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Breast cancer remains one of the most serious health challenges worldwide, where early and
accurate diagnosis can significantly improve patient outcomes. Traditional diagnostic
methods often rely heavily on expert interpretation, which may lead to inconsistencies or
delays in decision-making. To address this issue, this research provides a deep-learning
framework that uses the EfficientNetV2B0 model in combination with Grad-CAM
(Gradient-weighted Class Activation Mapping) to provide illustrated explanations to detect
breast cancer using ultrasound and MRI datasets. Our method addresses serious challenges
such as class imbalance and irrelevant image characteristics by employing SMOTE
(Synthetic Minority Over-sampling Technique) oversampling and Region of Interest (ROI)
extraction for BUSI (Breast Ultrasound Images) datasets. The Grad-CAM approach
improves reliability and transparency by providing visual proof that supports each decision,
enabling healthcare professionals to better understand the Al's predictions. Trained and
assessed on two different medical imaging datasets, the framework obtained extraordinarily
high accuracy (98.97% on BUSI and 99.55% on MRI), along with low prediction error and
high reliability. The model is both accurate and understandable, making it ideal for clinical
usage. It is also faster and more dependable than current approaches, making it highly
beneficial.

KEYWORDS: Deep Learning, Breast Cancer, Explainable Artificial Intelligence (XAI), Region of
Interest (ROI), Grad-CAM heatmap.

1. INTRODUCTION

Breast cancer is a primary cause of death among

continue, yearly consistence is predicted to reach 3.2
million, with a mortality rate of 1.1 million by 2050
(Arnold et al., 2022). This incidence is expected to have a

women worldwide, accounting for a significant number of
cancer-related fatalities despite remarkable advances in
healthcare and screening technologies (Waks & Winer,
2019). Since 2020, the global burden of breast cancer has
increased, along with considerable geographic disparities.
In 2022, there were an anticipated 2.3 million new cases
and 670,000 deaths worldwide. If current patterns

disproportionate effect on countries with low Human
Development (HDI), as early
identification and treatment remains limited. While some

Indexes access to
high-HDI nations have reduced death rates, many low-
HDI nations are witnessing increases, highlighting
persistent global disparities in breast cancer outcomes.
Among the diversity of imaging modalities available, the
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breast ultrasound is recognized as a cornerstone in breast
cancer detection due to its non-invasive nature, real-time
imaging abilities, and absence of ionizing radiation,
making it a preferred option for repeated examinations
(Bhushan et al., 2021). Ultrasound shines at distinguishing
between solid and cystic tumors, and it’s particularly
helpful for women with dense breast tissue or when
mammograms leave questions unanswered (Burkett &
Hanemann, 2016). Yet, ultrasound is just one piece of the
puzzle. On the other hand, Magnetic Resonance Imaging
(MRI) has become an equally vital tool in the fight against
breast cancer. MRI offers incredibly detailed, cross-
sectional images of breast tissue, revealing subtle
differences that might slip past ultrasound or
mammography. Its high sensitivity makes it especially
valuable for detecting both primary tumors and additional
lesions, which is crucial for patients with dense breasts or
those at higher risk (Ma et al., 2025). In this way, MRI
does not replace ultrasound, but complements it, providing
a broader, more nuanced view and empowering clinicians
to make treatment decisions with greater confidence.
These image techniques work well together; each
contributes to the others' strengths, ensuring that patients
receive the best possible, comprehensive therapy. On top
of that, the two forms of images have distinct and
complementary roles in assessing breast cancers. Breast
tumors are classified into two types in medical terms:
benign and malignant. Benign tumors are often harmless,
rarely spread, and can be removed surgically with a low
risk of regrowth. Tumors that are malignant, on the other
hand, attack nearby body tissues, can spread to other
organs, and present an even greater chance of death
(Akram et al., 2017). Precise tumor classification is
critical, as it directly affects treatment methods. For benign
cases, this involves careful observation; for malignant
situations, it requires aggressive actions
immunotherapy, radiation therapy, chemotherapy, and
surgical removal (Waks & Winer, 2019). The issues with
traditional ultrasound image interpretation, including time-
consuming analysis, differences among radiologists, and
the risk of incorrect diagnosis due to hidden or unclear
imaging features, through the
revolutionary adoption of Artificial Intelligence (AI) in
medical imaging. Deep learning, a subset of Al, uses large
datasets and powerful neural networks to discover
complex patterns in images, often surpassing human
experts. Even though it's interesting, the "black box"
characteristics of many models have limited the adoption
of deep learning in healthcare environments (Rasheed et
al.,2022). Even while these models work effectively, their
absence of openness makes it hard to fully understand the

