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Abstract

In this paper we study the periodic solution of nonlinear system of differential equations
depending on the gamma distribution by using the numerical analytic method to investigate
periodic solutions of ordinary differential equation which given by Samoilenko A. M. .These
investigations lead us to improving and extending this method. Also we expand the results
gained by Samoilenko A. M. to change the periodic system of nonlinear differential
equations to periodic system of nonlinear differential equations depending the on gamma
distribution.
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1.Introduction.

hey are many subjects in physics and technology using mathematical methods that

depends on the linear and nonlinear differential equations, and it become clear that
the existence of periodic solutions and its algorithm structure form important problems, to
present time where many of studies and researches [1,4,5,6] dedicates for treatment the
autonomous and non-autonomous periodic systems and specially with differential
equations.

Numerical-analytic method [1,2,3,5] owing to the great possibilities of exploiting
computers are becoming versatile means of the finding and approximate construction of
periodic solutions of differential equations. Samoilenko [4] assumes the numerical-
analytic method to study the periodic solutions for ordinary differential equations and its
algorithm structure and this method include uniformly sequences of periodic functions
and the results of that study is using of the periodic solutions on wide range in the
difference of new processes industry and technology as in [3,5,6].

Samoilenko[4] has been used the numerical-analytic method to studythe periodic
solution for nonlinear system of differential equation which has the form:

dx
i ft,x) --(1.1)
where
x €D ,allrealt and D is the closure of bounded domain and connected
in R™.
In this study we have employed the numerical-analytic method of Samoilenko
.[4] to investigate the existence and approximation of periodic solution for nonlinear
system of differential equations which depends on th gamma distribution. The study of
such differential equations leads to improving and extending Samoilenko method [4 ].
Thus, the differential equations which depends on the gamma distribution that we have
introduced in this study, becomes more general and detailed than those introduced by
Samoilenko .[4]. The study is considered a theoretical one, however, the results that we
have got, many several applications in the physical field as well as mathematical
problems.
Consider the following system of differential equations which has the form
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dx
— = fEyE @0 ~(12)
where
x € D, Distheclosure of bounded domain and connected

in R™. The vector function f (¢t, y(t, «), x) is defined on the domain:

(t,y(t,a),x) € R* X [0,T] X D = (—o0,) X [0,T] X D - (1.3)
Continuous for all variables, periodic in t of period T and satisfies the inequalities:
lf(t, vyt a),x)| <MM, , M, >0 - (1.4)

lf &yt a),x1) — f(t,y (6 a), x2)| < Ma(K|x; — x3])

- (1.5)
forall t € R and x, x;, x, € D, where M = (M, M,, -+, M,,)is a positive constant vectors
and the gamma distribution is defined as

ta—le—t
O T e -16)
N < Fla+1) 1t '
s 124

where ((a+1)) )
We define the non-empty sets as follows:

T

D,y =D—MM,= RO ¢ W)

@
Furthermore, we suppose that the greatest eigen value 4,,,, of the matrix

A=M, Kg does not exceed unity, i.e.

Amax(A) <1 (1-8)
Lemma 1.1[4]. Let f(t) be a continuous vector function defined on the interval
[0, T], then

t T
1
f (F) —7 f F)ds)ds| < a(©) max |/ (©)
0 0

where a(t) = 2t(1 — %). (For the proof see [4]) .

By using Lemma 1.1 , we can state and prove the following Lemma.
Lemma 1.2. Suppose that the function y(t,«) of gamma distribution is continuous on

the interval [0, T]. Then
T

t
f(y(s, a) —%fy(s, a)ds)ds| < M a(t)
0

0
is hold for all values of a . where M, = max;co 11|y (¢, @)l.

Proof. Taking
T

f(y(s, a) —%fy(s, a)ds)ds| < (1 —%)fl/l(s, a)lds +%f|&(5, a)|ds
0 t t

0
T

t tT“‘le‘t t (T let
Y PR N [ AL (i
( T)f a) S+Tf M) &
0 t

Tl et
=a(t) M,
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so that
t 1 T

f(y(s, a) —Tfy(s, a)ds)ds| < a(t)M, --- (1.10)

0 0

forall t € [0,T] and ar(t) < 7.

2. Approximate solution.

The investigation of periodic approximate solution of (1.2) is

formulated by the following theorem.

