=16) 
K. pneumoniae 

(n=19) 
Resistant strains 

Ampicillin AMP 12 (75%) 16 (84.2%) 28 

Amikacin AK 2 (12.5%) 2 (10.5%) 4 

Cefotaxime CTX 11 (68.7%) 14 (73.6%) 25 

Cefepime CEF 12 (75%) 14 (73.6%) 26 

Ceftazidime CAZ 10 (62.5%) 12 (63.1%) 22 

https://doi.org/10.25271/sjuoz.2026.14.1.1627
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Ciprofloxacin CIP 8 (50%) 13 (68.4%) 21 

Gentamicin GEN 12 (75%) 14 (73.6%) 26 

Imipenem IPM 1 (6.25%) 9 (47.3%) 10 

Meropenem MEM 2 (12.5%) 13 (68.4%) 15 

TMP-SMX TMP-SMZ 6 (37.5%) 9 (47.3%) 15 

 

        The findings of this investigation revealed that, among the 

35 isolates of E. coli and K. pneumoniae, the latter was the 

predominant species, accounting for 19 isolates (54.29%), while  

E. coli comprised 16 isolates (45.71%). Consequently, we 

focused on studying ESBL production in both species.

.  

 
Figure. 2: Agarose gel electrophoresis image showing the amplification of blaSHV 749bp, blaCTX-M 593bp and blaTEM 445bp in 

isolates. Lane M: ladder (100 bp).   

 

Table 5: Distribution of ESBL types among isolates. 

           ESBL genes Positive by PCR  E. coli No. (%) K. pneumonia No. (%) 

Existence of   ≥ 2 ESBL genotypes 

blaTEM+ blaSHV+blaCTX-M 8(50%) 9(47.36%) 

blaTEM+blaSHV 4(25%) 2(10.52%) 

blaTEM+ blaCTX-M 3(18.75%) 6(31.57%) 

blaSHV+blaCTX-M 1(6.25%) 1(5.26%) 

Existence of single ESBL genotype 

blaTEM 0 1(5.26) 

BlaSHV 0 0 

blaCTX-M 0 0 

 

        According to current results, 100% of Klebsiella 

pneumoniae isolates produce biofilms.  The strains were split 

into three groups: high, moderate, and weak producers.  

Regarding to the biofilm formation in this study 12 (63.15%) 

were biofilm strong producers, 5 (26.32%) were biofilm 

moderate producers, and 2 (10.53%) were biofilm weak 

producers (see table 6).

 

Table 6: Number and percentage of isolated bacteria for the occurrence of biofilm via using microtiter. 

Total of biofilm producer none weakly Moderately Strongly No. Isolated bacteria 

16(100%) 0 2(12.5%) 4(25%) 10(62.5%) 16 E. coli 

19(100%) 0 2(10.52) 5(26.31%) 12(63.15) 19 K. pneumoniae 

35(100%) 0 4(11.42%) 9(25.71%) 22(62.85%) 35 Total 

 

4. DISCUSSION 

        Extended-spectrum β-lactamases (ESBLs) are enzymes 

produced by certain Gram-negative bacteria, notably E. coli and 

K. pneumoniae, conferring resistance to a broad range of β-

lactam antibiotics, including third-generation cephalosporins 

and monobactams (Husan et al., 2023). Among ESBLs, CTX-M 

enzymes, particularly CTX-M-15, have emerged as the 

predominant type globally, commonly found in both E. coli and 

K. pneumoniae. SHV-type ESBLs are traditionally associated 

with K. pneumoniae (e.g., SHV-12), while TEM-type ESBLs, 

https://doi.org/10.25271/sjuoz.2026.14.1.1627
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though once widespread, have declined in prevalence 

(Castanheira et al., 2021). OXA-type β-lactamases, primarily 

linked to penicillin resistance, are less commonly classified as 

ESBLs (Bush & Bradford, 2016). These resistance genes are 

often plasmid-mediated, enabling rapid horizontal transfer and 

contributing to multidrug resistance and therapeutic failures 

(Michaelis and Grohman, 2023). Detection through PCR 

remains crucial for effective infection control and antibiotic 

stewardship (Bonnet, 2004; Ibrahim, 2023). 