such as

can be resolved

reasoning behind their predictions. Specialists may
become suspect as a result of this, because even slight
input changes could lead to serious mistakes, weakening
trust and responsibility (Hassija et al., 2024). These
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concerns have helped in the creation of Explainable
Artificial Intelligence (XAI), a multifaceted area focused
on improving the understanding of Al systems by
explaining their method of decision-making (Adadi &
Berrada, 2018). XAl is especially crucial in healthcare as
transparency ensures that Al-powered findings align with
clinical expertise and diagnostic standards (Albahri et al.,
2023). The most prevalent XAI methods are gradient-
based, which perform well with complicated nonlinear
models (Mersha ef al., 2024). Using the EfficientNetV2B0
model (Tan & Le, 2021), a state-of-the-art Convolutional
Neural Network (CNN) known for its ability to balance
computational efficiency and classification prowess, this
study presents an advanced Al framework for classifying
breast ultrasound images as benign or malignant.
EfficientNetV2B0 optimizes performance through a
compound scaling approach and Fused-MBConv layers,
making it ideal for resource-constrained contexts like
clinical settings. Meanwhile, the Synthetic Minority Over-
sampling Technique (SMOTE) addresses the problem of
class imbalance in medical image datasets, where benign
cases are often more numerous than malignant cases
(Chawla et al., 2002). This approach generates artificial
samples from the minority (malignant) subset, ensuring
balanced training while reducing bias towards the majority
class. Besides, by highlighting features such as irregular
boundaries or echogenic textures, the Region of Interest
(ROI) for BUSI dataset extraction reduces background
noise and improves diagnosis by focusing the model on
tumor-specific areas. Our approach relies on Gradient-
weighted Class Activation Mapping (Grad-CAM), an XAI
technique that produces visual heatmaps showing the
image regions
predictions.(Selvaraju et al., 2020). By bridging the gap
between clinical understanding and computational outputs,
those heatmaps enable specialists to verify that the model's
highlights correspond to established diagnoses, thereby
fostering trust and acceptance of clinical methods. To test
our model, the Breast Ultrasound Images BUSI dataset and
the Breast Cancer Patients MRI dataset were employed.
The primary findings of this research are as follows:

1. The proposed method uses EfficientNetV2BO0 to
achieve a remarkable result 99.55% for test accuracy on
the MRI dataset and 98.97% on the BUSI dataset, going
over many state-of-the-art techniques.

2. By integrating SMOTE and ROI extraction, the
model’s sensitivity and specificity is improved, effectively
addressing class imbalance while sharpening its focus on
key diagnostic features.

3. The use of the XAI technique Grad-CAM in this
work offers clear visual insights into the model’s decision-

most valuable to the model's

making, bridging AI predictions with radiological

expertise to boost its practical value in clinical settings.
The structure of the paper is structured as follows:

Section 2 presents related work. Materials and methods,
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which outline the dataset, preprocessing steps, model
architecture, method, and evaluation metrics, are presented
in Section 3. Furthermore, the results of this study and their
discussion are reported in Section 4, and finally, the
conclusion, limitation, and future work are presented in
Section 5.

RELATED WORKS

Over the past few years, researchers have been

exploring novel ways to use artificial intelligence to
enhance breast cancer screening using different types of
images. These investigations aim to develop powerful
computer models capable of analyzing images, identifying
tumors, and determining whether tumors are cancerous.
These efforts, which combine cutting-edge technology
with medical imaging, aim to make diagnoses faster, more
accurate, and easier for doctors to utilize. While each
strategy has advantages and disadvantages, they all
demonstrate how Al is changing the way it identifies and
comprehends breast cancer, offering the promise of
improved outcomes in the future.
In this context, (Vigil et al, 2022) developed a deep
learning model to segment breast lesions and extract
radiomic characteristics from ultrasound pictures. The
model uses a convolutional autoencoder and a contracting-
expanding architecture to reduce high-dimensional
radiomic data. The model's dual functionality reduced the
need for separate pipelines, thereby increasing efficiency.
A random forest classifier attained a cross-validated
accuracy of 78.5% in differentiating between malignant
and benign cases.

Building on the theme of integrated workflows,
(Podda et al., 2022) introduced an automated deep learning
system that used a mix of CNN models to classify and
segment breast ultrasound images. By combining models
such as ResNet50, InceptionV3, and Xception via soft
voting, it achieved 91% classification accuracy.
Segmentation was handled using U-Net variants, with a
method that refined the masks over time, achieving a 82%
Dice score. Overall, it outperformed individual models and
existing state-of-the-art methods.