Theorem 2.1.If the system (1.2) satisfy the inequalities (1.4),(1.5) and conditions

(1.6),(1.7) has a periodic solution x = x(¢t,y(t, a), x,) , then the sequence of functions
t

X (6,7 (6, ), %0) = Xo + f £ (5, (5, @), X, ¥ (5, @), o)
0

T
—%f(f(s,y(s, @), %y (5,7 (s, @), xo)ds]ds ....(2.1)
0

with
xo(t,y(t, @), xy) = xq, m=20,12,-
is periodic in t of period T, and uniformly convergent to the Ilimit function
xO(t,y(t, @), x,) asm — oo in the domain
(t,y(t, @), x) € R* X [0,T] X Dyf -+ (2.2)
periodic in t of period T and satisfying the system of integral equations

X660 @), 30) = 5o + [ [F(5,7 (5, 2G5, v (s, @), %)

T
1
—7 [y .16 v 0, x)aslas
0
-+ (2.3)
which is a unique solution of the problem (1.2) provided that:

|x°(t, Y (t, @), x0) — Xl S M My @(t) e ovcer v e e e e - (2.4)
and
Xty (¢, @), x0) = xm (8, ¥ (£, @), %) | < A™(E — A)™'M My a(t) -+ (2.5)
forallm > 1 and t € R?, where E is the identity matrix.

Proof:
By Lemma 1.1, 1.2 and using (2.1), when m = 0, we get:
t

S+T

D30 = %ol < (1 =) [[F GG % [ g,z dolds
0

N
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S+T

+r [ GG @, [ g@r@ma,m) dolds

S

t T
t t
S(l_?)fMMads-l_TfMMads
0 t

t t
=M M [(A-Pt+=(T -]

=2t(1—-2) MM,
=a(t)M M,
So that
[, (t,y(t, @), x9) — xo| <M Mya(t) - (2.6)
i.e.x;(t,y(t ), x) €D,forallt € R, x, € D,f.

Thus by mathematical induction, we find that:

[ (¢, ¥ (& @), x0) — x0| < M Mga(t) - (2.8)
forallt € R' and x, € D, .
i.e. xy(t,y(t a),xy) € D, forall t € R and x, € D,.

We claim that the sequence of functions (2.1) is uniformly convergent on the
domain (2.2).
By using the Lemmas 1.1,1.2 and putting m = 1 in (2.1), we have:

t

62 (67 (6, @, %0) = 31 6y (6 @3] < KIA =) [ 17l (5 (5,0, ) = xplds
0

T
t
+ [ (5,01 (5,7 ), x0) = wolds)
t

T
<M, M MaKza(t)
T
2 (£, ¥ (& @), x0) = 2. (£, ¥ (@), x0)| < M MoK —a(t) -+ (2.9)
Suppose that the following inequality is true

(6 V(6 @), %0) — o1 (Y (@), %0)] < M M, [K 1™ (t)

- (2.10)
forallm > 1.
Now, we shall prove the following:

|xm+1 (t' ]/(t, a)' xO) —Xm (f' ]/(t, a)' xO)l

t
< K[(l - 7) f M, x5, (s,7(s, @), x9) — Xp_1(s, ¥ (t, @), x0)|ds
, 0
t
+Tf MC( |xm(sl V(S; a)ixO) - xm—l(s; V(t; a)' xO)lds] S
t

m-—1

< (1 - %) f M,MM,™ [Kg] a(s)ds
0
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m-—1

T
t T
+—j M,M M,™ [K—] a(s)ds
T 2
t

T m
- MM, [MQKE] a(t)
and hence

|Xm+1 (8, ¥ (@), X0) = X (8, ¥ (¢, @), %0)| < MM, [MaK ;]m a(t) - (2.11)

forallm = 0.

From (2.11) we conclude that for anyk > 1, we have the inequality
k-1

ot (6 Y (6, @), %) = (8,7 (8,00, %) < A M My a(®)
i=0

such that

|xm+k(t' V(t; a)! xO) - xm (t' V(t; a)l xO)l

=< Z?iolxm+1+i(t' }/(t, (Z), xO) - xm+igJ )/(t, 0{), xO)l

< Z MM a(t) ™1+
i=0

<M M, a(t) Amz AT

1=0
<M M, a(t) A" (E — A)~?
so that
[k (&, ¥ (8, @), %0) — X (6,7 (8, @), x)| < A" (E—A)T'M Mg a(t) - (2.12)
forall k > 1.
From (2.12) and the condition (1.9), we find that:
lim A™ =0 -+ (2.13)

m—o0o

Relations (2.12) and (2.13) insures the uniform convergence of the sequence of functions
(2.1) on the domain (2.2).

Let

lim x,,(t,y(t, @), x,) = x°(t, ¥ (t, ), x) -+ (2.14)

m—o0o

Since the sequence of functions (2.2) is periodic in t of period T, then the limiting
function x°(t, y(t, @), x,) is also periodic in ¢ of period T.

Moreover, by Lemmas 1.1,1.2 and inequality (2.12) the inequalities (2.4) and (2.5) are
holds.