In the present study, 35 Gram-negative isolates were identified, 

comprising two species from two genera: K. pneumoniae (19 

isolates, 29.69%) and E. coli (16 isolates, 25%). These results 

align with prior research reporting K. pneumoniae and E. coli as 

leading opportunistic pathogens in both hospital- and 

community-acquired infections (Al-Qaysi et al., 2024). 

Previous studies have shown E. coli as the most common cause 

of urinary tract infections, particularly in female patients, while 

K. pneumoniae is frequently implicated in pneumonia and 

wound infections (Babypadmini & Appalaraju, 2004; Gupta et 

al., 2011). The predominance of K. pneumoniae in sputum 

samples observed here is consistent with its capacity to colonize 

the respiratory tract and cause severe pulmonary infections, 

particularly in immunocompromised individuals (Liu et al., 

2023). Conversely, the high prevalence of E. coli in urine 

samples reaffirms its established role in urinary tract infections. 

These findings underscore the need for ongoing surveillance of 

pathogen distribution to guide empirical treatment and 

strengthen infection control measures (Alameer et al., 2025). 

Additionally, 16S rRNA sequencing was employed for precise 

identification of bacterial isolates, demonstrating high accuracy 

in differentiating challenging-to-identify organisms. This 

approach is particularly valuable for detecting biochemically 

fastidious or poorly characterized species. For instance, 

members of the genus Pantoea remain difficult to classify using 

conventional methods (Delétoile et al., 2009; Brady, 2013).    

Bacterial species in research and clinical diagnostics are 

commonly identified using conserved housekeeping genes, 

particularly the 16S rRNA gene (Clarridge, 2004; Petti et al., 

2005). Numerous studies have confirmed the reliability of 16S 

rRNA sequencing in medical microbiology. Drancourt et al. 

(2000) demonstrated its superiority over phenotypic methods in 

177 bacterial isolates, including 81 clinical strains. Bosshard et 

al. (2003) validated its effectiveness for aerobic Gram-negative 

bacilli, while Spilker et al. (2004) found frequent 

misidentification of Pseudomonas spp. by phenotypic tests 

compared to 16S rRNA sequencing. 

        Intensive care unit (ICU) patients are highly vulnerable to 

colonization and infection by multidrug-resistant organisms 

(MDROs). Carbapenem-resistant Enterobacteriaceae (CRE), 

particularly E. coli and K. pneumoniae, have emerged as major 

threats due to limited therapeutic options and high mortality 

rates. The data found that resistance among E. coli isolates was 

especially pronounced, with 75% resistant to ampicillin, 

cefepime, and gentamicin, and high resistance was also 

observed for cefotaxime (69%) and ceftazidime (63%). In 

contrast, imipenem (6.25%) and amikacin (12.5%) retained 

activity against most E. coli isolates, indicating their continued 

utility as treatment options. These findings highlight the urgent 

need for vigilant antimicrobial stewardship and the development 

of new strategies to combat rising resistance in critical care 

settings. 

        Molecular characterization of ESBL genotypes revealed 

that most Klebsiella pneumoniae and Escherichia coli isolates 

carried at least one of the ESBL genes screened in this study, 

with all phenotypically ESBL-positive isolates (100%) testing 

positive for ESBL genes. Multiplex PCR analysis demonstrated 

that 3.13% of isolates harbored the blaTEM gene (445 bp) (Table 

7). The majority of isolates (51.56%) carried all three genes, 

while 21.87% possessed blaTEM and blaCTX-M. Additionally, 

15.62% contained blaTEM alone, and 7.81% carried blaSHV 

together with blaCTX-M These findings align with previous 

reports (Ibrahim & Youssef, 2015; Liao et al., 2017), 

confirming the widespread presence of ESBL genes and the 

predominance of multi-gene carriage among clinical isolates. 