In addition, advancing multi-modal integration, the
researcher in (Pathan et al., 2022) utilized a multi-headed
convolutional neural network (CNN) to classify breast
cancer employing ultrasound images from the BUSI
dataset. The program learned raw and masked images
separately before merging them to form a lightweight
model. The limitations included a small sample size,
limited computational resources, and the danger of
overfitting. The technique achieved 92.31% accuracy (£2),
outperforming single models (78.97% raw, 81.02%
masked pictures), reducing misclassification,
especially in malignant cases.

The researchers in (Cruz-Ramos et al,
2023)employed deep learning to create a computer-aided

and
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diagnosis system for categorizing benign and malignant
breast cancers. The system extracted deep features using
DenseNet-201, in addition to bespoke features such as
HOG, ULBP, and shape descriptors. Feature selection was
done using genetic algorithms and mutual information, and
classification was done with XGBoost, AdaBoost, and
MLP. The fusion strategy outperformed previous methods,
increasing classification accuracy by 97.6%.

The authors in (Zhang et al, 2023) proposed a
semantic-aware transformer (SaTransformer) for unified
breast cancer classification and segmentation. The method
used an encoder-decoder architecture based on the U-Net
and a DAM to reduce computational complexity. Among
the challenges faced were memory overhead, task
interactions, handling imprecise tumor boundaries, and
low signal-to-noise ratios. The SaTransformer performed
well on the BUSI (97.97% accuracy, DSC: 86.34%) and
UDIAT datasets, improved feature representation, and
reduced computational costs.

The AEGANB3 method, suggested by (Luong et al.,
2024), combines a self-attention mechanism for breast
cancer detection with a Deep Convolutional Generative
Adversarial Network (DCGAN) to address data shortage
issues. DCGAN was used for data augmentation, while
EfficientNetB3 was employed for transfer learning and
fine-tuning. The main outcome was the self-attention
technique's improved feature extraction and 98.01%
classification accuracy.

However, according to (Sahu et al., 2024)Strategies
from controlled high-performance systems were combined
of develop a self-learning breast cancer diagnosis system.
The researchers merged three transfer learning models:
AlexNet, ResNet, and MobileNetV2. To improve image
quality prior to classification, a Gaussian-Laplacian
preprocessing was used. The method had a high accuracy
of 97.75% for detecting malignant tumors.

Based on the developments in (Jabeen et al.,
2024)The authors suggested a deep learning architecture
for the classification of breast cancer tumors using
ultrasound images. The structure includes a combination
of EfficientNet-b0 with a gated recurrent unit (GRU) and
modified ResNet-18 with multi-head
Performing data augmentation, transfer learning, with a
novel cuckoo search-based feature selection technique
merged with standard error mean computation. Feature
fusion used a zero-padding maximum correlation
coefficient technique, while Grad-CAM supplied
explainability; the framework obtained 98.4% accuracy.

The authors in (Nasir et al., 2022) developed a breast
cancer detection model that fine-tunes a pretrained
AlexNet neural network using MRI images. To adapt

self-attention.

AlexNet for distinguishing between healthy and cancerous
breast tissue, they modified the first and last three layers of
the network. Since labeled MRI data is often limited, they
used transfer learning to overcome this challenge. Their
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approach proved highly effective, achieving a test
accuracy of 98.1% and a sensitivity of 99%.

Many state-of-the-art methods in prior work do not
incorporate explainable Al (XAI) techniques, but only
two, Luong et al (2024) and Jabeen et al. (2024),
explicitly applied them, as highlighted in Tables 3 and 4.
This underlines a gap in interpretability across much of the
existing literature. In response, our approach leverages
Grad-CAM to enhance model transparency.

2. MATERIALS AND METHODS

In this section, an advanced deep learning framework
is presented to classify breast cancer images as benign or

Data
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malignant. The suggested method used the BUSI dataset
and MRI dataset to conduct the experimental procedures,
as shown in Figure 1. It begins with two different datasets
as input images, which are preprocessed by resizing to 299
x 299 pixels. One of the datasets, BUSI, uses ROI to target
tumor-specific regions, and the resulting images are then
sent to the EfficientNetV2B0 model, which performs
classification. We assess the model's predictions using
Grad-CAM, which produces a heatmap highlighting the
image regions most influential in the model's decision. By
examining these regions, clinicians could have a deeper
understanding of the model's decision-making procedure.

f Oversampling \

(SMOT

A 4

Train Stage

Learning

Model
EfficientNetV2B

L

Hyperparameter

—> Valid

The Pre-

—p Test Stage

trained Model

\ 4

Performance
Evaluation

Figure 1: Schematic Diagram of The Proposed Model

Datasets Description:

This work uses two publicly accessible datasets for
breast cancer identification: the Breast Ultrasound Images
Dataset (BUSI) and the Breast MRI dataset. BUSI (Al-
Dhabyani et al., 2020) is a publicly available benchmark
dataset designed for breast cancer diagnosis
classification. The data were collected in 2018 at Baheya
Hospital in Cairo, Egypt, to support early detection and
treatment of breast cancer in women. It included 600
patients varying in age from 25 to 75 years, and the BUSI
has 1,578 ultrasound images split into three different
subsets: normal, malignant, and benign, each of which has
a segmentation mask that defines the borders of the
lesions.

and

The second dataset employed is the publicly available
"Breast Cancer Patients MRI's" dataset published on
Kaggle (Uzair Khan, 2021), which can be retrieved
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from https://www.kaggle.com/uzairkhan45/breast-cancer-
patients-mris. It is released under a CCO license, indicating

public domain, but this only confirms it is an aggregated
set of images from public sources. The dataset contains
1,480 breast MRI images divided into two types: Healthy
(Benign) and Sick (Malignant). The dataset is a great
resource for automated breast cancer
identification and diagnosis using MRI images.

improving

Datasets Splitting:

The BUSI dataset and Breast Cancer Patients MRI
dataset have both been divided into three distinct subsets:
training, validation, and testing. The training set
contains 70% of the total data, while the remaining 30%
was evenly split between validation and testing subsets,
with 15% assigned to validation and 15% to testing. The
decision of allocate 70% of the data to training was
informed by empirical validation. We experimented with
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various train-validation-test split ratios (e.g., 60-40, 80-
20), and found that the 70%-30% split consistently yielded
the best performance in terms of model generalization and
stability on both datasets. This suggests that allocating a
larger portion of the data to training helps the model learn
more robust feature representations. Given the relatively
limited size of both the BUSI and Breast Cancer MRI

SJUOZ|VOL1|JAN 2026|P83-96

datasets, using 70% of the data for training is appropriate
to maximize the available information for the learning
process, while still preserving sufficient data in the
validation and test sets for reliable evaluation. Table 1 and
2 shows the distribution of samples for BUSI and MR,
respectively.

Table 1: Class-Wise Distribution of Samples Across Training, Validation, And Test Sets for BUSI Dataset

Dataset Class Images Training Set Validation Set Test Set
Benign 437 305 66 66
BUSI Malignant 210 147 32 31
Total 647 452 98 97

Table 2: Class-Wise Distribution of Samples Across Training, Validation, and Test Sets for The Breast Cancer Patients

MRI Dataset
Dataset Class Images Training Set Validation Set Test Set
Healthy 740 518 111 111
MRI Sick 740 518 111 111
Total 1480 1036 222 222

Data Preprocessing:

To facilitate efficient deep learning analysis of breast
ultrasound images, the BUSI dataset was first prepared by
excluding normal cases, focusing on distinguishing
malignant from benign lesions. Then, to highlight tumor
locations,
downscaling images to a 299%x299-pixel resolution,

the entire dataset was preprocessed by

extracting ROIs using masks, resizing and normalizing the
masks, and proportionally scaling them to match the
original image size. This same process was applied to the
Breast Cancer Patients MRI dataset. While explicit pixel
normalization of the raw images was omitted due to the
built-in normalization layer in the EfficientNetV2B0
model, the naturally high contrast between tumors and
surrounding glandular tissue served as a key visual cue
during training. To further enhance model performance,
class imbalance was addressed using SMOTE, by
flattening each image of size 299x299x3 into a one-
dimensional vector (268,203 features) and generating
synthetic samples through interpolation in this high-
dimensional pixel space. Although this approach does not
preserve the spatial structure inherent in image data, it
enables the creation of new minority class instances
without duplicating existing ones, helping the model learn
more effectively and reduce prediction bias, thereby
enhancing the diversity of training examples. This non-
traditional application of SMOTE was motivated by
practical constraints and the need for a reproducible
oversampling baseline, as it has been shown to improve
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model performance in imbalanced settings (Chawla et al.,
2002). The use of SMOTE with CNNs and pre-trained
models has been supported by several studies. It has been
applied effectively to brain MRI (Rajaan ef al., 2024) and
breast cancer imaging (Joloudari ef al., 2023), confirming
its adaptability for improving learning from imbalanced
medical image data. For the BUSI dataset, SMOTE was
applied during training, increasing the number of training
images to 610; however, it did not affect the MRI dataset.
This entire preprocessing chain aimed to improve input
data quality without compromising anatomically
meaningful texture patterns, which are crucial for disease
classification.