Finally, we have to show that x(¢t, y(t, a), x,) is a unique solution of the

system (1.1).Assume that r(t, y (t, @), x,) is another solution of the system (1.1), i.e.

t
r(t, (8, ), x0) = %o + f [F (.7 (s, @), (s, ¥ (s, @) o)
0

1 T
_T_j (f(s; V(S’ a),T(S, ]/(S, a)' xo)dS]dS,
0

.. (2.15)
Now, we prove that x(t,y(t, a),x,) = r(t,y(t, a), x,) for all x, € D, r and to
do this, we need to derive the following inequality:
lr (v (t, @), x0) — x(t,y(t, @), xo)| < A™ (E—A)T'M* Mg a(t) -+ (2.16)

208



Journal of University of Zakho, Vol. 2(A), No.1, Pp 204-212, 2014

where M* = maxonDyf|f(t,r(t,y(t, ), x0), x(t, v (t, @), x0))|.
Suppose that (2.15) is true for m = k, i.e.
lr(t,y(t, @), x0) — x(t, ¥ (t, @), x0)| < A* (E—A)"'M* M, a(t)
then
Ir(t, v (t, @), x0) — x(¢t, (¢, @), xo)|
< K[(1—2) [ Ma Ir(s, ¥ (s, @), %0) — x(5, v (5, @), x0) s

t T
b [ M (5,750, 70) = XG5,y (s, ), x0)lds]

< K[(l - ;) Of M, NCE — A)~1M* M, a(s)ds

T
t
+?.f M, AR(E — A)"*M*M a(s)ds]
t
= A E — A)TIM*Mya(t).

By induction, inequality (2.16) is true for m = 0,1,2, ---.
Thus from (2.14) and (2.16), we have:
nl'LlEgolr(t’ Y(t; a)iXO) - xm(t; Y(t: a)rXO)I = 0

and hence

rllll}go xm(t; )/(t, (Z), xO) = T(t, V(t; a)' Xo)

By using the relation (2.14), we get:

X(t, V(t' a)! xO) = T(tr Y(tr a)) xO)

i.e. x(t,y(t, a), xy) is a unique solution of (1.1) on the domain (1.2). =

3. Existence of solution.

The problem of existence of a periodic solution of period T of the system (1.1)

is uniquely connected with the existence of zeros of the function A(0,y (0, a), x,) which
has the form:

A0, y(0,@), %) = - [yt a), x°ty(t @), xp)dt ............. - (3.1)

where x°(t,y(t, @), x,) is the limiting function of the sequence of functions (2.1).

The function (3.1) can be determined only approximately, say by computing the

following functions:

A (0,7(0,@), %) = = [} £yt @), xm(t, v (t, @), Xo)dE ......... - (3.2)
m=20,1,2,---.

Now, we prove the following theorem.
Theorem3.1. If all assumptions and conditions of theorem 2.1 are hold, then the
inequality:
|A(0, (0, @), x0) A (0,¥(0, @), xo)| < A™HH(E — A)™' M M -+ (3.3)
will be satisfied forallm = 0,x, € D, s .
Proof. From relations (3.1) and (3.2), the estimate
1A(0,7(0, @), X0)=Ar (0,7 (0, @), xo) |
< [y Iyt )l 1x°(t, y (£ @), x0) — X (£, ¥ (£ @), x0) it
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T
K
< 7] My, A (E — A)™IM M, a(t)dt

0
=A™ Y(E - AN)TM M,
Thus the inequality (3.2) is hold forallm > 0.
Next, we prove the following theorem taking into account that the inequality
(3.3) will be satisfied forallm = 0.
Theorem 3.2. If the system (1.1) satisfies the following condition
(i) The sequence of functions (3.2) has an isolated singular point x, = x°,
A, (0,7(0,a),x%) = 0, forall t € R.
(it) The index of this point is nonzero;
(iii) There exists a closed convex domain Dy belonging to domain D, and possessing a
unique singular point x° such that on its boundary Ips the following inequality hold
infrery, I1Bm (6, v (6, @), x0) 1| 2 IA™(E = 8)7'M M| - (3.4)
Where x, € Ips for all m > 0. Then the system (1.1) has a periodic solution
x = x(t,y(t, a), xq) for which x(0,y(0, @), x,) belongs to the domain D; .
Proof. By using the inequality (3.1) the proof is similar to that of theorem 7.1[4].