The identification of β-lactamase-producing strains is essential 

for understanding the epidemiology of antibiotic resistance. 

CTX-M-type extended-spectrum β-lactamases (ESBLs) have 

become the most widespread globally, surpassing SHV and 

TEM variants in prevalence (Jorgensen et al., 2010). In this 

study, blaTEM was the dominant genotype, detected in E. coli 

and K. pneumoniae isolates, consistent with reports by Kaur et 

al. (2013) and Chowdhury et al. (2016), who also documented 

high ESBL production rates among these pathogens. 

Geographic variation likely explains differences across studies, 

as ESBL prevalence can fluctuate widely, ranging from 5–52% 

in Western countries to 10–46.5% in Asian regions 

(Babypadmini and Appalaraju, 2004). The high burden of ESBL 

production poses a serious threat to β-lactam therapy, 

particularly since many strains may be misclassified as 

susceptible due to limitations of phenotypic detection methods 

(MacKenzie et al., 2002). 

        Molecular analysis revealed that blaSHV was more 

frequently detected in K. pneumoniae than in E. coli, whereas 

blaCTX-M was also present in both species. All ESBL-producing 

isolates harbored at least one ESBL gene, with blaTEM emerging 

as the predominant genotype in both species. Co-existence of 

multiple ESBL genes was common, with E. coli frequently 

carrying both blaCTX-M and blaTEM, while K. pneumoniae more 

often harbored all three (blaSHV, blaTEM, and blaCTX-M), 

reflecting considerable genetic diversity among ESBL 

determinants. 

        Biofilm formation, another key virulence factor, was 

observed in all E. coli isolates, with 62.5% classified as strong, 

25% as moderate, and 12.5% as weak producers. These findings 

contrast with reports from Risal et al. (2018), who observed 

fewer strong biofilm producers, and Hussein et al. (2018), who 

found a majority of K. pneumoniae isolates to be weak 

producers. Biofilm-associated resistance mechanisms—

including delayed antibiotic penetration, altered bacterial 

metabolism, and matrix-mediated protection—contribute to the 

persistence of infections and therapeutic failures (Karigoudar et 

al., 2019; Gurung et al., 2013). Early detection of biofilm 

production may therefore improve treatment outcomes by 

preventing chronic infections and immune-mediated 

complications (Deka, 2014). 

        The study has several limitations. The study is limited by a 

small sample size, short duration, and focus on only two 

bacterial species. It lacks patient-level clinical data, broader 

resistance gene screening (e.g., carbapenemases), and statistical 

correlation between resistance genes, biofilm formation, and 

clinical outcomes, which may affect the generalizability and 

depth of the findings. However, this study demonstrates several 

key strengths, including its focus on ICU patients—a high-risk 

group for multidrug-resistant infections—and the use of 

molecular techniques (16S rRNA sequencing and multiplex 

PCR) to accurately identify ESBL-producing E. coli and K. 

pneumoniae and characterize resistance genes (blaTEM, blaSHV, 
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blaCTX-M). It also integrates antimicrobial susceptibility testing 

and biofilm formation analysis, providing a comprehensive 

view of resistance and virulence. 

CONCLUSION 

        This study highlighted discrepancies between bacterial 

identification using the VITEK 2 system and molecular analysis 

through 16S rRNA sequencing. Nearly half of the isolates 

carried all three ESBL genes, with the lowest prevalence 

observed for the blaSHV + blaCTX-M combination. No E. coli 

isolates harbored single ESBL genes (blaSHV, blaCTX, or blaTEM), 

and only 5.26% of K. pneumoniae isolates carried blaTEM alone. 

Most isolates were strong or moderate biofilm producers, a 

factor contributing to their multidrug resistance. Patients 

admitted to intensive care units remain at high risk of 

colonization and infection by multidrug-resistant organisms 

(MDROs). In particular, carbapenem-resistant 

Enterobacteriaceae (CRE), such as E. coli and K. pneumoniae, 

represent a growing threat due to limited therapeutic options 

and associated high mortality rates. 
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