Region of Interest (ROI): ROI, a key idea in image
processing, computer vision, and medical imaging, is a
specific group of data chosen for a specific study by
identifying important areas rich in information, such as
tumors in medical imaging (Wang, 2001). In medical
imaging, ROI typically highlights abnormal lesions or
tumors identified through MRI, mammography, or
ultrasound (Nieto-Castanon et al., 2003). Accurate ROI
segmentation is crucial for distinguishing benign from
malignant tumors, aiding diagnosis and early detection
(Krithiga & Geetha, 2021). In this study, the ROI was used
to focus the model’s attention on tumor areas in breast
ultrasound BUSI only. By applying masks to isolate and
resize these regions, we preserved important details while
minimizing background noise, improving the
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model’s ability to differentiate between benign and
malignant cases. Figure 2 illustrates the ROI extraction
process used to guide training for BUSI only. In the MRI
benign (Original)

malignant (Original)
— e —————

SJUOZ|VOL1|JAN 2026|P83-96

dataset, we did not perform ROI extraction because
segmentation masks were unavailable.

benign (With ROI)

malignant (With ROI)

Figure 2: The ROI Extraction Process Used to Guide Training

XAI Grad-CAM Technique: Grad-CAM (Selvaraju et
al., 2020) is an XAl approach that enhances understanding
of CNNs by providing visual explanations. It is versatile
and applicable to a wide range of use applications, such as
visual question answering and picture categorization.
Grad-CAM can identify model faults, detect bias, and
enhance adversarial resilience. Therefore, it improves
visualization and produces high-resolution data in medical
imaging when used with Guided Backpropagation.
Empirical tests have demonstrated its utility for weakly
supervised localization and trustworthy assessment, both

benign (Original)
—_— ——

of which are critical for model validity. Our proposed
model's decision-making process was interpreted using
Grad-CAM visualizations. Figure 3 displays the final
heatmap generated from the model’s output, which
highlights locations of relevance that impact the model's
predictions for the BUSI dataset, whereas Figure 4
presents the highlighted locations of relevance that impact
the model's predictions for the Breast Cancer Patients MRI
dataset.

benign (Grad-CAM)

malignant (Grad-CAM)

Figure 3: Grad-CAM Visualization for Model Interpretability BUSI Dataset
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Figure 4: Grad-CAM Visualization for Model Interpretability Breast Cancer Patients MRI Dataset

Model Used in This Study: EfficientNetV2B0:

In this study, the proposed method used
EfficientNetV2BO0 pre-trained model (Tan & Le, 2021)
which is a compact and efficient variant within the
EfficientNetV2 family that redefines the balance between
model size, training speed, and accuracy. This model is
developed by combining a progressive learning
methodology with a state-of-the-art training-aware neural
architecture search. The adoption of Fused-MBConv
operations in the early layers significantly enhances the
effectiveness of training by replacing traditional depth
wise convolutions, with 7.4 million parameters and 0.7
billion FLOPs, EfficientNetV2B0 defeats bigger models
like ImageNet (Tan & Le, 2021). In some situations, it also
offers a notable improvement in inference speed, more
than two times faster than earlier small-scale models,
claiming that the combo of efficiency and power makes it
excellent for limited resource usage, such as mobile or
edge devices, without losing precision. In addition, the
first normalization layer is more than just a preprocessing
step; it is a key component of EfficientNetV2B0's

EfficientNetV2B0
(Pretrained, no

top)

Input

(299,299,3)

Global Avg
Pooling (1280)

efficiency accuracy trade-off, showing the design mindset
for execution in limited situations. The model was selected
for its strong performance in transfer learning scenarios,
particularly where data is limited or imbalanced, as is
common in medical imaging. In our implementation, the
ImageNet-pretrained EfficientNetV2B0 was fine-tuned for
classification tasks involving breast ultrasound and MRI
images.

The model was initialized with pretrained ImageNet
weights and modified by original
classification head (include top=False). Input images of
size 299%x299x3 were fed into the network and passed
through the EfficientNetV2B0 backbone. A Global
Average Pooling layer was applied to reduce the spatial
dimensions, resulting in a 1280-dimensional feature
vector. This vector was then passed to a dense output layer
with 2 units and a softmax activation function to enable

removing its

multi-class  probability  prediction  (i.e.,  binary
classification). We fine-tuned it end-to-end to adapt the
pretrained features to the breast cancer imaging task. The
model architecture is illustrated in Figure 5, which shows

the flow from input to output.