Remark 3.1.[4]. When R™ = R%, i.e. when x,is a scalar, the existence of solution can be
strengthens by giving up the requirement that the singular point shout be isolated, thus we
have
Theorem3.3. Let the system of nonlinear differential equations (1.1) are defined on the
interval [a, b]. Suppose that for m > 0, the function A, (0,y(0, «), x,) defined according
to formula (3.2) satisfies the inequalities:

min |[An (6 y (¢ @), x)ll < o }

a+hsxg<b—h

-+ (3.5)

max A (t,y(t a),x)| = o
a+hsxoSb—h” m(t (6 @), xo) m

Then the system (1.1) has a periodic solution x = x(t, y(t, @)x,) for which
xo € [a+h,b— h],where h = |[M M, || and g, = |A™1(E — A)™*M M|l .
Proof. Let x; and x, be any two points on the interval [a, b] such that:

Am(ol V(O» a),xl) = min Am(oﬂ V(O' a)le) )

a+hsxg<b—h (3 6)
Am(oi }/(O, CZ), xZ) = max Am (O' )/(0, a)' xO) '

a+hsxg<b—h

From the inequalities (3.3) and (3.5), we have
A(O, V(O, Of), xl) = Am(O! V(O; (X), xl) + [A(O, V(O' CZ), xl) - Am (0' V(O' CZ), xl)]}
A(Or 7(0: a), xZ) = Am (0, )/(0' a)r x2) + [A(O, V(O' a)’ xZ) - Am (0, )/(0' a)’ x2)] ( )
(3.7
It follows from the inequalities (3.7) and the continuity of the function
A(0,y(0, @), x,), that there exist an isolated singular point x° x° € [x;, x,], such that
A(0,y(0,@),x9) =0, this means that the system (1.1) has a periodic solution
x = x(t,y(t, a),x,) forwhichx, € [a+ h,b —h]. m.
Theorem3.4. If the function A(0,y (0, a), x,) is defined by
A: D]/f - Rn,

A0, ¥(0,@),%0) == [ f(t,¥(t, @), x°(t, ¥ (t, @), Xo)dt...... - (3.7)

wherex®(t,y (t, a), xo) is a limit of the sequence of functions (2.1). Then the following
inequalities are holds
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|A(0, y(o: a)! xO)l < M MO( o (38)
and

2
|A(0' V(Or a):xol) - A(O' V(OI a)) xoz)l S TA(E - A)—lMlZ (39)
for all xg, xo", x0® € Dy s .
Proof. From the properties of the function x°(¢,y (¢, ), x,) as in theorem 2.1; it follows

that the function A(0, ¥ (0, @), x,) is continuous and bounded by M M,,.
By using (3.7), we get:

1 T
|A(0, )/(0' a)'xol) - A(O, ]/(O, a),x02)| = |Tf f(t, ]/(t, a),xo(t, V(t; a):xol)dt

- % foT[f t,y(t ), x°(t, y(t, a), xo*)ds]ds

<

~| =

T
f My, 120Ct v (6, @), x01) — x°(6, ¥ (&, @), xoD)dt
0

T 2
< MoK > 21x°( v (6 @), xo) — x° (v (¢, @), xp?) |dt

2

= FAle(tr V(t; a)l xol) - xo(tl Y(t: a)r x02)|

and hence
1A0,y(0,),x0") — A(0,7(0, @), xo?)|

<2 A6 @) x") ~ X0t @), %DM, -+ (3.10)
where x,1(t, y(t, @), xo) andtxoz(t,y(t, a), x,) are solutions of the integral equation:

x (6,7 (6 @), xg) = xo + f [F s,y (s, @), (5,7 (5, @), %)

1 T
_TJ‘ (f(s:y(s: a);x(S,)/(S, a); ka)dS]dS e (311)
0

with
Xyt @), %) = %K, k=12
From (3.11), we have:
|x0(t! V(t, a),xol) - xO(t' V(t' “)'x02)| < |x01 - x02|
t

+K[(1 —%)]Ma |x°(s, ¥ (s, @), xo1) — x°(s, ¥ (s, @), xo%)|ds
0

T
t
+ ?’[ M(Z |XO(S, V(Sx a)r xol) - xO(SI V(S' a)r xOZ)lds]
t

< |xo! —x0%| + M Kzlxo(t (t,a),xo2) — x°(t,y(t, @), xo%)|a(t)
— 0 0 a 2 Jy ) )] ;]/ ) » A0

< |xor — x0?| + Alx°(t,y(t, @), xo1) — x°(t, y(t, @), x02)|
thus
Ix°(t, v (¢, @), x0") — x°(, ¥ (¢t @), x0*)| < (B — M) Hxo" — x0%] -+ (3.12)
using the inequality (3.12) in (3.10), we get (3.9).
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Remark 3.2.[2]. The theorem 3.4 ensure the stability solution of the system (1.1) when
there is a slight change on the point x,accompanied with noticeable change in the
function A(0,y(0, @), x,) .
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