Dense

(2 units)
(softmax)

Output

(2-class
probs)

Figure 5: The Block Diagram of The EfficientNetV2B0 Architecture

The choice of EfficientNetV2B0 was motivated by its
strong generalization ability in transfer learning tasks,
particularly under conditions of limited or imbalanced
medical imaging datasets such as breast ultrasound and
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MRI. The use of global average pooling and a lightweight
dense classifier enhances generalization, and the final
model supports efficient deployment in clinical and
resource-constrained environments.
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Evaluation Metrics:

The suggested model's performance in this study for
classifying the breast cancer dataset BUSI is evaluated

(TP + TN)
(TP + FP + TN + FN)

Accuracy (ACC) =

TP

Recall (Sensitivity) = TPrEN

TN

Specificity = m

TP

Precision= ———
(TP + FP)

2 x (Precision * Recall)

F1 Score =

Precision + Recall

The ROC curve shows the false-positive rate (x-axis) and
true-positive rate (y-axis)

True positive (TP) samples are those that were correctly
predicted as malignant, whereas false positive (FP)
samples are those that were forecasted as malignant but
were really benign. True negative (TN) denotes correctly
predicted benign samples, whereas false negative (FN)
denotes predicted benign samples that are
malignant.

really

EXPERIMENTS AND RESULTS

In this part of the study, the experimental results of
applying the EfficientNetV2B0 model to the BUSI dataset
and the Breast Cancer Patients MRI dataset, which
achieved high performance in breast cancer diagnosis, are
described. The accuracy measure, sensitivity rate,
precision rate, F1-Score, AUC, and computing time
(seconds) are wused to calculate each classifier's
performance. For the training of the deep models, we

SJUOZ|VOL1|JAN 2026|P83-96

using recall, accuracy, precision, and F1 Score (Jeni ef al.,
2013) has computed, which are shown as follows:

(1)

@)

)

4)

)

divide the dataset into a ratio of 70:15:15. This means that
70% of the images of each class have been utilized for the
training of the models, and the remaining 30% used 15%
15%. In addition,
hyperparameters have been used to train deep models. The
key hyperparameters used in the experiments are
summarized in Table 3. The entire experimental process
was conducted using Kaggle’s free GPU environment
(NVIDIA GPU P100), using Python and TensorFlow
libraries, and all of these hyperparameters were selected
after extensive experimentation. Various combinations
were tested, and this configuration consistently delivered

for wvalidation and test several

the best performance in terms of training stability,
convergence, and validation accuracy. While many values
could have been used, these settings struck a strong
balance between learning efficiency and generalization.
By sharing this matrix, we aim to demonstrate the
importance of careful tuning and provide transparency for
reproducibility.

Table 3: The Key Hyperparameters Used in The Experiments

Hyperparameter Value
Learning Rate 0.0001
Optimizer Nadam

Loss Function
Number of Epochs
Mini-batch Size
Momentum
Environment

Libraries

Sparse Categorical Cross-entropy
22
32
(Nadam does not use explicit momentum)
Kaggle (NVIDIA GPU P100)

Python + TensorFlow
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3. RESULTS

The proposed framework demonstrated high
computational efficiency and strong performance on both
the BUSI and MRI datasets. The BUSI dataset was first
prepared by excluding normal cases to focus on
distinguishing malignant from benign lesions. The total
training time was approximately 121.36 seconds, with an
average inference time of 0.09 seconds per image for the
BUSI dataset. The model achieved test accuracy of
98.97% and an ROC-AUC score of 99.95%, indicating
perfect discrimination between benign and malignant
breast tumors. When evaluated on the Breast MRI dataset,

SJUOZ|VOL1|JAN 2026|P83-96

the framework continued to perform exceptionally well.
Training was completed in just 4 minutes and 23 seconds,
and the evaluation phase took only 2.26 seconds. The
model achieved a test accuracy of 99.55% and an ROC-
AUC score of 99.9, confirming its ability to effectively
distinguish between healthy and cancerous cases in MRI
scans. These results highlight the robustness, speed, and
accuracy of the proposed framework in classifying breast
cancer using both ultrasound and MRI imaging modalities.
Our models Consistency

existing approaches in terms of evaluation metrics, as

shown in Tables 4 and 5.

Table 4: Performance Comparison with Existing Models and MRI Dataset.

itivit Dataset

Reference Accuracy F1-Score Sensitivi Specificity XAI Tool atase

y class

(Nasir et al., 2022) 98.1% 98.1% 99% 97.1% - B-M

Grad-
The proposed method 99.55% 99.54% 99.54% 99.09% CAM B-M
Table 5: Performance Comparison with Existing Models and Busi Dataset
Dat

Reference Accuracy F1-Score Sensitivity Specificity XAI Tool :laassset

(Vigil et al., 2022) 78.5% - - - - B-M
(Podda et al., 2022) 91.14% 91.14% - - - B-M-N
(Pathan et al., 2022) 92.31% 93% - - - B-M-N
(Cruz-Ramos et al., 2023) 96.10% 96% 96% 96% - B-M-N
(Zhang et al., 2023) 97.97% 98.20% 98.31% 93.34% - B-M-N
(Luong et al., 2024) 98.01% 98.10% - - Grad-CAM  B-M-N
(Sahu et al., 2024) 96.92% 97.70% 98.08% 94.62% - B-M-N
(Jabeen et al., 2024) 98.4% 98.39% 98.43% - Grad-CAM  B-M-N

Grad-
The proposed method 99.15% 99.23% 99.49% 99.6% CAM B-M-N
Grad-
The proposed method 98.97% 98.82% 99.24% 98.48% CAM B-M

In our experiments, the normal class was not included
in the BUSI dataset because its corresponding mask is
completely black (i.e., all pixel values are zero). When the
ROI extraction method by multiplying the image with its
mask is applied, the result is a fully black image with no
useful features. As seen in Table 6, the maximum accuracy
is obtained when the normal class is included and ROI is
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applied across all examples; however, this was misleading
because the model was not genuinely learning significant
patterns, but rather

detecting black images. We removed the normal class to
ensure the model learned from informative, valid inputs.
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Table 6: BUSI Dataset Accuracy Comparison with and

Without (ROI and Normal)
With ROI Without ROI
Without Normal 98.97% 86.6%
With Normal 99.15% 93.16%

To address class imbalance in the BUSI ultrasound
dataset benign and malignant only, we applied the
Synthetic Minority Over-sampling Technique (SMOTE),
which resulted in improved classification performance. As
shown in Table 7, all key metrics, including accuracy,
showed measurable
improvement after applying SMOTE. For the MRI dataset,
however, SMOTE yielded no significant change, as the
class distribution was more balanced and the baseline
performance was already saturated.

precision, recall, and Fl-score,

Table 7: The Effect of SMOTE on BUSI Dataset.

Metric BUSI Without BUSI With
SMOTE SMOTE
Accuracy 97.94% 98.97%
Precision 97.63% 98.44%
Recall 97.63% 99.24%
F1-score 97.63% 98.82%

As mentioned previously, the MRI dataset had an
ROC-AUC 0f 99.9 for both classes, and the BUSI dataset
had an ROC-AUC score of 99.95 for both classes, as
shown in Figures 6 and 7, respectively.

ROC Curve MRI

0.8

e
o

o
=

True Positive Rate

0.2 4

—— Class 0 (healthy) AUC = 0.9990
Class 1 (sick} AUC = 0.9990

0.0

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 6: ROC-AUC Using MRI Dataset.
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ROC Curve BUSI

e = o

0.8 4

True Positive Rate
o
o

o
.

- —— Class 0 {healthy} AUC = 0.9995
0.0+ - —— Class 1 {sick) AUC = 0.9995

0.0 0.2 0.6 0.8 1.0

Figure 7: ROC-/F:I[SJE(;OS[I};;;EBUSI Dataset

Figure 8 present the confusion matrix of the proposed
model using BUSI. The confusion matrix for the BUSI
dataset shows that the model performed exceptionally well
in distinguishing between benign and malignant cases,
with almost no errors. This indicates that the model can
confidently detect critical conditions with high precision.
The clear separation of predictions suggests strong
reliability for medical diagnosis tasks.

Confusion Matrix

benign

True label

&l

malignant
o

beﬁlgn malignant

Predicted label

Figure 8: Confusion Matrix of The Classification Model
for the BUSI Dataset

Figure 9 presents the confusion matrix of the
proposed model using MRI. The MRI dataset results reveal
nearly perfect classification, with the model correctly
identifying both healthy and sick cases with remarkable
consistency. Such performance reflects the model’s
robustness and its ability to generalize well across different
medical imaging data. It reinforces trust in the model’s
practical deployment for real-world clinical use.

Confusion Matrix MRI

100

healthy

True label

sick

healthy sick
Predicted label

Figure 9: Confusion Matrix of The Classification Model
for the MRI Dataset
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Discussion and Analysis:

The study introduced a powerful and efficient deep
learning framework for breast cancer classification,
using both ultrasound and MRI data. It demonstrates that
our EfficientNetV2B0-based model, paired with SMOTE,
ROI (for BUSI), and Grad-CAM, is an effective tool for
diagnosing breast cancer. The high accuracy of 98.97% for
BUSI and 99.55% for MRI, along with low error rates and
fast processing, demonstrates its reliability and efficiency.
For the BUSI dataset, ROI boosted precision by 5.8% (as
seen in Figure 10) by focusing on tumor-specific features
and cutting out distractions. SMOTE made the model more
sensitive to rare cancer cases, while Grad-CAM built trust
by showing doctors exactly what the Al was focusing on.

BUSI dataset accuracy by Normal Class and ROI Configuration

1000 99.15% Prp—y
975

95.0

£

Accuracy (%)
-
£

800+
With Normal with Normal Withaut Mormal
ith A Without RO With ROl

‘Withaut Normal
Without ROI

Figure 10: BUSI Dataset Accuracy Comparison Between
Models Trained with And Without Region of Interest
(ROI) Technique, Under Two Situations with and Without
the Normal Class.

The normal class was excluded from the data set
because it showed no pathological results and was
therefore irrelevant for distinguishing between benign and
malignant tumors. Furthermore, in the case of using an
ROI, normal images are poorer because their masks are
literally empty (zero values). When element-wise
multiplication is applied with such a mask, the entire
image is suppressed, rendering it unsuitable for training.
Moreover, normal images are less effective due to their
zero-valued masks, which lead to suppression. This
outcome validates the effectiveness of our preprocessing
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approach, which mitigates the suppression problem caused
by zero-valued masks in normal images.

The application of SMOTE was particularly effective
for the BUSI ultrasound dataset, where it contributed to
measurable gains in classification performance.
Improvements in accuracy, precision, recall, and F1-score
were observed, confirming that addressing class imbalance
through synthetic oversampling improved the model's
ability to detect patterns in the minority class. In contrast,
the MRI dataset showed negligible improvement with
SMOTE, likely due to its more balanced class distribution
and the model’s ability to learn discriminative features
without additional synthetic samples. These results
highlight the importance of tailoring preprocessing
strategies to the characteristics of each dataset.

However, using the BUSI and MRI datasets helps
generalize to different imaging procedures, using ROI for
BUSI only, while the MRI dataset did not apply ROI
extraction because segmentation masks were not available,
making our study suitable for both types of data, with and
without segmentation masks. The use of Region of Interest
(ROI) segmentation masks was applied to datasets with
ground-truth annotations, enabling us to isolate and
emphasize  diagnostically relevant areas during
preprocessing. However, our method was also designed to
operate effectively on datasets without segmentation
masks by processing the full image. This dual capability
demonstrates the flexibility of our approach, allowing it to
generalize well across diverse clinical scenarios, both with
and without ROI annotations, while maintaining strong
classification performance. While SMOTE and ROI
reduce dataset-specific biases, external validation across
many institutional datasets is required to ensure broader
application.  Furthermore, = Grad-CAM  improves
interpretability; its heatmaps require radiological expertise
for accurate clinical translation. The BUSI dataset might
not reflect all real-world ultrasound variations (like
different patient demographics or imaging setups), thus,
more diverse breast cancer data is needed, like an MRI
dataset. Although Grad-CAM is helpful for interpreting
the heatmaps of the outcomes, it is not considered a
replacement for clinicians. The Grad-CAM plays as a
supporting technique for them. Figure 11 shows examples
from both datasets

Malignant BUSI

Malignant MRI

Figure 11: Grad-CAM Heatmap Outcome for Both Datasets.
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CONCLUSION

This work demonstrates the effectiveness of an
EfficientNetV2B0-based deep learning model in
accurately diagnosing breast cancer using both ultrasound
and MRI images. The model achieved a test accuracy of
98.97% on the BUSI dataset and 99.55% on the MRI
dataset, with ROC-AUC scores of 99.95 and 99.9,
respectively. These results were made possible by
integrating three core strategies: SMOTE for addressing
class imbalance, ROI extraction was used only for the
BUSI dataset to improve image focus and clarity, and
Grad-CAM for enhancing interpretability by linking
predictions to meaningful visual cues.

The model consistently produced minimal prediction
errors, indicating robustness and clinical reliability. Using
transfer learning and mindful preprocessing, this technique
provides a quick, accurate, and explainable detection tool
for breast cancer screening that is well-suited for use in
real-world medical settings, including resource-
constrained settings. This technology provides a highly
accurate, interpretable, and strong solution for breast
cancer detection, ready to help specialists in real-world
settings with precision and transparency.

Limitations and Future Direction:

While existing studies have demonstrated strong
performance in breast ultrasound classification, certain
limitations remain. Many rely on limited ultrasound
datasets that the Model is mnot tested on
Doppler/elastography, test them which could provide
greater diagnostic value and improve robustness in real-
world clinical environments. Moreover, explainable Al
(XAI) techniques are rarely employed only Luong ef al.
(2024) and Jabeen et al. (2024) explicitly applied them, as
shown in Table 5. In response, our approach integrates
Grad-CAM to enhance transparency, with future work
exploring additional XAI methods like LIME and SHAP
for broader interpretability. Planned directions also
include evaluating the system on larger, more diverse
datasets, integrating it into real-time ultrasound platforms,
and potentially combining it with mammography for a
more comprehensive diagnostic pipeline. Clinical
validation and the expansion to multi-modal imaging will
be essential to ensure the generalizability and practical
impact of this work in breast cancer screening.
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